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ABSTRACT 

In this paper, a hybrid approach combining trust region (TR) algorithm and particle swarm optimization (PSO) is 
proposed for solving constrained multiobjective optimization problems (MOOPs). The proposed approach integrates 
the merits of both TR and PSO. the constrained MOOP is handled by reference point (RP) Interactive Approach and 
some of the points in the search space are generated. Secondly, For each point the TR algorithm is used to obtain a 
point on the Pareto frontier. Finally, All the points that have been obtained on the Pareto frontier are used as particles 
position for PSO; where homogeneous PSO is applied to get all the points on the Pareto frontier. To restrict velocity of 
the particles and control it, a dynamic constriction factor is presented. The algorithm is coded in MATLAB 7 using 3 
GHz PC. Various kinds of multiobjective (MO) benchmark problems have been tested to illustrate the successful result 
in finding a Pareto-optimal set. 
 
Keywords: Multiobjective optimization; trust region algorithm; particle swarm optimization, Pareto-optimal solution; 
reference point method. 
 
 
INTRODUCTION 
In the real world, there are many problems involving multiple objectives which should be optimized simultaneously. 
Thus multiobjective optimization problem (MOOPs) is a very important research topic for both scientists and engineers 
and there are still many open questions in this area [3]. 
 
For MOOPs, objective functions may be optimized separately from each other and the best solution can be found for 
each objective dimension. However, suitable solutions for all functions can seldom be found. This because in most 
cases the objective functions are in conflict with each other. It results in there being a group of alternative solutions 
(Pareto-optimal solutions) which must be considered equivalent in the absence of information concerning the relevance 
of each objective relative to the others. i.e., there is no single optimal value as in single objective optimization. 
 
Numerical optimization techniques (Traditional methods) such as the gradient-based methods are single objective 
optimization methods that optimize only one objective (not designed to deal with multiple optimal solutions). These 
methods usually starts with a single baseline and use local gradient information of the objective function with respect to 
changes in decision variable to calculate a search direction. When these methods are applied to a MOOP, the problem 
is transformed into a single objective optimization problem by combining multiple objectives into a single objective 
typically using a weighted sum method [14]. 
 
Therefore, one must run many optimizations by trial and error adjusting the weights to obtain Pareto-optimal solutions. 
This is considerably time consuming. What is more, there is no guarantee that uniform Pareto-optimal solutions can be 
obtained. For example, when this approach is applied to a MOOP that has a concave tradeoff surface, it converges to 
two extreme optimums without showing any tradeoff information between the objectives. 
 
TR is a term used in numerical optimization to denote the subset of the region of the objective function to be optimized 
that is approximated using a model function (often a quadratic). If an adequate model of the objective function is found 
within the TR then the region is expanded; conversely, if the approximation is poor then the region is contracted. TR 
methods are also known as restricted step methods. 
 
The fit is evaluated by comparing the ratio of expected improvement from the model approximation with the actual 
improvement observed in the objective function. Simple thresholding of the ratio is used as the criteria for expansion 
and contraction (a model function is "trusted" only in the region where it provides a reasonable approximation). 
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TR methods are in some sense dual to line search methods: TR methods first choose a step size (the size of the TR) and 
then a step direction while line search methods first choose a step direction and then a step size [19]. 
 
Evolutionary Algorithms (EAs) [5], on the other hand, are particularly suited for MOOPs. By maintaining a population 
of design candidates and using a fitness assignment method based on the Pareto-optimal concept, they can uniformly 
sample various Pareto-optimal solutions in one optimization without converting a MOOP into a single objective 
problem. In addition, EAs have other advantages such as robustness, efficiency, as well as suitability for parallel 
computing. Due to these advantages, EAs are unique and attractive approach to real-world optimization problems. 
 
PSO also is an evolutionary computational model which is based on swarm intelligence. PSO is developed by Kennedy 
and Elberhart [11] who have been inspired by the research of the artificial livings. Similar to EAs, PSO is also an 
optimizer based on population. The system is initialized firstly in a set of randomly generated potential solutions, and 
then performs the search for the optimum one iteratively. Whereas the PSO does not possess the crossover and 
mutation processes used in EAs, it finds the optimum solution by swarms following the best particle. Compared to 
EAs, the PSO has much more profound intelligent background and could be performed more easily. Based on its 
advantages, the PSO is not only suitable for science research, but also engineering applications, in the fields of 
evolutionary computing, optimization and many others. 
 
This paper intends to present a hybrid approach (RP-TR/PSO) to solving constrained MOOPs. It combines the two 
optimization techniques TR and PSO. It is a new algorithm that performs random searching (PSO algorithm) and 
deterministic searching (TR algorithm) for solving constrained MOOPs. Various kinds of MO benchmark problems 
have been tested to illustrate the successful result in finding a Pareto-optimal set. 
 
MULTIOBJECTIVE OPTIMIZATION (MOO) 
Multiobjective optimization (also called multicriteria optimization, multiperformance or vector optimization) can be 
defined as the problem of finding a vector of decision variables which satisfies constraints and optimizes a vector 
function whose elements represent the objective functions. These functions form a mathematical description of 
performance criteria which are usually in conflict with each other. Hence, the term “optimize” means finding such a 
solution which would give the values of all the objective functions acceptable to the designer [4,16]. The general 
minimization problem of q  objectives can be mathematically stated as: 
 

( ) ( )
( )
( )

Minimize :                                 ,  1, 2,...,

Subject to the constraints :        0,     i 1, 2,..., ,

                                                  0,      1, 2,..., ,

jf x f x j q

Ci x p

Ce x e m

 = = 
≤ = 
= =






                         (1) 

where ( )jf x  is the j-th objective function , ( )Ci x  is the i-th inequality constraint, ( )eC x  is the e-th equality 

constraint and [ ]1 2, ,..., nx x x x=  is the vector of optimization or decision variables; where n  the dimension of the 

decision variable space. The MOO problem then reduces to finding an x  such that ( )jf x  is optimized. Since the 
notion of an optimum solution in MOOP is different compared to the SOOP, the concept of Pareto dominance is used 
for the evaluation of the solutions. This concept formulated by Vilfredo Pareto is defined as [17]: 
 
Definition 1: (Dominance Criteria [13]). For a problem having more than one objective function (say, jf , 1,...,j q= , 

1q > ), any two solution ax  and bx  can have one of two possibilities, one dominates the other or none dominates the 
other. A solution ax  is said to dominate the other solution bx , if both the following condition are true: 
 
The solution ax  is no worse (say the operator   denotes worse and   denotes better) than bx  in all objectives, or 

( )j af x  ( )j bf x  for all 1,...,j q=  objectives. 
 
The solution ax  is strictly better than bx  in at least one objective, or ( ) ( )j a j bf x f x  for at least one { }1,...,j q∈ .  
 
If any of the above condition is violated, the solution ax  dose not dominates the solution bx . 
 
Definition 2: (Pareto-optimal solution). *x  is said to be a Pareto-optimal solution of MOOP if there exists no other 
feasible x  such that, ( ) ( )*

j jf x f x≤  for all 1,...,j q=  and ( ) ( )*
j jf x f x< for at least one objective function jf . 
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RP-TR/PSO APPROACH 
In this section, the proposed algorithm is presented. The proposed algorithm contains three stages RP stage, TR stage 
(used to obtain a point on the Pareto frontier), and PSO stage (is applied to get all the points on the Pareto frontier). The 
mechanism of the proposed algorithm in the objective space is shown in Figure 1. 
 

 
Fig. 1: The mechanism of RP-TR/PSO approach in the objective space. 

RP stage 
Initialization 
Initialize N reference points ( z ) in the search space. 
 
RP method 
The RP interactive approach of Wierzbickiis [13] is very simple and practical for MOOPs. Before the solution process 
starts, some information is given to the decision maker (DM) about the problem. The goal is to achieve Pareto-optimal 
solution closest to a supplied RP. Given a RP z  for an q-objective optimization problem (1), the following SOOP is 
solved for this purpose [13]: 

( ) ( )

( )

( )

1

1
minimize :   
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= = 

∑

                                       

  (2) 

where the parameter p  can take any value between 1 and ∞. When 2p =  is used, an Euclidean distance of any point 
in the objective space from the RP z  is minimized. For a chosen RP, the closest Pareto-optimal solution is the target 
solution to the RP method.  
 
The method proceeds as follows: The DM specifies a RP z  and a solution with equal proportional achievements is 
generated. Then the DM specifies a new RP and the iteration continues until the DM satisfied with the solution 
produced.  
 
TR stage 
This section is devoted to presenting the detailed description of TR algorithm for solving problem (2). The TR 
algorithm combines ideas from Byrd [2], Omojokun [15], El Alem [8].  
 
Following Dennis et al. [6], we define the indicator matrix ( ) p pW x ×∈ , whose diagonal entries are 

( )
( )
( )

1     if   0,

0     if   0.i

Ci x
w x

Ci x

≥= 
<

                                                       (3) 

 
Using this matrix, the Problem defined in Eq. (2) can be transformed to the following equality constrained optimization 
problem: 

( )
( ) ( ) ( )

( )

minimize        

subject to       1 2 0,

                      0.

T

f x

Ci x W x Ci x

Ce x

=

=

                                        (4) 
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The above problem can be rewritten as: 

( )
( )

minimize       

subject to       0,

f x

h x =
                                                                (5) 

where ( )h x = [ ( )Ce x  ( ) ( ) ( )1 2 0TCi x W x Ci x = ].  
 
The Lagrangian function associated with problem defined in (5) is given by 

( ) ( ) ( ), T
k k k k kL x f x h xλ λ= +                                                          (6) 

where kλ ∈  is the Lagrange multiplier vector associated with equality constraint ( )kh x ∈ . 
 
The augmented Lagrangian is the function 

( ) ( ) ( ) 2
, ; , ,kx r L x r h xλ λΦ = +                                                       (7) 

where r > 0 is a parameter usually called the penalty parameter. 
 
The reduced Hessian approach is used to compute a trial step kd . In this approach, the trial step kd  is decomposed 

into two orthogonal components; the normal component n
kd  and the tangential component t

kd . The trial step kd  has 

the form n t
k k k kd d Z d= + , where kZ  is a matrix whose columns form an orthonormal basis for the null space of 

( )Tkh x∇ .  
 
We obtain the normal component n

kd  by solving the following TR sub-problem: 

( ) ( )
21minimize        

2
subject to       ,  

T n
k k

n
k

h x h x d

d ξ

+∇

≤ ∆
                                                (8) 

for some ( )0,1ξ ∈  and trust region radius ( k∆ ).   
 
Given the normal component n

kd , we compute the tangential component t t
k k kd Z d=  by solving the following TR sub-

problem: 

 
( )( )

22

1minimize        ,
2

subject to       ,

TTT n t t T t
k x k k k k k k k

t n
k k k

Z L x H d d d Z H Z d

Z d d

λ ∇ + + 

≤ ∆ −

                    (9) 

 
Once the trial step is computed, it needs to be tested to determine whether it will be accepted or not. To do that, a merit 
function is needed. We use the augmented Lagrangian function (7) as a merit function. To test the step, we compare the 
actual reduction in the merit function in moving from kx  to k kx d+  versus the predicted reduction.  
 
The actual reduction in the merit function is defined as: 

( ) ( ) ( ) ( )2 2
1 1 1, , ,.k k k k k k k kAred L x L x r h x h xλ λ+ + +

 = − + −
                            (10) 

The predicted reduction in the merit function is defined as: 

( ) ( ) ( )( ) ( ) ( ) ( )
221, + ;

2
T T TT T

k x k k k k k k k k k k k k k k kPred L x d d H d h x h x d r h x h x h x dλ λ  = −∇ − −∆ +∇ − +∇  
            (11) 

where ( )1 .k k kλ λ λ+∆ = −  
 
If ( ) 0 ,k kAred Pred τ<  where ( )0 0,1τ ∈  is a small fixed constant, then the step is rejected. In this case, the radius of 

the TR k∆  is decreased by setting 3k kdτ∆ = , where ( )3 0,1τ ∈ , and another trial step is computed using the new 

trust-region radius. If ( ) 2k kAred Pred τ≥ , where 2 0τ > , then the step is accepted and set the TR as 

{ }{ }1 max min 1min , max ,k kτ+∆ = ∆ ∆ ∆ . If ( )0 2 ,k kAred Predτ τ≤ <  then the step is accepted and set the TR as 

( )1 minmax ,k k+∆ = ∆ ∆ . Finally, the algorithm is terminated when either 1kd ε≤  or 2 ,T
k x k kZ L h ε∇ + ≤  for some 

1 2, 0ε ε > . 
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PSO stage 
In this stage a homogeneous PSO for MOOP (see [10]) is proposed with a decreasing constriction factor to restrict 
velocity of the particles and control it [1]. In homogeneous PSO one global repository concept is proposed for choosing 
pbest and gbest, this means that each particle has lost its own identity and treated simply as a member of social group. 
The procedure of the PSO stage is as follows. 
 
Step 1: Initialization 
All non-dominated points (which obtained by applying TR stage) chosen as particles position t

ix .  
 
Store non-dominated particles in Pareto repository. If the specific constraint doesn’t exist for a repository, the size of 
the repository is unlimited. 
 
Step 2: Evaluation 
Evaluate the MO fitness value of each particle and save it in a vector form. 
 
Step 3: Floating 
Two optimal solutions are chosen randomly for pbest (Pi) and gbest (Pg) from the repository.  
 
Determine the new position of each particle in the following manner: 

1 1t t t
i i ix x v+ += +                                                                     (12) 

with the velocity 1t
iv +  calculated as follows:  

( ) ( )1
1 1 2 2 .t t t t

i i i i g iv wv c r p x c r p x+ = + − + −                                              (13) 
 
Here, subscript t indicates an pseudo-time increment, w is the inertia weight, c1 and c2 are two positive constants, called 
the cognitive and social parameter respectively, and r1 and r2 are random numbers uniformly distributed with in the 
range [0,1]. 
 
Step 4: Repairing of particles: 
Where the particle i start at the position t

ix with velocity t
iv  in the feasible space, the new position 1t

ix +  (see Figure 2) 
depends on velocity 

1t
iv + . 

 

 
 

Fig. 2: The movement of the particle i through search space 
 

To restrict (control) the particle’s velocity t
iv , a modified constriction factor (i.e., dynamic constriction factor) is 

presented to keep the feasibility of the particles. E.g., Figure 2 shows the movement of the particle i through the search 
space without any control factor (dashed line) also with a modified constriction factor (solid line). Where the particle i 
starts at position t

ix  with velocity t
iv  in the feasible space, the new position 1t

ix + depends on velocity 1t
iv + making the 

particle lose its feasibility, so we introduce a modified constriction factor 

2

2 ;
2

χ
τ τ τ

=
− − − +

                                                          (14) 

where, τ  is the age of the infeasible particle (i.e., how long it is still infeasible) and it is increased with the number of 
failed trials to keep the feasibility of the particle. 
 
The new modified positions of the particles are computed as:  

1 1 .t t t
i i ix x vχ+ += +                                                            (15) 



Ahmed A. El-Sawya, Zeinab M. Hendawyb and M. A. El-Shorbagyb*/ SOLVING CONSTRAINED MULTIOBJECTIVE OPTIMIZATION 
USING RP-TR/PSO / IJMA- 4(5), May-2013. 

© 2013, IJMA. All Rights Reserved                                                                                                                                                                         21 

 
For each particle, the feasibility is checked, if it is infeasible, the χ  parameter is implemented to control its position 
and velocity. The relation between the modified constriction factor and the age of the infeasible particle is shown in 
Figure 3. 
 

 
Fig. 3: Relation between the modified constriction factor and the age of the infeasible particle. 

 
Step 5: Selection and update the repository 
Check the Pareto optimality of each particle. If the fitness value of the particle is non-dominated when it compared to 
the Pareto-optimal set in a repository, save it into the Pareto repository. 
In the Pareto repository, if a particle is dominated from new one, then discard it. 
 
Step 6: Repeat 
Repeat again step 2 to step 5 until the number of generation reaches to given t . 
 
The PSO stage algorithm needs at least two Pareto solutions in the first generation to avoid premature convergence.  
 
The pseudo code of the proposed algorithm showing in Figure 4. 
 

Initialize parameters for TR and PSO 
TR parameters ( )1 2 0 1 2 3 0 max min,  ,  ,  ,  ,  , , ,ε ε τ τ τ τ ∆ ∆ ∆  
PSO parameters ( )1 2,  ,  ,  iv w c c  
Construct the RP model of MOOP 
TR algorithm 
While the stopping criterion is not met 
Compute the normal component of the trial step 
The tangential component of the trial step is calculated 
Compute the trial step (the sum of normal and tangential component) 
Test the new trial step 
End while 
PSO algorithm. 
While number of iterations not met 
Set the solution (non-dominated solution) obtained by TR in a repository (particles 
positions) 
Chosen randomly pbest and gbest from the repository. 
Update particles velocity and position 
Repair the unfeasible particle 
Evaluate fitness of particle swarm 
Selection and update the repository 
End while 

Fig. 4: The pseudo code of the proposed algorithm 
 
NUMERICAL RESULTS 
This section is devoted to the discussion of the experimental results. In order to validate the proposed algorithm, several 
benchmark problems are solved which are reported in the literature [5]. The parameters adopted in the implementation 
of the proposed algorithm are listed in Table 1 (see [1, 7, 9]). 
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Table - 1: The parameter adopted in the implementation of the proposed algorithm 

 
Parameter Value Parameter Value 

N  20-50 max∆  105 0∆  

1 2,  ε ε  10-7 min∆  10-3 
0τ  0 PSO iteration 300 
1τ  2 w 0.6 
2τ  0.25 c1 2.8 
3τ  0.25 c2 1.3 

0∆  ( ) min1,1.5 ×∆  τ  15 

 
Test problems 
For evaluating the performance of the proposed approach nine well-known MO benchmark problems are used. Each 
test problem consists of two objective functions with constraints and has continuous/discrete with Pareto front. The 
following test problems for study are considered [5]: 
 
BNH Problem 

( )
( ) ( ) ( )

2 2
1 1 2

2 2
2 1 2

Minimize      4 4

Minimize      5 5

f x x x

f x x x

= +

= − + −

 

 

Subject to   
( ) ( )
( ) ( ) ( )

2 2
1 1 2

2 2
2 1 2

5 25

8 3 7.7

C x x x

C x x x

= − + ≤

= − + + ≥
 

[ ]
[ ]

1

2

0,5

0,3

x

x

∈

∈
 

 
SRN Problem 

( ) ( ) ( )
( ) ( )

2 2
1 1 2

2
2 1 2

Minimize      2 2 2

Minimize      9 1

f x x x

f x x x

= + − + −

= − −

 

 

Subject to   
( )
( )

2 2
1 1 2

2 1 2

225

3 10 0

C x x x

C x x x

= + ≤

= − + ≤
 

[ ]
[ ]

1

2

20,20

20,20

x

x

∈ −

∈ −
 

 
TNK Problem  

( )
( )

1 1

2 2

Minimize      

Minimize      

f x x

f x x

=

=

 

 

Subject to   
( ) ( )( )
( ) ( ) ( )

2 2
1 1 2 1 2

2 2
2 1 2

1 0.1cos 16arctan 0

0.5 0.5 0.5

C x x x x x

C x x x

= + − − ≥

= − + − ≤
 

[ ]
[ ]

1

2

0,

0,

x

x

π

π

∈

∈
 

 
RESULTS & DISCUSSION 
BNH test problem has two second degree nonlinear objective functions and two nonlinear second order inequality 
constraints. Its Pareto front generated by the proposed algorithm and Woldesenbet et al. algorithm [20] is given in 
Figure 5. As it can be seen from the figure, the proposed approach provides feasible optimal solutions that are diversity 
distributed on the true Pareto front. Also, our approach and Woldesenbet et al. algorithm [20] displayed a better 
distribution of the Pareto-optimal points but in Woldesenbet et al. algorithm [20] There are gaps between the non-
dominated solutions. 
 
SRN test problem has two second order nonlinear objective functions, one linear inequality constraint and one 
nonlinear second order inequality constraint. The resulted Pareto front obtained by our approach and Woldesenbet et al. 
algorithm [20] displayed in Figure 6. From the figure, we can see that our approach able to generate a good 
approximation of the true Pareto set whish is better than that obtained by Woldesenbet et al. algorithm [20].  
 
TNK test problem has two linear objective functions and two nonlinear second order inequality constraint. Figure 7 
present the Pareto front obtained by our approach and Woldesenbet et al. algorithm [20]. We find that the Pareto fronts  
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generated using our approach is well distributed, very closed in the shape of the Pareto fronts and able to produce a 
continuous Pareto set than Woldesenbet et al. algorithm [20]. 
 
 

 
RP-TR/PSO 

 
Woldesenbet et al. algorithm [20] 

Fig. 5. Pareto front for BNH problem. 
 

 
RP-TR/PSO 

 
Woldesenbet et al. algorithm [20] 

Fig. 6. Pareto front for SRN problem. 
 

 
RP-TR/PSO 

 
Woldesenbet et al. algorithm [20] 

 
Fig. 7. Pareto front for TNK problem. 

PERFORMANCE ASSESSMENTS 
There are usually two important aspects of MOO performance. One is the spread across the Pareto-optimal front and 
the other is the ability to attain the global optimum or final tradeoffs [12]. Every MO optimizer should have the ability 
of exploration and exploitation to achieve these two goal simultaneously. There are several metrics to express these two 
aspects with a quantitative assessment. 
 
To evaluate the proposed algorithm, the generational distance (GD) criterion is used [18]. when the optimal Pareto set 
is known, GD is a way of estimating how far are the elements in the set of non-dominated vectors found so far from 
those in the Pareto-optimal set and is defined as follows. 
 

1 ;
Nv Nv

ii
d

GD
Nv
==

∑                                                             (21) 
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where Nv  is the number of vectors in the set of non-dominated solutions found so far and id is the Euclidean distance 
between each of these and the nearest member of the Pareto-optimal set. If all the solution candidates are in the Pareto-
optimal set, then the value of GD is 0.  
 
Table 2 shows the GD criterion for the three test problems. In Table 2, we can see that GD is very small that mean the 
approximate Pareto obtained by the proposed approach is very near to the true Pareto solution. 

 
Table – 2: The GD criterion for test problems 

 
Test problem Generational Distance(GD) 
Problem (1) 0.00019916 
Problem (2) 0.00345000 
Problem (3) 0.00224500 

 
This result can approve that the proposed algorithm is able to find well distribution of the Pareto-optimal curve in the 
objective space. Also, it is observed that the resulting Pareto front is smooth, uniformly distributed, and it achieves very 
good solutions at the two ends of the curve. In addition, The results have demonstrated that the proposed algorithm can 
successfully find the Pareto-optimal for all the test problems. 
 
On the other hand, classical techniques aim to give a single point (solution) at each run of problem solving. On the 
contrary, the proposed approach generates the set of Pareto-optimal solution, which provides the facility to save 
computing time. 

 
CONCLUSION 
This paper presents a hybrid algorithm combining TR and PSO for solving constrained MOOPs. It is a new algorithm 
that performs random searching with deterministic searching and integrates the merits of both TR and PSO. In the 
proposed algorithm, MOOP is handled by point RP Interactive Approach, TR is used to obtain a point on the Pareto 
frontier and homogeneous PSO with a dynamic constriction factor is applied to get all the points on the Pareto frontier. 
Various kinds of MO benchmark problems showed the effectiveness of the new algorithm and illustrate the successful 
result in finding a Pareto-optimal set. The following are the significant contributions. 
 
• The present work addressed an important task of combining TR with PSO to not find a single optimal solution, but 

to find a set of nondominated solutions. 
• The integration of TR and PSO has improved the quality of the founded solutions, also it guarantee the faster 

converge to the Pareto-optimal solution. TR has provided the initial set (close to the Pareto set as possible) 
followed by PSO to improve the quality of the solutions and get all the points on the Pareto frontier. 

• The proposed algorithm does not have any restrictions on the number of the Pareto-optimal solutions found; where 
it keeps track of all the feasible solutions found during the optimization. 

• The numerical results reveal that approach finds a front better than that found by other approach, can 
generate well-distributed sets of Pareto points very efficiently and is thus very suitable for engineering MOOPs 
and has good application value. 

• Using the GD criterion show that the proposed algorithm give good approximation of the Pareto-optimal solution. 
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