COMMON FIXED POINT THEOREM IN CONE METRIC SPACES

S. Vijaya Lakshmi* & J. Sucharitha

Department of Mathematics, Osmania University, Hyderabad-500007, Andhra Pradesh, India

(Received on: 21-02-13; Revised & Accepted on: 29-04-13)

ABSTRACT

In this paper, we prove a unique common fixed point theorem in cone metric spaces without appealing to commutativity condition. These results generalize some recent results.

AMS Subject Classification: 47H10, 54H25.

Keywords: Common fixed Point, Cone metric space, Coincidence points.

1. INTRODUCTION AND PRELIMINARIES

In 2007 Huang and Zhang [3] have generalized the concept of a metric space, replacing the set of real numbers by an ordered Banach space and obtained some fixed point theorems for mapping satisfying different contractive conditions. Subsequently, Abbas and Jungck [1] and Abbas and Rhoades [2] have studied common fixed point theorems in cone metric spaces (see also [3], [5] and the references mentioned therein). Recently, Abbas and Jungck [1] have obtained coincidence point results for two mappings in cone metric spaces. In this paper, we prove a fixed point theorem in cone metric spaces without appealing to commutativity, which generalizes the Theorem of [1]

In all that follows B is a real Banach Space, and θ denotes the zero element of B. For the mapping f, g: X \rightarrow X, let C (f, g) denote the set of coincidence points of f and g, that is C(f, g) = {z \in X : fz = gz}.

The following definitions are due to Huang and Zhang [3].

Definition 1.1: Let B be a real Banach Space and P a subset of B .The set P is called a cone if and only if:

- (a). P is closed, non-empty and $P \neq \{\theta\}$;
- (b). a, b $\in R$, a, b ≥ 0 , x, y $\in P$ implies $ax+by \in P$;
- (c). $x \in P$ and $-x \in P$ implies $x = \theta$.

Definition 1.2: Let P be a cone in a Banach Space B, define partial ordering ' \leq ' with respect to P by $x \leq y$ if and only if y-x \in P. We shall write x<y to indicate $x \leq y$ but $x \neq y$ while x<<y will stand for y-x \in Int P, where Int P denotes the interior of the set P. This Cone P is called an order cone.

Definition 1.3: Let B be a Banach Space and $P \subseteq B$ be an order cone . The order cone P is called normal if there exists K>0 such that for all $x, y \in B$.

$$\theta \le x \le y$$
 implies $\|x\| \le K \|y\|$.

The least positive number K satisfying the above inequality is called the normal constant of P.

Definition 1.4: Let X be a nonempty set of B. Suppose that the map d: $X \times X \rightarrow B$ satisfies:

- (d1). $\theta \le d(x, y)$ for all $x, y \in X$ and $d(x, y) = \theta$ if and only if x = y;
- (d2). d(x, y) = d(y, x) for all $x, y \in X$;
- (d3). $d(x, y) \le d(x, z) + d(y, z)$ for all $x, y, z \in X$.

Corresponding author: S. Vijaya Lakshmi* & J. Sucharita
Department of Mathematics, Osmania University, Hyderabad-500007, Andhra Pradesh, India

Then d is called a cone metric on X and (X, d) is called a cone metric space.

The concept of a cone metric space is more general than that of a metric space.

Definition 1.5: Let (X, d) be a cone metric space. We say that $\{x_n\}$ is

- (i) a Cauchy sequence if for every c in B with $c \gg \theta$, there is N such that for all n, m > N, $d(x_n, x_m) \ll c$;
- (ii) a convergent sequence if for any $c \gg \theta$, there is an N such that for all $n \gg N$, $d(x_n, x) \ll c$, for some fixed x in X.

We denote this $x_n \rightarrow x$ (as $n \rightarrow \infty$).

Lemma 1.6: Let (X, d) be a cone metric space, and let P be a normal cone with normal constant K. Let $\{x_n\}$ be a sequence in X. Then

- (i). $\{x_n\}$ converges to x if and only if $d(x_n, x) \to 0$ $(n \to \infty)$.
- (ii). $\{x_n\}$ is a Cauchy sequence if and only if $d(x_n, x_m) \rightarrow 0$ $(n, m \rightarrow \infty)$.

2. MAIN RESULTS

In this section we obtain a common fixed point theorem for self-mappings without appealing to commutativity condition, defined on a cone metric space.

The following Theorem generalizes the Theorem of [1].

Theorem 2.1: Let (X, d) be a complete cone metric space and P a normal cone with normal constant K. Suppose that the mappings f, g: $X \rightarrow X$ are such that for some constant $\lambda \in (0,1)$ and for every x, $y \in X$ are two self-maps of X satisfying

$$d(fx, fy) \le \lambda d(gx, gy) \tag{1}$$

If the range of g contains the range of f and g(X) is a complete subspace of X, then f and g have coincidence point. Then, f and g have a unique common fixed point in X.

Proof: Let x_0 be an arbitrary point in X, and let $x_1 \in X$ be chosen such that $y_0 = f(x_0) = g(x_1)$. Since $f(X) \subseteq g(X)$. Let $x_2 \in X$ be chosen such that $y_1 = f(x_1) = g(x_2)$. Continuing this process, having chosen $x_n \in X$, we chose $x_{n+1} \in X$ such that $y_n = f(x_n) = g(x_{n+1})$.

We first show that

$$d(y_n, y_{n-1}) \le \lambda d(y_{n-1}, y_{n-2})$$
 for $n = 2, 3, ...$ (2)

Indeed,

$$d(y_n,\,y_{n\text{-}1}) \;=\; d(fx_n\,,\,fx_{n\text{-}1}) \leq \lambda\; d(gx_n\,,\,gx_{n\text{-}1}).$$

(2) Implies that

$$d(y_n, y_{n-1}) \le \lambda d(y_{n-1}, y_{n-2}) \le \dots \le \lambda^{n-1} d(y_1, y_0). \tag{3}$$

Now we shall show that $\{y_n\}$ is a Cauchy sequence. By the triangle inequality,

for n > m we have

$$d(y_n, y_m) \le d(y_n, y_{n-1}) + d(y_{n-1}, y_{n-2}) + \dots + d(y_{m+1}, y_m)$$
.

Hence, as p is a normal cone,

$$d(y_n\,,\,y_m)\,\leq d(y_n\,,\,y_{n\text{-}1})+d(y_{n\text{-}1}\,,\,y_{n\text{-}2})+\ldots\ldots+d(y_{m\text{+}1},\,y_m)\ .$$

Now by (3),

$$d(y_n, y_m) \le (\lambda^{n-1} + \lambda^{n-2} + \dots + \lambda^m)d(y_1, y_0).$$

From (1.3)

$$\left\|\,d(y_n,\,y_m)\,\right\| \leq \frac{\lambda^{\,m}}{1-\lambda}\,K\,\,\left\|\,d(y_1,\,y_0)\,\right\| \to 0 \text{ as } m \to \infty. \ \lambda \in (0,1)$$

From ([3], Lemma 4) it follows that $\{y_n\}$ is a Cauchy sequence. Since g(X) is complete, there exists a q in g(X) such that $y_n \to q$ as $n \to \infty$. Consequently, we can find p in X such that g(p) = q. We shall show that f(p) = q. From (1) $d(gx_n, fp) = d(fx_{n-1}, fp) \le \lambda d(gx_{n-1}, gp)$,

$$\implies$$
 d(gp, fp) $\leq \lambda$ d(gp, gp) = 0.

That is, d(gp, fp) = 0.

Hence, gp = q = fp, p is a coincidence point of f and g. (4)

Now using (1),

$$d(p, gp) \le d(p, y_n) + d(y_n, gp)$$
 (by the triangle inequality)
= $d(p, y_n) + d(fx_n, fp)$ (Since, $fp = gp$)
 $\le d(p, y_n) + \lambda d(gx_n, gp)$

From (1.3),

$$\begin{split} \left\| d(p,gp) \right\| &\leq K(\left\| (d\left(p,fx_n\right) + \lambda \, d(gx_n,gp)) \right\|) \\ &\leq K\left(\left\| d(p,fx_n) \right\| + \lambda \, \left\| d(gx_n,gp) \right\|\right) \text{ as } n \longrightarrow \infty \\ &\leq K(\left\| (d(p,q) \right\| + \lambda \left\| d(q,gp) \right\|) \\ &\leq K\left(\left\| (d(p,gp) \right\| + \lambda \left\| d(gp,gp) \right\|\right) \\ &\leq K\left\| d(p,gp) \right\|. \end{split}$$

$$\Rightarrow \| d(p, gp) \| = 0$$

Hence, p = gp.

Now,

$$\begin{split} d(fp,p) &= d(fp,\,gp) \\ &= d(fp,\,fp) \quad (\text{since } fp = gp) \\ &\leq \lambda d(gp,\,gp_1) \leq \lambda d(p,\,p_1) = 0 \quad (by \ (1)) \end{split}$$

That is,
$$fp = p$$
.

 \Rightarrow d(fp, p) = 0

1 nat 15, 1p – p

Since, fp = gp.

Therefore, fp = gp = p, f and g have a common fixed point.

Uniqueness, let p₁ be another common fixed point of f and g, then

$$\begin{split} d(p,p_1) &= d(fp,\,g\,\,p_1) \\ &= d(fp,\,f\,\,p_1) \\ &\leq \lambda d(gp,\,gp_1) \quad (by\,(1)) \\ &\leq \lambda d\,(p,p_1) \,< d\,(p,p_1) \quad (since\,\,\lambda\!\!<\!\!1),\,a\,\,contradiction. \end{split}$$

S. Vijaya Lakshmi* & J. Sucharitha/Common Fixed Point Theorem in Cone Metric Spaces/ IJMA- 4(5), May-2013.

Therefore, $d(p, p_1) = 0$,

$$\implies$$
 $p = p_1$.

Therefore, f and g have a unique common fixed point.

REFERENCES

- [1] M. Abbas and G. Jungck, Common fixed point results for non commuting mappings without continuity in cone metric spaces. *J. Math. Anal. Appl.* 341(2008) 416-420.
- [2] M. Abbas and B. E. Rhoades, Fixed and periodic point results in cone metric spaces. *Appl. Math. Lett.* 22 (2009), 511-515.
- [3] L. G. Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. *Anal. Appl.* 332(2) (2007)1468-1476.
- [4] J. Gornicki, B. E. Rhoades, A general fixed point theorem for involutions, *Indian J. Pure Appl. Math.*27 (1996) 13-23.
- [5] R. P. Pant, Common fixed points of noncommuting mappings, J. Math. Anal. Appl. 188 (1994)436-440.
- [6] S. Rezapour and Halbarani, Some notes on the paper "cone metric spaces and fixed point theorem of contractive mappings", *J. Math. Anal. Appl.* 345(2008), 719-724.
- [7] B. E. Rhoades, A comparison of various definitions of contractive mappings, *Trans. Amer. Math. Soc.* 26 (1977)257-290.
- [8] S. Sessa, On a weak commutativity condition of mappings in fixed point consideration, *Publ. Inst. Math. Soc.* 32(1982)149-153.

Source of support: Nil, Conflict of interest: None Declared