International Journal of Mathematical Archive-4(5), 2013, 6-9
 IMA Available online through www.ijma.info ISSN 2229-5046

COMMON FIXED POINT THEOREM IN CONE METRIC SPACES

S. Vijaya Lakshmi* \& J. Sucharitha
Department of Mathematics, Osmania University, Hyderabad-500007, Andhra Pradesh, India

(Received on: 21-02-13; Revised \& Accepted on: 29-04-13)

Abstract

In this paper, we prove a unique common fixed point theorem in cone metric spaces without appealing to commutativity condition. These results generalize some recent results.

AMS Subject Classification: 47H10, 54H25.
Keywords: Common fixed Point, Cone metric space, Coincidence points.

1. INTRODUCTION AND PRELIMINARIES

In 2007 Huang and Zhang [3] have generalized the concept of a metric space, replacing the set of real numbers by an ordered Banach space and obtained some fixed point theorems for mapping satisfying different contractive conditions. Subsequently, Abbas and Jungck [1] and Abbas and Rhoades [2] have studied common fixed point theorems in cone metric spaces (see also [3], [5] and the references mentioned therein). Recently, Abbas and Jungck [1] have obtained coincidence point results for two mappings in cone metric spaces. In this paper, we prove a fixed point theorem in cone metric spaces without appealing to commutativity, which generalizes the Theorem of [1]

In all that follows B is a real Banach Space, and θ denotes the zero element of B . For the mapping $\mathrm{f}, \mathrm{g}: \mathrm{X} \rightarrow \mathrm{X}$, let C (f, g) denote the set of coincidence points of f and g, that is $C(f, g)=\{z \in X: f z=g z\}$.

The following definitions are due to Huang and Zhang [3].
Definition 1.1: Let B be a real Banach Space and P a subset of B.The set P is called a cone if and only if:
(a). P is closed, non -empty and $\mathrm{P} \neq\{\theta\}$;
(b). a, b $\in R$, a, b ≥ 0, $\mathrm{x}, \mathrm{y} \in P$ implies $\mathrm{ax}+\mathrm{by} \in P$;
(c). $\mathrm{x} \in \mathrm{P}$ and $-\mathrm{x} \in P$ implies $\mathrm{x}=\theta$.

Definition 1.2: Let P be a cone in a Banach Space B, define partial ordering ' \leq ' with respect to P by $\mathrm{x} \leq \mathrm{y}$ if and only if $y-x \in P$. We shall write $x<y$ to indicate $x \leq y$ but $x \neq y$ while $x \ll y$ will stand for $y-x \in$ Int P, where Int P denotes the interior of the set P . This Cone P is called an order cone.

Definition 1.3: Let B be a Banach Space and $\mathrm{P} \subset \mathrm{B}$ be an order cone .The order cone P is called normal if there exists $\mathrm{K}>0$ such that for all $\mathrm{x}, \mathrm{y} \in \mathrm{B}$.
$\theta \leq x \leq y$ implies $\|x\| \leq K\|y\|$.
The least positive number K satisfying the above inequality is called the normal constant of P .
Definition 1.4: Let X be a nonempty set of B. Suppose that the map d: $X \times X \rightarrow B$ satisfies:
(d1). $\theta \leq d(x, y)$ for all $\mathrm{x}, \mathrm{y} \in X$ and $\mathrm{d}(\mathrm{x}, \mathrm{y})=\theta$ if and only if $\mathrm{x}=\mathrm{y}$;
(d2). $\mathrm{d}(\mathrm{x}, \mathrm{y})=\mathrm{d}(\mathrm{y}, \mathrm{x})$ for all $\mathrm{x}, \mathrm{y} \in X$;
(d3). $\mathrm{d}(\mathrm{x}, \mathrm{y}) \leq \mathrm{d}(\mathrm{x}, \mathrm{z})+\mathrm{d}(\mathrm{y}, \mathrm{z})$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in X$.
Corresponding author: S. Vijaya Lakshmi* \& J. Sucharita
Department of Mathematics, Osmania University, Hyderabad-500007, Andhra Pradesh, India

S. Vijaya Lakshmi* \& J. Sucharitha/Common Fixed Point Theorem in Cone Metric Spaces/ IJMA- 4(5), May-2013.

Then d is called a cone metric on X and (X, d) is called a cone metric space.
The concept of a cone metric space is more general than that of a metric space.
Definition 1.5: Let (X, d) be a cone metric space. We say that $\left\{\mathrm{X}_{\mathrm{n}}\right\}$ is
(i) a Cauchy sequence if for every c in B with $\mathrm{c} \gg \theta$, there is N such that for all $\mathrm{n}, \mathrm{m}>\mathrm{N}, \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{m}}\right) \ll \mathrm{c}$;
(ii) a convergent sequence if for any $c \gg \theta$, there is an N such that for all $n>N, d\left(x_{n}, x\right) \ll c$, for some fixed x in X.

We denote this $\mathrm{x}_{\mathrm{n}} \rightarrow \mathrm{x}$ (as $\mathrm{n} \rightarrow \infty$).
Lemma 1.6: Let (X, d) be a cone metric space, and let P be a normal cone with normal constant K . Let $\left\{\mathrm{X}_{\mathrm{n}}\right\}$ be a sequence in X. Then
(i). $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ converges to x if and only if $\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}\right) \rightarrow 0(\mathrm{n} \rightarrow \infty)$.
(ii). $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ is a Cauchy sequence if and only if $\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{m}}\right) \rightarrow 0(\mathrm{n}, \mathrm{m} \rightarrow \infty)$.

2. MAIN RESULTS

In this section we obtain a common fixed point theorem for self-mappings without appealing to commutativity condition, defined on a cone metric space.

The following Theorem generalizes the Theorem of [1].
Theorem 2.1: Let (X, d) be a complete cone metric space and P a normal cone with normal constant K . Suppose that the mappings $f, g: X \rightarrow X$ are such that for some constant $\lambda \in(0,1)$ and for every $x, y \in X$ are two self-maps of X satisfying
$d(f x, f y) \leq \lambda d(g x, g y)$
If the range of g contains the range of f and $g(X)$ is a complete subspace of X, then f and g have coincidence point. Then, f and g have a unique common fixed point in X.

Proof: Let x_{0} be an arbitrary point in X, and let $x_{1} \in X$ be chosen such that $y_{0}=f\left(x_{0}\right)=g\left(x_{1}\right)$. Since $f(X) \subseteq g(X)$. Let $x_{2} \in X$ be chosen such that $y_{1}=f\left(x_{1}\right)=g\left(x_{2}\right)$. Continuing this process, having chosen $x_{n} \in X$, we chose $x_{n+1} \in X$ such that $\mathrm{y}_{\mathrm{n}}=\mathrm{f}\left(\mathrm{x}_{\mathrm{n}}\right)=\mathrm{g}\left(\mathrm{x}_{\mathrm{n}+1}\right)$.

We first show that
$\mathrm{d}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}-1}\right) \leq \lambda \mathrm{d}\left(\mathrm{y}_{\mathrm{n}-1}, \mathrm{y}_{\mathrm{n}-2}\right)$ for $\mathrm{n}=2,3, \ldots$.
Indeed,
$d\left(y_{n}, y_{n-1}\right)=d\left(\mathrm{fx}_{\mathrm{n}}, \mathrm{fx}_{\mathrm{n}-1}\right) \leq \lambda d\left(\mathrm{gx}_{\mathrm{n}}, g \mathrm{x}_{\mathrm{n}-1}\right)$.
(2) Implies that
$\mathrm{d}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}-1}\right) \leq \lambda \mathrm{d}\left(\mathrm{y}_{\mathrm{n}-1}, \mathrm{y}_{\mathrm{n}-2}\right) \leq \ldots \ldots . . \leq \lambda^{\mathrm{n}-1} \mathrm{~d}\left(\mathrm{y}_{1}, \mathrm{y}_{0}\right)$.
Now we shall show that $\left\{y_{n}\right\}$ is a Cauchy sequence. By the triangle inequality,
for $n>m$ we have
$d\left(y_{n}, y_{m}\right) \leq d\left(y_{n}, y_{n-1}\right)+d\left(y_{n-1}, y_{n-2}\right)+\ldots \ldots . .+d\left(y_{m+1}, y_{m}\right)$.
Hence, as p is a normal cone,
$\mathrm{d}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{m}}\right) \leq \mathrm{d}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}-1}\right)+\mathrm{d}\left(\mathrm{y}_{\mathrm{n}-1}, \mathrm{y}_{\mathrm{n}-2}\right)+\ldots \ldots \ldots+\mathrm{d}\left(\mathrm{y}_{\mathrm{m}+1}, \mathrm{y}_{\mathrm{m}}\right)$.
Now by (3),
$d\left(y_{n}, y_{m}\right) \leq\left(\lambda^{n-1}+\lambda^{\mathrm{n}-2}+\ldots \ldots \ldots . .+\lambda^{m}\right) d\left(y_{1}, y_{0}\right)$.

From (1.3)
$\left\|\mathrm{d}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{m}}\right)\right\| \leq \frac{\lambda^{m}}{1-\lambda} \mathrm{K}\left\|\mathrm{d}\left(\mathrm{y}_{1}, \mathrm{y}_{0}\right)\right\| \rightarrow 0$ as $\mathrm{m} \rightarrow \infty . \lambda \in(0,1)$
From ([3], Lemma 4) it follows that $\left\{y_{n}\right\}$ is a Cauchy sequence. Since $g(X)$ is complete, there exists a q in $g(X)$ such that $y_{n} \rightarrow q$ as $n \rightarrow \infty$. Consequently, we can find p in X such that $g(p)=q$. We shall show that $f(p)=q$. From (1)
$\mathrm{d}\left(\mathrm{gx}_{\mathrm{n}}, \mathrm{fp}\right)=\mathrm{d}\left(\mathrm{fx}_{\mathrm{n}-1}, \mathrm{fp}\right) \leq \lambda \mathrm{d}\left(\mathrm{gx}_{\mathrm{n}-1}, \mathrm{gp}\right)$,
$\Rightarrow \mathrm{d}(\mathrm{gp}, \mathrm{fp}) \leq \lambda \mathrm{d}(\mathrm{gp}, \mathrm{gp})=0$.
That is, $\mathrm{d}(\mathrm{gp}, \mathrm{fp})=0$.
Hence, $g p=q=f p, p$ is a coincidence point of f and g.
Now using (1),
$\mathrm{d}(\mathrm{p}, \mathrm{gp}) \leq \mathrm{d}\left(\mathrm{p}, \mathrm{y}_{\mathrm{n}}\right)+\mathrm{d}\left(\mathrm{y}_{\mathrm{n}}, g \mathrm{~g}\right)$ (by the triangle inequality)

$$
\begin{aligned}
& =\mathrm{d}\left(\mathrm{p}, \mathrm{y}_{\mathrm{n}}\right)+\mathrm{d}\left(\mathrm{fx}_{\mathrm{n}}, \mathrm{fp}\right)(\text { Since, } \mathrm{fp}=\mathrm{gp}) \\
& \leq \mathrm{d}\left(\mathrm{p}, \mathrm{y}_{\mathrm{n}}\right)+\lambda \mathrm{d}\left(\mathrm{gx}_{\mathrm{n}}, \mathrm{gp}\right)
\end{aligned}
$$

From (1.3),

$$
\begin{aligned}
&\|d(p, g p)\| \leq K\left(\left\|\left(d\left(p, f x_{n}\right)+\lambda d\left(g x_{n}, g p\right)\right)\right\|\right) \\
& \leq K\left(\left\|d\left(p, f x_{n}\right)\right\|+\lambda\left\|d\left(g x_{n}, g p\right)\right\|\right) \text { as } n \rightarrow \infty \\
& \leq K(\|(d(p, q)\|+\lambda\| d(q, g p) \|) \\
& \leq K(\|(d(p, g p)\|+\lambda\| d(g p, g p) \|) \\
& \leq K\|d(p, g p)\| \\
& \Rightarrow\|d(p, g p)\|=0
\end{aligned}
$$

Hence, $\mathrm{p}=\mathrm{gp}$.
Now,
$d(f p, p)=d(f p, g p)$
$=\mathrm{d}(\mathrm{fp}, \mathrm{fp}) \quad($ since $\mathrm{fp}=\mathrm{gp})$
$\leq \lambda \mathrm{d}\left(\mathrm{gp}, \mathrm{gp}_{1}\right) \leq \lambda \mathrm{d}\left(\mathrm{p}, \mathrm{p}_{1}\right)=0 \quad$ (by (1))
$\Rightarrow \mathrm{d}(\mathrm{fp}, \mathrm{p})=0$
That is, $\mathrm{fp}=\mathrm{p}$.
Since, $\mathrm{fp}=\mathrm{gp}$.
Therefore, $\mathrm{fp}=\mathrm{gp}=\mathrm{p}, \mathrm{f}$ and g have a common fixed point.
Uniqueness, let p_{1} be another common fixed point of f and g, then

```
d(p, p
    = d(fp, f p p )
    \leq\lambdad(gp, g\mp@subsup{p}{1}{})\quad(by (1))
    \leq\lambdad (p, p
```

Therefore, $d\left(p, p_{1}\right)=0$,

$$
\Rightarrow \mathrm{p}=\mathrm{p}_{1 .}
$$

Therefore, f and g have a unique common fixed point.

REFERENCES

[1] M. Abbas and G. Jungck, Common fixed point results for non commuting mappings without continuity in cone metric spaces. J. Math. Anal. Appl. 341(2008) 416-420.
[2] M. Abbas and B. E. Rhoades, Fixed and periodic point results in cone metric spaces. Appl. Math. Lett. 22 (2009), 511-515.
[3] L. G. Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl. 332(2) (2007)1468-1476.
[4] J. Gornicki, B. E. Rhoades, A general fixed point theorem for involutions, Indian J. Pure Appl. Math. 27 (1996) 1323.
[5] R. P. Pant, Common fixed points of noncommuting mappings, J. Math. Anal. Appl. 188 (1994)436-440.
[6] S. Rezapour and Halbarani, Some notes on the paper "cone metric spaces and fixed point theorem of contractive mappings ", J. Math. Anal. Appl. 345(2008), 719-724.
[7] B. E. Rhoades, A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc. 26 (1977)257-290.
[8] S. Sessa, On a weak commutativity condition of mappings in fixed point consideration, Publ. Inst. Math. Soc. 32(1982)149-153.

Source of support: Nil, Conflict of interest: None Declared

