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ABSTRACT 
Peristaltic transport of a Casson fluid in an inclined channel is investigated. The effect of porous lining has been 
studied under long wavelength and low Reynolds number assumptions. The equations of motion are solved analytically 
and the expressions for velocity, stream function and flow rate are obtained. The pumping and trapping phenomena are 
analyzed. The effect of porous lining, yield stress, amplitude ratio, permeability parameter and angle of inclination on 
the pumping characteristics are discussed graphically. Trapping limits are obtained for the stream function of the fluid 
flow. The results are interesting and warrant further study on the peristaltic transport of yield stress fluids.  
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1. INTRODUCTION 
Peristaltic pumping is a mechanism of the fluid transport in a flexible tube by a progressive wave of contractions or 
expansion from a region of lower pressure to higher pressure. Peristalsis is one of the major mechanisms for many 
biological systems. In addition, peristaltic pumping occurs in many practical applications involving biomechanical 
systems. The major industrial applications of this principle is in designing the roller pumps which are useful in 
pumping fluids without being contaminated due to the contact with the pumping machinery. The problem of the 
mechanism of peristaltic transport has attracted the attention of many investigators since the first investigation of 
Latham [1]. The application of peristaltic motion as a means of transporting fluid has also aroused interest in 
engineering fields (Hanin [2], Ayukawa et al. [3],). The important studies of the recent years includes the investigations 
of El Hakeem and El Misery [4], Haroun [5], Muthu et al.  [6], Medhavi [7], Medhavi and Singh [8], Hayat   et al. [9], 
Kothandapani and Srinivas [10], Hayat et al. [11], and a few others. 
 
The dynamics of flow through porous medium has been a topic of considerable interest for the last one and half 
centuries, since Darcy formulated his famous law describing the motion of a viscous fluid through a porous medium. 
The study of flow through and past porous media has important applications in various branches of Science, 
Engineering and Technology. It is well known that porous medium had practical applications especially in geophysical 
fluid dynamics. It is applicable in the field of energy extraction from geothermal region and the heat removal from 
nuclear fuel debris. The study of flow of immiscible fluids through and past porous media is useful in improving oil 
recovery from the underground oil reservoirs. In some pathological situations, the distribution of fatty cholesterol and 
artery clogging blood clots in the lumen of coronary artery can be considered as equivalent to porous medium. El 
Shehawey et al. [12], El Shehawey and Husseny [13] studied the peristaltic mechanism of a Newtonian fluid through a 
porous medium. Afifi and Gad [14 and 15] studied the interaction of peristaltic flow with pulsatile fluid (respectively 
Magneto field) through a porous medium when the ratio between these two frequencies is equal to the wave number of 
the imposed pressure gradient wave. 
 
Unsteady flow of a viscous incompressible fluid through a circular naturally permeable tube surrounded by a porous 
material was studied by Verma and Chauhan [16]. Peristaltic transport in a two-dimensional channel filled with a 
porous medium in the peripheral region and a Newtonian fluid in the core region under the assumption of long wave 
length and low Reynolds number was studied by Manoranjan Mishra and Ramachandra Rao [17]. Sreenadh et al. [18], 
studied the peristaltic flow of Herschel-Bulkley fluid in an inclined flexible channel lined with porous material under 
long wave length and low Reynolds number. Hemadri Reddy et al. [19], studied the effect of thickness of the porous 
material on the peristaltic pumping when the tube wall is provided with non-erodible porous lining. 
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Recently there has been an increasing interest in the flow of time-independent non-Newtonian fluids through 
tubes/channels possessing a definite yield value because of their applications in polymer process industries and bio-
fluid dynamics. The most popular among these fluids is the Casson fluid [20]. Casson fluids are found to be applicable 
in developing models for blood oxygenators and haemodialysers. Oka [21], studied blood flow in capillaries with 
permeable walls using the Casson fluid model. Peristaltic transport of blood by modelling blood as a Casson fluid is 
studied by Srivastava and Srivastava [22]. They have represented the blood as a two layered fluid model, consisting of 
a central layer of suspension of all erythrocytes assumed to be a Casson fluid, and a pheripheral layer of plasma as a 
Newtonian fluid. Mernone and Mazumdar [23 and 24] studied the peristaltic transport of a Casson fluid in two 
dimensional axisymmetric channel using the generalized form of the constitutive equations for Casson fluid.  
 
In view of these, the peristaltic transport of a bio-fluid in an inclined channel is analyzed by modeling  the fluid as a 
Casson fluid lined with porous material is studied under long wavelength and low Reynolds number assumptions. This 
model can also be applied to blood flow in the sense that erythrocytes region and the plasma regions may be described 
as plug flow and non- plug flow regions. It is observed that for a Casson fluid the pressure difference and the 
mechanical efficiency of pumping depend on the thickness of the porous lining. Both increases with increase in 
thickness of the porous lining.    
 
2. MATHEMATICAL FORMULATION AND SOLUTION 
We consider the peristaltic transport of a Casson fluid in a two dimensional channel having width 2a and inclined at an 
angle 𝛽𝛽  to the horizontal. We assume an infinite wave train travelling with velocity 𝑐𝑐 along the wall. We choose a 
rectangular coordinate system for the channel 𝑋𝑋 along the centerline in the direction of wave propagation and 𝑌𝑌 
transverse to it and the channel is assumed axisymmetric. The channel is bounded by flexible walls which are lined 
with non-erodible porous material of thickness 𝜀𝜀. For simplicity we restrict our discussion to the half width of the 
channel as shown in Fig. 1. 
 

 
 

Fig. 1:  Schematic diagram of the inclined channel 
 
The wall deformation is given by 
 
𝐻𝐻(𝑋𝑋, 𝑡𝑡) = 𝑎𝑎 + 𝑏𝑏 sin 2𝜋𝜋

𝜆𝜆
(𝑋𝑋 − 𝑐𝑐𝑡𝑡)                                                                                                                                       (1) 

                           
where 𝑏𝑏 is amplitude of the wave and  𝜆𝜆 is the wavelength and 𝑐𝑐 is the wave speed. 
 
Under the assumption of infinite wavelength and neglecting the inertial terms the equations of motion is given by 
 
𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑡𝑡

= − 𝜕𝜕𝜕𝜕
𝜕𝜕𝑋𝑋
− 𝜕𝜕𝜕𝜕

𝜕𝜕𝑌𝑌
+ 𝜌𝜌𝜌𝜌 sin𝛽𝛽                                                                                                                                           (2a)          

                                                            
𝜕𝜕𝜕𝜕
𝜕𝜕𝑌𝑌

= 0                                                                                                                                                                              (2b)   
                                                                     
where  𝜌𝜌 is the density,  𝜕𝜕 is the axial velocity, 𝑡𝑡 is the time, 𝜕𝜕 is the pressure and 𝜕𝜕 is the shear stress and𝜌𝜌 is the 
acceleration due to gravity. The Casson’s constitutive equation corresponding to the flow is given by 
 

𝜕𝜕
1
2 = 𝜕𝜕𝑦𝑦

1
2 + �−𝜇𝜇 𝜕𝜕𝜕𝜕

𝜕𝜕𝑌𝑌
�

1
2   if    𝜕𝜕 ≥ 𝜕𝜕𝑦𝑦                                                                                                                                     (3a)     
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𝜕𝜕𝜕𝜕
𝜕𝜕𝑌𝑌

= 0 if  𝜕𝜕 ≤ 𝜕𝜕𝑦𝑦                                                                                                                                                              (3b)         
                       
where 𝜕𝜕𝑦𝑦    is the yield stress and  𝜇𝜇 is the viscosity coefficient of the fluid. 
 
The corresponding boundary conditions are given by 
 
𝜕𝜕(𝑌𝑌 = 𝐻𝐻 − 𝜀𝜀) = −ℎ′ 𝜕𝜕𝜕𝜕

𝜕𝜕𝑌𝑌
 (Saffman slip condition)                                                                                                          (4a)    

 
−𝜕𝜕�𝑌𝑌 = −𝑌𝑌𝑝𝑝� = 𝜕𝜕𝑦𝑦 = 𝜕𝜕�𝑌𝑌 = 𝑌𝑌𝑝𝑝�                                                                                                                                   (4b)    
                                                        
𝜕𝜕�𝑌𝑌 = 𝑌𝑌𝑝𝑝� = 𝜕𝜕𝑝𝑝       
                                                                                                                                                                                         (4c)                                                           
where  𝜕𝜕𝑝𝑝  is the plug flow velocity. 
 
Under the assumptions that the tube length is an integral multiple of the wavelength and the pressure difference 
between the ends is constant, the flow becomes steady in the wave frame.  
 
The transformations between fixed frame to moving frame are given by 
 
𝑥𝑥 = 𝑋𝑋 − 𝑐𝑐𝑡𝑡;   𝑦𝑦 = 𝑌𝑌;   𝑢𝑢(𝑥𝑥,𝑦𝑦) = 𝜕𝜕(𝑋𝑋 − 𝑐𝑐𝑡𝑡,𝑌𝑌) − 𝑐𝑐;   𝑣𝑣(𝑥𝑥,𝑦𝑦) = 𝑉𝑉(𝑋𝑋 − 𝑐𝑐𝑡𝑡,𝑌𝑌);    𝑝𝑝(𝑥𝑥) = 𝜕𝜕(𝑋𝑋, 𝑡𝑡)                                                                                                                   
(5)                                                                                                                
where 𝜕𝜕 and 𝑉𝑉 are velocity components in the  laboratory frame,  𝑢𝑢 and 𝑣𝑣 are   velocity components in the  wave frame  
and 𝑝𝑝 and 𝜕𝜕 are pressures in wave and fixed frame of references respectively. The pressure remains constant across any 
axial station of the channel under the assumption that the wavelength is large and the curvature effects are negligible. 
 
Using the non-dimensional quantities 
 

𝑥𝑥 � =
𝑥𝑥
𝜆𝜆

;    𝑦𝑦� =
𝑦𝑦
𝑎𝑎

;     𝑢𝑢� =
𝑢𝑢
𝑐𝑐

 ;     �̅�𝜈 =
𝜈𝜈
𝑐𝑐𝑐𝑐

;   𝑐𝑐 =
𝑏𝑏
𝜆𝜆

;   𝜙𝜙 =
𝑏𝑏
𝑎𝑎

;    �̅�𝑝 =
𝑝𝑝𝑎𝑎2

𝜆𝜆𝜇𝜇𝑐𝑐
; 

 
𝜕𝜕̅ =  𝜕𝜕

𝜇𝜇𝑐𝑐
𝑎𝑎

 ;       𝜕𝜕�̅�𝑦 =  𝜕𝜕𝑦𝑦𝜇𝜇𝑐𝑐
𝑎𝑎

 ;     ℎ�  = ℎ
𝑎𝑎

;    𝑦𝑦�𝑝𝑝 = 𝑦𝑦𝑝𝑝
𝑎𝑎

 ;     𝐹𝐹 = 𝜇𝜇𝑐𝑐
𝜌𝜌g𝑎𝑎2 ;      𝑢𝑢�𝑝𝑝 = 𝑢𝑢𝑝𝑝

𝑎𝑎
                                                                             (6) 

 
The non-dimensional wall equations is given by (dropping the bars) 
 
𝑦𝑦 = ℎ(𝑥𝑥) = 1 + 𝜙𝜙 sin 2𝜋𝜋𝑥𝑥                                                                                                                                               (7)      
                                                                 
The equations of motion in dimensionless form is 
 
𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦

= −𝑑𝑑𝑝𝑝
𝑑𝑑𝑥𝑥

+ sin 𝛽𝛽
𝐹𝐹

                                                                                                                                                                (8)       

where   𝜕𝜕
1
2 = 𝜕𝜕𝑦𝑦

1
2 + �− 𝜕𝜕𝑢𝑢

𝜕𝜕𝑦𝑦
�

1
2                                                              

 
The corresponding boundary conditions in non-dimensional form are 
 
𝑢𝑢 = −1 − 𝛼𝛼 𝜕𝜕𝑢𝑢

𝜕𝜕𝑦𝑦
  at   𝑦𝑦 = ℎ − 𝜀𝜀                                                                                                                                        (9a)    

       
−𝜕𝜕�𝑦𝑦 = −𝑦𝑦𝑝𝑝� = 𝜕𝜕𝑦𝑦 = 𝜕𝜕�𝑦𝑦 = 𝑦𝑦𝑝𝑝�                                                                                                                                   (9b)      
                                                     
𝑢𝑢 = 𝑢𝑢𝑝𝑝   at  𝑦𝑦 = 𝑦𝑦𝑝𝑝                                                                                                                                                            (9c)      
                                  
where 𝜀𝜀 is the thickness of the lining and 𝛼𝛼 is permeability parameter. 
 
The instantaneous volume flow rate in fixed frame is given by 
 
𝑄𝑄 = ∫ 𝑢𝑢ℎ−𝜀𝜀

0 𝑑𝑑𝑦𝑦                                                                                                                                                                 (10)                                                                   
 
If  𝑞𝑞  is the rate of flow independent at 𝑥𝑥 and 𝑡𝑡 in wave frame, then 
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𝑞𝑞 = ∫ 𝑢𝑢𝑝𝑝 𝑑𝑑𝑦𝑦 + ∫ 𝑢𝑢 𝑑𝑑𝑦𝑦ℎ−𝜀𝜀
𝑦𝑦𝑝𝑝

𝑦𝑦𝑝𝑝  
0                                                                                                                                             (11)                                                              

 
The average flow rate over one period ( 𝑇𝑇 = 𝜆𝜆

𝑐𝑐
 ) of the peristaltic wave is defined as 

𝑄𝑄� = 1
𝑇𝑇 ∫ 𝑄𝑄 𝑑𝑑𝑡𝑡 𝑇𝑇

0 = 𝑞𝑞 + 1                                                                                                                                                   (12)                                                               
 
Solving (8) with boundary condition (10), we obtain the expressions for  the  velocity distribution as 
 

𝑢𝑢 = 1
2

[𝜕𝜕 + 𝑓𝑓] �
((ℎ − 𝜀𝜀)2 + 2𝛼𝛼(ℎ − 𝜀𝜀) − 𝑦𝑦2) + 2𝑦𝑦𝑝𝑝(𝛼𝛼 + (ℎ − 𝜀𝜀) − 𝑦𝑦)

−4�𝑦𝑦𝑝𝑝  �𝛼𝛼(ℎ − 𝜀𝜀)
1
2 + 2

3
(ℎ − 𝜀𝜀)

3
2 − 2

3
𝑦𝑦

3
2�

� − 1  for   𝑦𝑦𝑝𝑝 ≤ 𝑦𝑦 ≤ ℎ − 𝜀𝜀                          (13a) 

𝑢𝑢𝑝𝑝 = 1
2

[𝜕𝜕 + 𝑓𝑓]�
�(ℎ − 𝜀𝜀)2 + 2𝛼𝛼(ℎ − 𝜀𝜀) − 1

3
𝑦𝑦𝑝𝑝2� + 2𝑦𝑦𝑝𝑝�𝛼𝛼 + (ℎ − 𝜀𝜀)�

−4�𝑦𝑦𝑝𝑝  �𝛼𝛼(ℎ − 𝜀𝜀)
1
2 + 2

3
(ℎ − 𝜀𝜀)

3
2�

� − 1  for   0 ≤ 𝑦𝑦 ≤ 𝑦𝑦𝑝𝑝                                (13b) 

where    𝑦𝑦𝑝𝑝 = 𝜕𝜕𝑦𝑦
[𝜕𝜕+𝑓𝑓]

;   𝜕𝜕 = −𝑑𝑑𝑝𝑝
𝑑𝑑𝑥𝑥

  and  𝑓𝑓 = sin 𝛽𝛽
𝐹𝐹

 
 
Solving (13) using the conditions   𝜓𝜓𝑝𝑝 = 0   at   𝑦𝑦 = 0   and   𝜓𝜓 = 𝜓𝜓𝑝𝑝   at  𝑦𝑦 = 𝑦𝑦𝑝𝑝   we obtain the stream function as 
 

𝜓𝜓 = 1
2

[𝜕𝜕 + 𝑓𝑓] �
�(ℎ − 𝜀𝜀)2𝑦𝑦 + 2𝛼𝛼(ℎ − 𝜀𝜀)𝑦𝑦 − 𝑦𝑦3

3
� + 2𝑦𝑦𝑝𝑝 �𝛼𝛼𝑦𝑦 + (ℎ − 𝜀𝜀)𝑦𝑦 − 𝑦𝑦2

2
�

−4�𝑦𝑦𝑝𝑝  �𝛼𝛼(ℎ − 𝜀𝜀)
1
2𝑦𝑦 + 2

3
(ℎ − 𝜀𝜀)

3
2𝑦𝑦 − 4

15
𝑦𝑦

5
2� − 1

15
𝑦𝑦𝑝𝑝3

� − 𝑦𝑦 for  𝑦𝑦𝑝𝑝 ≤ 𝑦𝑦 ≤ ℎ − 𝜀𝜀              (14a) 

 

𝜓𝜓𝑝𝑝 = 1
2

[𝜕𝜕 + 𝑓𝑓]𝑦𝑦 �
�(ℎ − 𝜀𝜀)2 + 2𝛼𝛼(ℎ − 𝜀𝜀) − 1

3
𝑦𝑦𝑝𝑝2� + 2𝑦𝑦𝑝𝑝�𝛼𝛼 + (ℎ − 𝜀𝜀)�

−4�𝑦𝑦𝑝𝑝  �𝛼𝛼(ℎ − 𝜀𝜀)
1
2 + 2

3
(ℎ − 𝜀𝜀)

3
2�

� − 𝑦𝑦  for   0 ≤ 𝑦𝑦 ≤ 𝑦𝑦𝑝𝑝                             (14b) 

 
The flux in the wave frame is obtained as 
 
𝑞𝑞 = 1

2
[𝜕𝜕 + 𝑓𝑓](ℎ − 𝜀𝜀)3𝑠𝑠(𝑥𝑥) − (ℎ − 𝜀𝜀)  

 
The pressure gradient obtained is 
 
𝑑𝑑𝑝𝑝
𝑑𝑑𝑥𝑥

= − 2[𝑞𝑞+(ℎ−𝜀𝜀)]
(ℎ−𝜀𝜀)3𝑠𝑠(𝑥𝑥)

+ 𝑓𝑓                                                                                                                                                      (15)      

where  𝑠𝑠(𝑥𝑥) = 2
3

+ 2𝛼𝛼𝑦𝑦𝑝𝑝
(ℎ−𝜀𝜀)2 + 1

(ℎ−𝜀𝜀) 
�2𝛼𝛼 + 𝑦𝑦𝑝𝑝� −

4�𝑦𝑦𝑝𝑝

(ℎ−𝜀𝜀)
3
2
�𝛼𝛼 + 2

5
(ℎ − 𝜀𝜀)� − 1

15
� 𝑦𝑦𝑝𝑝
ℎ−𝜀𝜀

�
3
 

 
5. PUMPING CHARACTERISTIC 
The pressure rise per wavelength is given Δ𝜕𝜕 = ∫ 𝑑𝑑𝑝𝑝

𝑑𝑑𝑥𝑥
𝑑𝑑𝑥𝑥 1

0 = 𝑓𝑓 − 2[𝑞𝑞𝐼𝐼1 + 𝐼𝐼2]                                                               (16)                                                               

where 𝐼𝐼1 = ∫ 1
(ℎ−𝜀𝜀)3𝑠𝑠(𝑥𝑥)

𝑑𝑑𝑥𝑥1
0   and   𝐼𝐼2 = ∫ 1

(ℎ−𝜀𝜀)2𝑠𝑠(𝑥𝑥)
𝑑𝑑𝑥𝑥1

0  
 
The average flow rate is given by 
 
𝑄𝑄� = 𝑓𝑓−Δ𝜕𝜕−2[𝐼𝐼2−𝐼𝐼1]

2𝐼𝐼1
                                                                                                                                                             (17)                                                                

 
The dimensionless time mean flow 𝑄𝑄�0 for zero pressure is 
 
𝑄𝑄�0 = 𝑓𝑓−2[𝐼𝐼2−𝐼𝐼1]

2𝐼𝐼1
                                                                                                                                                                 (18)                                                               

 
Also the dimensionless pressure rise for zero mean flow is obtained as 
 
(Δ𝜕𝜕)0 = 𝑓𝑓 − 2[𝐼𝐼2 − 𝐼𝐼1]                                                                                                                                                   (19)                                                               
 
The frictional force 𝐹𝐹𝜆𝜆  at the wall is obtained as 

𝐹𝐹𝜆𝜆 = � −(ℎ − 𝜀𝜀)
𝑑𝑑𝑝𝑝
𝑑𝑑𝑥𝑥

𝑑𝑑𝑥𝑥 
1

0
 

     = 2[𝑞𝑞𝐼𝐼2 + 𝐼𝐼3] − 𝑓𝑓(1 − 𝜀𝜀)                                                                                                                                          (20)                                                                              
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where  𝐼𝐼3 = ∫ 1
(ℎ−𝜀𝜀)𝑠𝑠(𝑥𝑥)

𝑑𝑑𝑥𝑥1
0  

 
6. RESULTS AND DISCUSSIONS 
The objective of this analysis is to study the flow characteristics of a Casson fluid in an inclined channel with the effect 
of porous lining 𝜀𝜀 and with permeability 𝛼𝛼. 
 
To study the behavior of axial velocity 𝑢𝑢, numerical calculations for several values of permeability parameter 𝛼𝛼, 
thickness of the porous lining 𝜀𝜀, yield stress 𝜕𝜕𝑦𝑦  angle of inclination 𝛽𝛽 and amplitude ratio 𝜙𝜙 are carried out. Fig (2) 
shows that the increase in permeability 𝛼𝛼 results in increase of velocity distribution. Fig (3) depicts that velocity 
decreases as yield stress 𝜕𝜕𝑦𝑦  increases. The effect of thickness of porous lining 𝜀𝜀 on the velocity distribution can be seen 
through Fig (4). It reveals that the axial velocity decreases with increase in  𝜀𝜀. From Fig (5) it is observed that velocity 
decreases with the decrease in the angle of inclination 𝛽𝛽. It is observed that velocity increases with increase in 
amplitude ratio 𝜙𝜙 from Fig (6) 
 
The variation of dimensionless pressure drop is analyzed graphically for the variation of permeability parameter 𝛼𝛼, 
yield stress 𝜕𝜕𝑦𝑦 , angle of inclination 𝛽𝛽 , thickness of the porous lining 𝜀𝜀 and amplitude ratio 𝜙𝜙 and are plotted in Figs (7-
11). 
 
From Fig (7) we can   observe the variation of ∆𝜕𝜕 with 𝑄𝑄�  for the variation of permeability parameter  𝛼𝛼. It is interesting 
to note that all the curves are intersecting in the free pumping region at (∆𝜕𝜕 > 0) at 𝑄𝑄� = 0.6. For  0 ≤ 𝑄𝑄� ≤ 0.6 we 
observe that ∆𝜕𝜕 decreases with increase in  𝛼𝛼, and in the rest of the region ∆𝜕𝜕 increases with increase in  𝛼𝛼. The 
variation of ∆𝜕𝜕 with 𝑄𝑄�  for different values of 𝜕𝜕𝑦𝑦  is shown in Fig (8).  ∆𝜕𝜕 increases with increase in shear stress for 
 0 ≤ 𝑄𝑄� ≤ 0.5 , the pumping is slow between 𝑄𝑄� = 0.5 and 𝑄𝑄� = 0.65 and ∆𝜕𝜕 decreases with increase in 𝜕𝜕𝑦𝑦  for the rest of 
the region. Fig (9) is plotted to see the effect of porous lining 𝜀𝜀 on pressure rise ∆𝜕𝜕 with 𝑄𝑄� . It seems to be noted that  
∆𝜕𝜕 increases with increase in 𝜀𝜀, if 0 ≤ 𝑄𝑄� ≤ 0.75 and from 𝑄𝑄� = 0.75 to 𝑄𝑄� = 0.85, ∆𝜕𝜕 is having the same behavior if 
𝜀𝜀 = 0.1 & 0.2, but if 𝜀𝜀 = 0.3, the flow is more, if 0.85 ≤ 𝑄𝑄� ≤ 1,  ∆𝜕𝜕 increases as 𝜀𝜀 decreases. The variation of ∆𝜕𝜕 with 
𝑄𝑄�  for different values of  𝛽𝛽 is shown in Fig (10). It is observed that pumping region increases as the angle of inclination 
𝛽𝛽 increases. We can observe the variation of pumping with the variation in the amplitude ratio 𝜙𝜙 through Fig (11). 
Pumping region increases with increase in  𝜙𝜙. ∆𝜕𝜕 increases with increase in 𝜙𝜙, if 0 ≤ 𝑄𝑄� ≤ 0.75 and from 𝑄𝑄� = 0.73 to 
𝑄𝑄� = 0.83, ∆𝜕𝜕 is having the same behavior if   𝜙𝜙 = 0.4 & 0.5, but if 𝜙𝜙 = 0.6 , the flow is more, if 0.83 ≤ 𝑄𝑄� ≤ 1,  ∆𝜕𝜕 
increases as 𝜙𝜙 decreases. We observe that ∆𝜕𝜕 decreases as 𝑄𝑄�   increases. 
 
The non-dimensional frictional force 𝐹𝐹𝜆𝜆  verses 𝑄𝑄�  is shown in  Figs (11-14) for different values of  permeability 
parameter 𝛼𝛼,  plug radius 𝑦𝑦𝑝𝑝 , angle of inclination 𝛽𝛽  and 𝜀𝜀 the thickness of the porous lining. In all these graphs a 
reversal behavior is observed with the case of ∆𝜕𝜕. In Fig (12) it is observed that the curves are intersecting at 𝑄𝑄� = 0.45. 
For 0 ≤ 𝑄𝑄� ≤ 0.45 we observe that frictional force increases with increase in  𝛼𝛼 and in the rest of the region 𝐹𝐹𝜆𝜆  
decreases with increase in  𝛼𝛼. The variation of 𝐹𝐹𝜆𝜆  with 𝑄𝑄�  for different values of 𝑦𝑦𝑝𝑝  is shown in Fig  (13). It is observed 
that the curves are intersecting at 𝑄𝑄� = 0.55. 𝐹𝐹𝜆𝜆  decreases as 𝑦𝑦𝑝𝑝  increase for 0 ≤ 𝑄𝑄� ≤ 0.5 and 𝐹𝐹𝜆𝜆  increases as 𝑦𝑦𝑝𝑝  
increase for 0.5 ≤ 𝑄𝑄� ≤ 1. Fig (14) shows the variation of 𝐹𝐹𝜆𝜆  for variation in the values of 𝛽𝛽. Frictional force 𝐹𝐹𝜆𝜆  
decrease with decrease in angle of inclination𝛽𝛽. Fig (15) shows that frictional force 𝐹𝐹𝜆𝜆  decreases as the thickness of the 
porous lining 𝜀𝜀 decreases. It is also observed that for 0 ≤ 𝑄𝑄� ≤ 0.65 𝐹𝐹𝜆𝜆  increases as 𝜀𝜀 increases and for 0.65 ≤ 𝑄𝑄� ≤ 1 
𝐹𝐹𝜆𝜆  decreases as 𝜀𝜀 increases. 
 
7. TRAPPING PHENOMENA  
An interesting phenomenon of peristalsis is trapping. The formation of an internally circulating bolus of the fluid by 
closed streamlines is called trapping and this trapped bolus is pushed ahead along with the peristaltic waves. 
 
By analysis, one gets the trapping when 𝑄𝑄�  lies between 𝑄𝑄�𝑚𝑚𝑚𝑚𝑚𝑚  and  𝑄𝑄�𝑚𝑚𝑎𝑎𝑥𝑥 , i.e. one gets trapping when 
 
𝑄𝑄�𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑄𝑄� ≤ 𝑄𝑄�𝑚𝑚𝑎𝑎𝑥𝑥 , 
 
where  
 
𝑄𝑄�𝑚𝑚𝑚𝑚𝑚𝑚 = 𝜀𝜀 − 1 − 𝜙𝜙  and  𝑄𝑄�𝑚𝑚𝑎𝑎𝑥𝑥 =  𝜀𝜀 − 1 + 𝜙𝜙   
 
The streamline patterns in the wave frame for different values of  𝛼𝛼, 𝜀𝜀, and 𝛽𝛽 by taking  𝜕𝜕 = 1  and 𝐹𝐹 = 0.1  are shown 
in Figs (16-18). To see the effect of permeability parameter  𝛼𝛼, when 𝑦𝑦𝑝𝑝 = 0.1, 𝜀𝜀 = 0.3,   𝜙𝜙 = 0.2, 𝛽𝛽 = 𝜋𝜋

6
  on the 

trapping , we prepared Fig (16). It shows the formation and variation of trapped bolus for different values of 𝛼𝛼. No 
trapped bolus is seen for 𝛼𝛼 = 0 and 𝛼𝛼 = 0.05 and it shows that  the number of trapped bolus increases with increase in 
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𝛼𝛼.  The effect of the porous lining 𝜀𝜀 on trapping is analyzed through Fig (17) when 𝑦𝑦𝑝𝑝 = 0.6,    𝛼𝛼 = 0.2,   𝜙𝜙 = 0.8,   𝛽𝛽 =
𝜋𝜋
6
. It is noted that for increasing 𝜀𝜀, the size of the trapped bolus decreases and finally disappears for 𝜀𝜀 ≥ 0.15. Fig (18)  

 
shows the outcome of 𝛽𝛽, the angle of inclination when 𝑦𝑦𝑝𝑝 = 0.4, 𝜀𝜀 = 0.3, 𝛼𝛼 = 0.2 𝜙𝜙 = 0.7,  on trapping. We observe 
that bolus appears when 𝛽𝛽 = 𝜋𝜋

6
 and it is observed that for both    𝛽𝛽 = 𝜋𝜋

12
 & 𝜋𝜋

8
  that there is no formation of trapped bolus. 

 
8. CONCLUSIONS  
In this article, the effect of porous lining on the peristaltic transport of a Casson fluid in an inclined channel has been 
studied. Analytical solutions have been developed for velocity distribution, stream function, pressure rise and frictional 
force. We find different interesting observations as follows: 
 
1. trapped bolus increases with increase in  permeability parameter and decreases with increase in thickness of the 

porous lining,  
2. increase in permeability 𝛼𝛼 results in increase of velocity distribution, 
3. velocity decreases as yield stress 𝜕𝜕𝑦𝑦  increases, 
4. velocity decreases with the decrease in the angle of inclination 𝛽𝛽,  
5. velocity increases with increase in amplitude ratio 𝜙𝜙,  
6. ∆𝑝𝑝 decreases as 𝑄𝑄�   increases, 
7. pumping region increases as the angle of inclination 𝛽𝛽 increases, 
8. Pumping region increases with increase in  𝜙𝜙 

 

 
Fig. 2: Velocity Profiles for different   𝛼𝛼 

 

 
Fig. 3: Velocity Profiles for different   𝜕𝜕𝑦𝑦  
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Fig. 4: Velocity Profiles for different 𝜀𝜀
 

 
Fig. 5: Velocity Profiles for different  𝛽𝛽 

 
Fig. 6: Velocity Profiles for different   𝜙𝜙 

 
 
 
 

 

𝑦𝑦 
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Fig. 7: The variation  ∆𝑝𝑝 with Q� for different  𝛼𝛼 

 

 
Fig .8: The variation  ∆𝑝𝑝  with Q� for different  𝜕𝜕𝑦𝑦  

 

 
Fig. 9: The variation  ∆𝑝𝑝  with Q� for different  𝜀𝜀 
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Fig. 10: The variation  ∆𝑝𝑝 with  Q� for different  𝛽𝛽 

 

 
Fig. 11: The variation  ∆𝑝𝑝  with Q�  for different  𝜙𝜙 

 
 

 
Fig. 12: The variation  𝐹𝐹𝜆𝜆    with Q�  for different  𝛼𝛼 
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Fig. 13: The variation of  𝐹𝐹𝜆𝜆  with Q�  for different  𝑦𝑦𝑝𝑝  

    

 
Fig. 14: The variation of  𝐹𝐹𝜆𝜆    with Q�  for different  𝛽𝛽 

 

 
Fig. 15: The variation   of  𝐹𝐹𝜆𝜆    with Q�  for different  𝜀𝜀 
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Fig.16: Streamline profile when 𝜕𝜕 = 1, 𝑦𝑦𝑝𝑝 = 0.1, 𝛽𝛽 = 𝜋𝜋

6
, 𝜙𝜙 = 0.2,𝐹𝐹 = 0.1, 𝜀𝜀 = 0.3     (𝑎𝑎)𝛼𝛼 = 0, (𝑏𝑏)𝛼𝛼 =

0.05   (𝑐𝑐)𝛼𝛼 = 0.1 (𝑑𝑑)𝛼𝛼 = 0.15 
 

 
(a) 

 

 
(b) 

 

 
 

(c) 

 
 

(d) 
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(a) 

 
                            

(b) 
 

 
 
                          (c) 

 
 

(d) 

Fig. 17: Streamline profile when 𝜕𝜕 = 1, 𝑦𝑦𝑝𝑝 = 0.6, 𝛽𝛽 = 𝜋𝜋
6

, 𝜙𝜙 = 0.8,𝐹𝐹 = 0.1, 𝛼𝛼 = 0.2    (𝑎𝑎)𝜀𝜀 = 0.05 (𝑏𝑏)𝜀𝜀 =
0.1   (𝑐𝑐)𝜀𝜀 = 0.15 (𝑑𝑑)𝜀𝜀 = 0.2 
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(a) 

 
 

(b) 

 
(c) 

 
Fig.18: Streamline profile when 𝜕𝜕 = 1, 𝑦𝑦𝑝𝑝 = 0.4,    𝜙𝜙 = 0.7, 𝐹𝐹 = 0.1, 𝛼𝛼 = 0.2 , 𝜀𝜀 = 0.3    (𝑎𝑎)𝛽𝛽 = 𝜋𝜋

12
 (𝑏𝑏)𝛽𝛽 =

𝜋𝜋
8

   (𝑐𝑐)𝛽𝛽 = 𝜋𝜋
6
. 
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