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ABSTRACT 
The effect of radiation on mixed convective heat transfer flow of a viscous fluid, incompressible electrically conducting 
fluid in a vertical channel bounded by flat walls. A non-uniform temperature is imposed on the walls on the walls. The 
viscous dissipation is taken in to account in the energy equation. Assuming the slope of the boundary temperature to be 
small. We solve the governing momentum, energy and diffusion equations by a perturbation technique. The velocity, the 
temperature, the shear stress and the rate of heat transfer have been analyzed for different variations of the governing 
parameters. The dissipative effects and radiation effects on the flow, heat and mass transfer are clearly brought out 
 
Keywords: Radiation Dissipation, Heat Transfer, Viscous clued, Vertical Channel. 
 
 
1. INTRODUCTION 
The process of free convection as a mode of heat transfer has wide applications in the fields of Chemical Engineering, 
Aeronautical and Nuclear power generation. It was shown by Gill and Casal (1962) that the buoyancy significantly 
affects the flow of low Prandtl number fluids which is highly sensitive to gravitational force and the extent to which the 
buoyancy force influences a forced flow is a topic of interest. Free convection flows between two long vertical plates 
have been studied for many years because of their engineering applications in the fields of nuclear reactors, heat 
exchangers, cooling appliances in electronic instruments. These flows were studied by assuming the plates at two 
different constant temperatures or temperature of the plates varying linearly along the plates etc. The study of fully 
developed free convection flow between two parallel plates at constant temperature was initiated by Ostrach (1952). 
Combined natural and forced convection laminar flow with linear wall temperature profile was also studied by Ostrach 
(1954). The first exact solution for free convection in a vertical parallel plate channel with asymmetric heating for a 
fluid of constant properties was presented by Anug (1972). Many of the early works on free convection flows in open 
channels have been reviewed by Manca et al. (2000). Recently, Campo et al. (2006) considered natural convection for 
heated iso-flux boundaries of the channel containing a low-Prandtl number fluid. Pantokratoras (2006) studied the fully 
developed free convection flow between two asymmetrically heated vertical parallel plates for a fluid of varying 
thermophysical properties. However, all the above studies are restricted to fully developed steady state flows. Very few 
papers deal with unsteady flow situations in vertical parallel plate channels. Transient free convection flow between 
two long vertical parallel plates maintained at constant but unequal temperatures was studied by Singh et al. (2006). Jha 
et al. (2003) extended the problem to consider symmetric heating of the channel walls. 
 
In the risk assessment of nuclear power plants, the possibility and the consequences of a melt down of the reactor core 
are usually considered. During the course of such an accident molten fuel and coolant may interact. Violent thermal 
reaction can dispose the molten fuel into fine particles. These small particles quickly solidify in the coolant and settle 
on internal structures of the reactor pressure vessel forming a saturated porous bed. The question arises, under what 
conditions the nuclear decay heat can be removed from the particle bed to the ambient coolant by natural convection. 
Thus the problem of natural convection in saturated porous layers. This analysis of heat transfer in a viscous heat 
generating fluid also important in engineering processes pertain to flow in which a fluid supports an exothermal 
chemical or nuclear reaction or problems concerned with dissociating fluids(Less(1950), Lighthil(1958)). The 
Volumetric heat generation has been assumed to be constant (Ajay(2003), Bejamin(1988), Bejan(1985), Bejan (1984), 
Bird(1955), Cheng (1979, Ostrach(1954), Palm(1975)) or a function of space variable (Chambre(1957), Costa(1980), 
Gill (1962), Greosh(1958), Helman(1950), Krishna(2002)). For example a hypothetical core-disruptive accident in a 
liquid metal fast breeder reactor (LMFBR) could result in the setting of fragmented fuel debris as horizontal surfaces 
below the core. The porous debris could be saturated sodium coolant and heat generation will result from the 
radioactive decay of the fuel particulate(1974) The heat losses from the geothermal system in some cases can be treated 
as if the heat comes from the heat generating sources (1974). Keeping this in view, porous medium with internal heat 
source have been discussed by several authors (Buretta (1972), Gabor (1974), Hardec (1974), Hardec (1979), Palm 
(1954)). 

Corresponding author: K.  Satyanarayana* 
S. S. B. N. Degree & P.G. College, Anantapur-515003, A.P. India 

http://www.ijma.info/�


Y. Rajendra Prasad & K.  Satyanarayana*/ EFFECT OF RADIATION AND DISSIPATION ON CONVECTIVE HEAT TRANSFER… / 
 IJMA- 4(4), April-2013. 

© 2013, IJMA. All Rights Reserved                                                                                                                                                                         13  

 
In the above mentioned investigations the bounding walls are maintained at constant temperature. However, there are a 
few physical situations which warrant the boundary temperature to be maintained non-uniform. It is evident that in 
forced or free convection flow in a channel (pipe) a secondary flow can be created either by corrugating the boundaries 
or by maintaining non-uniform wall temperature such a secondary flow may be of interest in a few technological 
process. For example in drawing optical glass fibres of extremely low loss and wide bandwidth, the process of modified 
chemical vapour deposition (MCVD) (Krishna (2002), Simpikins (1979)) has been suggested in recent times. Performs 
from which these fibres are drawn are made by passing a gaseous mixture into a fused – silica tube which is heated 
locally by an oxy-hydrogen flame. Particulates of Sio2- Geo2 composition are formed from the mixture and collect on 
the interior of the tube. Subsequently these are fined to form a victorious deposit as the flame traversed along the tube. 
The deposition is carried out in the radial direction as the flame traversed along the tube. The deposition is carried out 
in the radial direction through the secondary flow created due to non-uniform. 
 
All the above mentioned studies are based on the hypothesis that the effect of dissipation is neglected. This is possible 
in case of ordinary fluid flow like air and water under gravitational force. But this effect is expected to be relevant for 
fluids with high values of the dynamic viscous flows. Moreover Gehart(1962), Gebhart and Mollen dorf(1969) have 
shown that that viscous dissipation heat in the natural convective flow is important when the flow field is of extreme 
size or at  extremely low temperature or in high gravitational filed.  On the other hand Barletta (1997) has pointed out 
that relevant effect of viscous dissipation on the temperature profiles and on the Nusselt numbers may occur in the fully 
developed forced convection in tubes. In view of this several authors notably, Soudalgekar and Pop (1974) Raptis etc al 
(1995), Barletta (Barletta (1997, 1998)), Sreevani (1992). El-hakeing (2000), Bulent Ypsilanti (2002). Rossidi schio 
(2001) and Israel et al (2003) have studied the effect of viscous dissipation on the convective flows past on infinite 
vertical plates and through vertical channels and Ducts. The effect of viscous dissipation on natural convection has 
been studied for some different cases including the natural convection from horizontal cylinder. The natural convection 
from horizontal cylinder embedded in a porous media has been studied by Fand and Brucker (1996). They reported that 
the viscous dissipation may not be neglected in all cases of natural convection from horizontal cylinders and further, 
that the inclusion of a viscous dissipation term in porous medium may lead to more accurate correlation equations. The 
effect of viscous dissipation has been studied by Nakayama and Pop (1989) for steady free convection boundary layer 
over a non-isothermal bodies of arbitrary shape embedded in porous media. They used integral method to show that the 
viscous dissipation results in lowering the level of the heat transfer rate from the body. Costa (2005) has analyzed a 
natural convection in enclosures with viscous dissipation. Recently Jambal et al have discussed the effects of viscous 
dissipation and fluid axial heat conduction heat transfer for non-Newtonian fluids in ducts with uniform wall 
temperature. Recently Prasad (2006)has discussed the effect of dissipation on the mixed convective heat and mass 
transfer flow of a viscous fluid through a porous medium in a vertical channel bounded by flat walls. 
 
In this chapter, we discuss the effect of radiation on mixed convective heat transfer flow of a viscous fluid, 
incompressible electrically conducting fluid in a vertical channel bounded by flat walls. A non-uniform temperature is 
imposed on the walls on the walls. The viscous dissipation is taken in to account in the energy equation. Assuming the 
slope of the boundary temperature to be small. We solve the governing momentum, energy and diffusion equations by a 
perturbation technique. The velocity, the temperature, the shear stress and the rate of heat transfer have been analyzed 
for different variations of the governing parameters. The dissipative effects and radiation effects on the flow, heat and 
mass transfer are clearly broughtout. 
 
2. FORMULATION OF THE PROBLEM  
We analyze the steady motion of viscous, incompressible fluid in a vertical channel bounded by flat walls which are 
maintained at a non-uniform wall temperature in the presence of a constant heat source. The Boussinesq approximation 
is used so that the density variation will be considered only in the buoyancy force. The viscous dissipations and the 
joule heating are taken into account in the energy equation. Also the kinematic viscosityν, the thermal conducting k are 
treated as constants. We choose a rectangular Cartesian system 0(x, y) with x-axis in the vertical direction and y-axis 
normal to the walls. The walls of the channel are at y = ± L. The equations governing the steady flow, heat and mass 
transfer are Equation of continuity: 
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Equation of linear momentum:                                                                       
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Equation of Energy: 
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Equation of State:             

( )e e eT Tρ ρ βρ− = − −                                                             (2.5) 
 
where eρ  is the density of the fluid in the equilibrium state, Te is the temperature in the equilibrium state, (u, v) are the 
velocity components along O(x, y) directions, p is the pressure, T is the temperature in the flow region,  ρ is the density 
of the fluid,µ is the constant coefficient of viscosity, Cp is the specific heat at constant pressure, λ is the coefficient of 
thermal conductivity, eµ  is the the magnetic permeability, σ is the electrical conductivity, β is the coefficient of 
thermal expansion, Q is the strength of the constant internal heat source , qr is the radiative heat flux. 
 
Invoking Rosseland approximation for radiation 
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Expanding 4T ′  in Taylor’s series about Te neglecting higher order terms (2.5) 

434 34 ee TTTT −′≅′  
 
where •σ is the Stefan-Boltzmann constant Rβ  is the Extinction coefficient. 
 
In the equilibrium state 
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where DDe pppp ,+=  being the hydrodynamic pressure. 
 
The flow is maintained by a constant volume flux for which a characteristic velocity is defined as 
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−
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.                                                                                                                                                          (2.7) 

 
The boundary conditions for the velocity and temperature fields are  
u = 0, v = 0                   on y = ±L  
 

)/( LxTT e δγ=−    on y = ±L                                                                                                                                   (2.8) 
 
γ  is chosen to be twice differentiable function,δ is a small parameter characterizing the slope of the temperature 
variation on the boundary. 
 
In view of the continuity equation we define the stream function ψ as 
 
u = -ψ y , v = ψ x                                                                               (2.9) 
 
The equation governing the flow in terms of ψ are 
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Introducing the non-dimensional variables in (2 .10) - (2.11) as   
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(Under the equilibrium state 
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The governing equations in the non-dimensional form ( after dropping the dashes ) are  
2 2
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                                                                           (2.13)      

                          
and the energy  diffusion equations in the non-dimensional form are  
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The corresponding boundary conditions are  
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The value of ψ on the boundary assumes the constant volumetric flow in consistent with the hypothesis (2.7) .Also the 
wall temperature varies in the axial direction in accordance with the prescribed arbitrary function γ(x). 
 
3. ANALYSIS OF THE FLOW 
The main aim of the analysis is to discuss the perturbations created over a combined free and forced convection flow 
due to non-uniform slowly varying temperature imposed on the boundaries. We introduce the transformation  
 

   xx δ=   
With this transformation the equations (2.13), (2.14) reduce to  
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and the energy  &diffusion equations in the non-dimensional form are  
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for small values of the slope δ,the flow develops slowly with axial gradient of order δ  and hence we take  
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We follow the perturbation scheme and analyze through first order as a regular perturbation problem at finite values of 
R, G, P, Sc and M 
 
Introducing the asymptotic expansions  
ψ (x, y) = ψ 0 (x, y) + δψ1 (x, y) + δ2 ψ 2 (x, y) +…… 
θ (x, y) = θ 0 (x, y) + δθ 1 (x, y) + δ2θ 2 (x, y) +                                                                                                   (3.3) 
 
On substituting (3.3) in (3.1) & (3.2) and separating the like powers of δ the equations and respective conditions to the 
zeroth order are 
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and to the first order are 
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ψ 1, y = 0, ψ 1 , x = 0  at y = ±1                                                                              (3.9) 
 
θ1(±1) = 0     at y = ± 1                                                          (3.10)                     
 
Assuming Ec<<1 to be small we take the asymptotic expansions as 
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Substituting the expansions (3.11) in equations (3.4) - (3.10) and separating the like powers of Ec we get the 
following equations     
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4. SOLUTION OF THE PROBLEM  
Solving the equations (3.12)- (3.19) subject to the relevant boundary conditions  we obtain 
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where 53217521 ....,.........,,......,........., bbbaaa are constants. 
 
5. SHEAR STRESS AND NUSSELT NUMBER   
The shear stress on the channel walls is given by 
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The local rate of heat transfer coefficient (Nusselt number Nu) on the walls has been calculated using the formula  
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  and the corresponding expressions are 
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 where 1043 .......,..........,........., ddd  are constants. 
 
6. DISCUSSION OF THE NUMERIC RESULTS  
In this analysis we analyze the effect of radiation and dissipation on convective heat transfer flow of a viscous 
electrically conducting fluid in a non – uniformly heated vertical channel.  The axial velocity u is shown in figs.1-6 for 
different values of G, M, 1α , N 1 , Ec and x .  The fig.1 represents the axial velocity u with Grashof number G.  It is 
found that the actual axial velocity is the vertically upward direction and hence u<0 represents the reversal flow.  We 
notice a reversal flow in the left half of the channel at G = 10 3  and in the right half at G=- 10 3 . The region of the 
reversal flow enlarges with increase in G  with maximum attained at y = 0.6. The variation of u with Hartmann 
number M shows that the reversal flow which appears in the left half at M = 2, disappears at higher values of M .  
Higher the Lorentz force larger u  in the flow region. The variation in u is comparably large  at higher M = 6.  The 

point of maximum shifts towards the mid- region with increase in M(fig.2).  The variation of u with the amplitude 1α  
of the boundary temperature is shown in fig.3.  It is found that the reversal flow appears in the left half for all values of 

1α . u  depreciates with increase in 1α  and enhances with higher 1α ≥ 0.5 (fig.3).  Fig.4 represents the variation of u 

with radiation parameter N 1 .   
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Fig. 1 : Variation of u with G       Fig. 2 : Variation of u with M 
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Fig. 3 : Variation of u with α1      Fig. 4 : Variation of u with N1  
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Fig. 5 : Variation of u with Ec       Fig. 6 : Variation of u with x 

   I II III IV       I II III IV 
  Ec 0.01 0.03 0.05 0.07       x π/4 π/2 π 2π  

 
It is found that the reversal flow which appears in the left half of the channel enlarges with N 1 ≤  4 and depreciates at 

N 1  = 10 and again enlarges with N 1 = 100.  Higher the radiative heat flux larger u  and further higher N 1  smaller u  

and for still higher N 1  larger u  in the flow region (fig.4).  Fig.5 represents the variation of u with Eckert number Ec.   
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It is found that the reversal flow which appears in left half enlarges with increase in Ec. u  experiences an 
enhancement with Ec except in narrow region adjacent to y = +1.  Fig.6 represents u with axial distance x . Moving 
along the axial direction of the channel walls u  enhances with x π≤  and depreciates with 2x π≥ . 
 
The secondary velocity (v) which is due to the non – uniform boundary temperature is shown in figs. 7 – 12 for 
different variations of the governing parameters.  Fig.7 represents v with Grashof number G. It is found that for G>0, 
the secondary velocity is towards the boundary in the left half and is towards the mid region in the right half of the 
channel.  u  experiences an enhancement with increase in G  with maximum attained at y = -0.6.  The variation of v 

with M shows that higher the Lorentz force larger v in the flow region (fig.8). The variation of v with amplitude 1α  
of the non-uniform boundary temperature shows that the secondary velocity depreciates in magnitude with increase in 

1α ≤ 0.3 and enhances with higher 1α ≥ 0.5(fig.9).  Fig.10 represents the variation of v with radiation parameter N 1 .  

It is found that an increase in 1 1N ≤  depreciates v  in the vicinity of y = ± 1 and enhances it in the central region.  

For higher 1 4N ≥  it enhances v .  The variation of v with Eckert number Ec is  shown in fig.11.  Higher the 

dissipative heat (Ec≤ 0.03) larger v  and for further higher the dissipative heat (Ec = 0.05) smaller v  and for still 

higher dissipative heat (Ec=0.07) larger v . Moving along the axial direction of the channel walls v  depreciates in 

the region (-0.8 & 0.2) and enhances in the region (0.4 & 0.8) with x π≤  and for higher 2x π= , v  enhances in the 
region(-0.8 & 0) and depreciates in the region (0.2 & 0.8) (fig.12).  
 
The non – dimensional temperature (θ  ) is shown in figs. 13-18 for different parametric values.  Fig.13 represents θ  
with Grashof number G.  It is found that the temperature enhances in the flow region for G>0 and depreciates with G<0 
with maximum attained at y = 0.  The variation of θ  with Hartmann number M shows that the higher the Lorentz force 
larger the temperature and for further higher Lorentz force smaller the temperature in the flow region (fig.14).  Fig.15 
represents θ  with amplitude 1α of the boundary temperature.   It is found that an increase in 1 0.3α ≤ , enhances the 

temperature while it reduces with higher 1 0.5α ≥ .  The variation of θ  with radiation parameter N 1  shows that higher 

radiative heat flux larger the actual temperature in the flow region (fig.16).  The effect of dissipation on θ  is shown in 
fig.17. It is found that higher the dissipative heat (Ec≤  0.03) larger the actual temperature and for further higher  
dissipative heat (Ec≥  0.05) lesser the actual temperature everywhere in the flow region.  The actual temperature 

enhances with axial distance 
2

x π
≤  and reduces at x π=  and again enhances with higher 2x π= (fig.18).  
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Fig. 7 : Variation of v with G       Fig. 8 : Variation of v with M 
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Fig. 9 : Variation of v with α1       Fig. 10 : Variation of v with N1    
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Fig. 11 : Variation of v with Ec      Fig. 12 : Variation of u with x 

   I II III IV       I II III IV  
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The resultant velocity is shown in figs.13-17 for different values of G, M, 1α , N 1 , Ec and x .  In all the cases the 
profiles for resultant velocity are M shaped curves with a dip at y =0.  From fig.13 we find that the resultant velocity 
enhances with increase in G .  From fig.14 we find that for M=2 the resultant velocity is M shaped curve with a dip at    
y = 0 and as M increases the profiles of Rt are parabolic in nature with maximum attained at y = 0.  An increase in the 
amplitude 1α  at of the non – uniform boundary temperature enhances Rt in the vicinity of the boundaries y = ± 1 and 
its change in the neighborhood of y = 0 is marginal(fig.15). From figs. 16 & 17 we note that the resultant velocity 
depreciates with 1 1N ≤ , enhances with N 1 = 4 and again depreciates with higher N 1 =10.  Also higher the dissipative 
heat larger the resultant velocity in the vicinity of y = -1.  In the region (0, 0.4 ) the resultant velocity experience an 
enhancement while at the region ( 0.4, 1) the resultant velocity depreciates. 

 
 
 
 
 
 
 
 
 
 
 
 
 



Y. Rajendra Prasad & K.  Satyanarayana*/ EFFECT OF RADIATION AND DISSIPATION ON CONVECTIVE HEAT TRANSFER… / 
 IJMA- 4(4), April-2013. 

© 2013, IJMA. All Rights Reserved                                                                                                                                                                         22  

 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

y

R

I
II
III
IV
V
VI

0.0

0.2

0.4

0.6

0.8

1.0

1.2

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

y

R
I
II
III

 
Fig. 13 : Variation of R with G      Fig. 14 : Variation of R with M 
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Fig. 15 : Variation of R with α1     Fig. 16 : Variation of R with N1    
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Fig. 17 : Variation of R with Ec       Fig. 18 : Variation of R with x 
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Fig. 19 : Variation of θ with G      Fig. 20 : Variation of θ with M 
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Fig. 21 : Variation of θ with α1      Fig. 22 : Variation of θ with N1 
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Fig. 23 : Variation of θ with Ec       Fig. 24 : Variation of θ with x  
I II III IV        I II III IV  

Ec 0.01 0.03 0.05 0.07      x π/4 π/2 π 2π  
 
The shear stress at wall y = ± 1 is shown in tables 1- 4 for different values of   G, M, 1α , N 1 , Ec and x .  It is found 

that stress enhances with increase in G  at y = ± 1. Higher the Lorentz force larger τ  at both the walls.  At y = +1 

the magnitude of the stress dissipates with the amplitude 1 0.3α ≤  and enhances with higher 1 0.5α ≥ . While at  
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y = -1 it dissipates with 1α  for all G.  An increase in the radiation parameter N 1  results in depreciation in τ  at y = +1 

and enhances at y=-1. (tables 1&3).  From tables 2 & 4 we find that higher the dissipative heat lesser τ  at y = +1 and 

larger τ  at y = -1.  The magnitude of τ  enhances with increase in 
2

x π
≤  and depreciates with x π≥ .  and at y = -

1, τ  enhances with lower and higher values of  x  and depreciates with intermediate value of x .  
   

TABLE – 1 
SHEAR STRESS (τ ) AT y = +1 

G I II III IV V VI VII VIII IX 
1x103 0.1536 -0.3468 -1.3427 0.2107 0.1875 0.2105 0.199043 0.1391 0.1276 
2x103 0.2843 -0.7272 -2.7953 0.4226 0.3621 0.3982 0.380200 0.2553 0.2324 
3x103 -1.3120 -6.2890 -4.2930 -2.3930 -2.7510 -1.3120 -2.53150 0.3417 -1.3120 
-1x103 -0.1974 0.2977 1.2189 -0.2361 -0.2250 -0.2544 -0.23972 -0.1829 -0.1715 
-2x103 -0.4178 0.5620 2.3281 -0.4710 -0.4628 -0.5317 -0.49731 -0.3887 -0.3658 
-3x103 -0.6680 0.7875 3.3228 -0.7136 -0.7218 -0.8389 -0.78037 -0.6244 -0.5901 

M 2 4 6 2 2 2 2 2 2 

1α  0.5 0.5 0.5 0.1 0.3 0.5 0.5 0.5 0.5 

1N  4 4 4 4 4 0.4 1 10 100 
 

TABLE –2 
SHEAR STRESS (τ ) AT y =+1 

G I II III IV V VI 
1x103 0.153628 0.143608 0.133626 0.216397 0.146961 0.116468 
2x103 0.284384 0.276384 0.272384 0.441202 0.331850 0.205846 
3x103 -1.312000 -1.302020 -1.300000 -1.312000 -1.311000 -1.311000 
-1x103 -0.197480 -0.196460 -0.195452 -0.234960 - 0.125303 -0.160083 
-2x103 -0.417832 -0.406836 -0.396836 -0.461513 - 0.212678 -0.347257 
-3x103 -0.668049 -0.662049 -0.648249 -0.688648 - 0.267549 -0.567028 

Ec 0.01 0.03 0.05 0.01 0.01 0.01 
x  π/4 π/4 π/4 π/2 π 2π 

 
TABLE –3 

SHEAR STRESS (τ ) AT y = -1 
G I II III IV V VI VII VIII IX 

1x103 0.361987 0.7631 1.6514 0.4455 0.4183 0.305034 0.361670 0.376505 0.387966 
2x103 0.746799 1.5598 3.4126 0.8898 0.8494 0.632893 0.741165 0.775834 0.798757 
3x103 2.152000 7.7230 11.230 2.6310 2.1160 2.152000 2.556500 1.204982 2.152000 
-1x103 -0.3181 -0.7141 -1.2273 -0.4201 -0.3808 0.261229 0.281600 -0.332700 -0.344161 
-2x103 -0.6135 -1.3947 -2.9454 -0.8415 0.7488 0.499634 0.524900 -0.642575 -0.665498 
-3x103 -0.8790 -2.0365 -4.2488 -1.2552 -1.0957 -0.708221 -0.75850 -0.922600 -0.957016 

M 2 4 6 2 2 2 2 2 2 

1α  0.5 0.5 0.5 0.1 0.3 0.5 0.5 0.5 0.5 

1N  4 4 4 4 4 0.4 1 10 100 
 

TABLE –4 
SHEAR STRESS (τ ) AT y = -1 

G I II III IV V VI 
1x103 0.361987 0.372986 0.381980 0.446468 0.252913 0.289651 
2x103 0.746799 0.752799 0.759799 0.884528 0.467950 0.606340 
3x103 2.152000 2.192000 2.282000 21.152000 21.151000 21.151000 
-1x103 -0.318183 -0.328684 -0.338284 -0.427906 -0.274520 -0.246087 
-2x103 -0.613541 -0.620541 -0.633542 -0.864220 -0.586915 -0.465136 
-3x103 -0.879081 -0.889081 -0.899081 -1.299953 -0.931964 -0.651638 

Ec 0.01 0.03 0.05 0.01 0.01 0.01 
x  π/4 π/4 π/4 π/2 π 2π 
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The rate of heat transfer (Nusselt number) at y = ± 1 is shown in tables 5 – 8 for different parametric values. The 
variation of Nu with Grashof number G shows that the rate of heat transfer enhances at y +1 and depreciates at y = -1 
with increase in G .  With respect to Hartmann number M it is found that the Nu at y+1 enhances with M 4≤  and 

depreciate with M≥ 6, and at y = -1, Nu  depreciates with M for all G.  The variation of  Nu with amplitude 1α  

shows that Nu  enhances with increase in 1α  in the heating case and depreciates with 1α  in the cooling case at both 
the walls.   

 
TABLE – 5 

NUSSELT NUMBER (Nu) AT y = +1 
 

G I II III IV V VI VII VIII IX 
1x103 0.1536 -1.1939 -0.4694 -2.3854 -2.814766 -4.631198 -3.722982 -3.217467 -3.065760 
2x103 0.2843 -0.5267 -0.2192 -1.1468 -1.204118 -1.569897 -1.387007 -1.207341 -1.163774 
3x103 -1.3120 0.0007 0.0007 0.0006 0.000686 0.000678 0.000682 -0.723476 0.000678 
-1x103 -0.1974 0.8717 0.4179 2.1474 1.888042 1.939139 1.913590 1.629270 1.588129 
-2x103 -0.4178 0.4830 0.2233 1.1138 1.064792 1.210938 1.137865 0.979977 0.950585 
-3x103 -0.6680 0.3393 0.1553 0.7558 0.753839 0.910343 0.832091 0.719578 0.695936 

M 2 4 6 2 2 2 2 2 2 

1α  0.5 0.5 0.5 0.1 0.3 0.5 0.5 0.5 0.5 

1N  4 4 4 4 4 0.4 1 10 100 
 
The variation of Nu with radiation parameter N 1  shows that the rate of heat transfer enhances at y = +1 and depreciates 

at y = -1 with increase in N 1 (tables 5 & 7).  The effect of dissipation on Nu is shown in tables 6 & 8. It is find that 

higher the dissipative heat larger Nu  at y = +1 and smaller Nu  at y = -1.  Moving along axial direction of the 

channel walls we notice that the rate of heat transfer at y= ± 1 increases at & 2
2

x π π=  and depreciates at x π=  in 

heating case and in the cooling case a reversed effect is observed in the behavior of Nu .    
TABLE – 6 

NUSSELT NUMBER (Nu) AT y = +1 
 

G I II III IV V V 
1x103 -3.431846 -3.442846 -3.452840 -5.025386 -2.220998 -2.342420 
2x103 -1.267228 -1.269228 -1.272228 -1.559028 -1.230760 -1.057165 
3x103 0.000678 0.000686 0.000698 0.000678 0.000678 0.000678 
-1x103 1.684350 1.694351 1.784352 1.457046 2.297302 2.185926 
-2x103 1.019781 1.029781 1.012786 0.885587 1.043532 1.216455 
-3x103 0.751820 0.762820 0.774822 0.636045 0.651652 0.811530 

Ec 0.01 0.03 0.05 0.01 0.01 0.01 
x  π/4 π/4 π/4 π/2 π 2π 

 
TABLE – 7 

NUSSELT NUMBER (Nu) AT y = -1 
 

G I II III IV V VI VII VIII IX 
1x103 3.4208 1.1867 0.459727 2.3838 2.8093 4.616516 3.712943 3.207171 3.055935 
2x103 1.2591 0.5204 0.210272 1.1454 1.1995 1.559963 1.379735 1.199629 1.156330 
3x103 -0.0006 -0.0006 -0.0007 -0.0006 -0.0006 -0.000624 -0.000628 0.716559 -0.000624 
-1x103 -1.6897 -0.8769 -0.4267 -2.1488 -1.8916 -1.945312 -1.918482 -1.634505 -1.593240 
-2x103 -1.0263 -0.4888 -0.2328 -1.1152 -1.0684 -1.218663 -1.143778 -0.986287 -0.956715 
-3x103 -0.7590 -0.3455 -0.1653 -0.7573 -0.7582 -0.919072 -0.838637 -0.726543 -0.702682 

M 2 4 6 2 2 2 2 2 2 

1α  0.5 0.5 0.5 0.1 0.3 0.5 0.5 0.5 0.5 

1N  4 4 4 4 4 0.4 1 10 100 
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TABLE – 8 

NUSSELT NUMBER (Nu) AT y = - 1 
 

G  I II III IV V 
1x103 -3.431846 3.420885 3.416865 5.025168 2.231012 2.332052 
2x103 -1.267228 1.259149 1.250149 1.558893 1.241868 1.047830 
3x103 0.000678 -0.000624 -0.000614 -0.000624 -0.000624 -0.000624 
-1x103 1.684350 -1.689752 -1.691752 -1.457109 -2.286963 -2.195649 
-2x103 1.019781 -1.026335 -1.030235 -0.885664 -1.034148 -1.227305 
-3x103 0.751820 -0.769283 -0.772286 -0.636128 -0.642870 -0.893353 

Ec 0.01 0.03 0.05 0.01 0.01 0.01 
x  π/4 π/4 π/4 π/2 π 2π 

 
7. CONCLUSIONS 
In this paper we briefly discussed the effect of radiation and dissipation on convective heat transfer flow of a viscous 
electrically conducting fluid in a non – uniformly heated vertical channel.  The important conclusions are following: 

 
1) The reversal flow which appears in the left half of the channel enlarges with N 1 ≤  4 and depreciates at N 1  = 10 and 

again enlarges with N 1 = 100.  Higher the radiative heat flux larger u  and further higher N 1  smaller u  and for still 

higher N 1  larger u  in the flow region. It is found that the reversal flow which appears in left half enlarges with 

increase in Ec. u  experiences an enhancement with Ec except in narrow region adjacent to y = +1. 
 
2) The secondary velocity depreciates in magnitude with increase in 1α ≤ 0.3 and enhances with higher α1≥0.5.  It is 

found that an increase in 1 1N ≤  depreciates v  in the vicinity of y = ± 1 and enhances it in the central region.  For 

higher 1 4N ≥  it enhances v . Higher the dissipative heat (Ec≤ 0.03) larger v  and for further higher the dissipative 

heat (Ec = 0.05) smaller v  and for still higher dissipative heat (Ec=0.07) larger v . 
 
3)  An increase in 1 0.3α ≤ , enhances the temperature while it reduces with higher 1 0.5α ≥ .  The variation of θ  

with radiation parameter N 1  shows that higher radiative heat flux larger the actual temperature in the flow region. It is 
found that higher the dissipative heat (Ec≤  0.03) larger the actual temperature and for further higher  dissipative heat 
(Ec≥  0.05) lesser the actual temperature everywhere in the flow region. 
 
4)  At y = +1 the magnitude of the stress dissipates with the amplitude 1 0.3α ≤  and enhances with higher 1 0.5α ≥ .  

While at y = -1 it dissipates with 1α  for all G.  An increase in the radiation parameter N 1  results in depreciation in τ  

at y = +1 and enhances at  y=-1. We find that higher the dissipative heat lesser τ  at y = +1 and larger τ  at y = -1.  

Nu  enhances with increase in 1α  in the heating case and depreciates with 1α  in the cooling case at both the walls. 
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