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ABSTRACT 
In this paper a new self-scaling Variable Metric (VM) method for solving a number of nonlinear unconstrained 
optimization problems is proposed. In this work we have suggested a new formula for the VM-update with a new 
Quasi-Newton (QN) like condition used for designing this update. Numerical experiments indicate that this new self-
scaling method is effective and superior to both BFGS and Biggs VM-methods, with respect to the number of function 
evaluations (NOF) and the number of iterations (NOI). 
 
Keywords:  Self-Scaling, Variable Metric, Quasi-Newton like Condition, Exact Line Searches. 
 
 
1. INTRODUCTION 
The QN family of the VM formula which was introduced by (Broyden, 1970) is the most efficient technique for 
minimizing non–linear functions )(xf  by generating a sequence of points kx  and matrices kH   as follows:  

kkk gHd −= , ,...2,1,0=k                                                                (1)                                  
 
where  kg  is the gradient of  f at kx . 

kkkk dxx α+=+1 .                                                                (2)       
                                                
where the step-size  αk  satisfies  Wolfe's conditions:  
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10 1 <δ<  and 121 <δ<δ .  

 
Or at least it satisfies another equivalent condition:  
 

k
T
kkkk gdxfxf αδ 31 )()( −<+                                                                             (3c)   

 
for some predetermined 3δ , or more likely in theoretical analysis it is chosen to 

min )( kkk dxf α+                                                                  (4)  
so that  
 

01 =+ k
T
k dg ,  

                                                                              (5) 
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this is an exact line search (ELS). However, based on a new nonlinear conjugate gradient method investigated by 
(Hagar and Zhang, 2005) and under some mild conditions, (Chen, 2012) proved it's global convergence property with 
some sort of Wolfe type line search procedure. Now, having determined the point 1+kx  an improved inverse Hessian 

matrix  1+kH  is obtained by incorporating the information generated in the last iteration. The matrix 1+kH   is given 

by for the parameterφ ]1,0[∈ . 
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where 
 kkk ggy −= +1                                                                             (6b) 
 
 kkk xxv −= +1                                                                             (6c) 
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Different values of the scalar φ  in (6) correspond to different member of QN-family. It will be noted that 0=φ  
corresponds to the original DFP algorithm introduced by (Davidon, 1959) and (Fletcher and Powell, 1963). In studying 
the theoretical behavior of this technique it was shown by Fletcher and Powell  that, on quadratic function with the 
accurate line search defined in (5), the original ( 0=φ ) formula generates conjugate directions and hence minimizes a 

quadratic function in at most k  iterations. 
 

The theory of the VM-methods is beautiful and we have a fairly good understanding of their properties. One of the best 
known VM-method is the BFGS method which was proposed independently by (Broyden, 1970); (Fletcher, 1970); 
(Goldfarb, 1970) and (Shanno, 1970). It is a line search method. At the thk  iteration, a symmetric and positive kH  is 
given and a search direction is computed by (1) and (2). It has been found that it is best to implement BFGS formula 
defined by formulae (6) where 1=φ . Broyden had shown that if  the search along all k conjugate directions is 

necessary with analysis based on the error matrix 2
1

2
1

−−
= HGGRk  and determined a value of φ   then the sequence 

kH  converges steadily to 1−G .  
 
1.1. Self-Scaling VM-Updates. 
 
Many modifications have been applied on QN-methods in attempt to improve its efficiency. In this section, the 
discussion will be on the self-scaling VM-algorithms developed  by  Oren (1974).  Oren's formula can be written for 
the parameter φ : 
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where 

1=φ  and 
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=η                                                                            (7b) 

 
The formula (7) is known as self-scaling VM-method. Clearly when 1=kη , formula (7) reduces to Broyden’s class 
update defined in (6). Oren's update (7) processes the following properties for a quadratic function: 
 
(a) If kα  minimizes )( kkk gHxf α−  for all k,  then the vector kd  are mutually conjugate (with respect to G) and 

hence the solution is obtained in at most n iterations. 

(b) The condition number of the matrix 2
1

2
1

GHGR kk =  is strictly monotonically decreasing. 
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(c) If 1=kα  for all k, then the algorithm convergent" two- step super linearly", i.e. 

     0lim
min

min1 =
−

−

+

∞→ xx
xx

k
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k
.  

 
The proofs of these properties can be found in Oren (1974). Another self-scaling VM-update had been investigated by 
(Biggs, 1973): 
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Al-Bayati found another interesting family of VM-updates by further scaling of Biggs and Oren  families of VM-
updates with a scalar:  

1=φ ;  
k

k η
σ 1

=  and   1=kt     (Al-Bayati, 1991)                                                                          (9a)     

                                                                      
So that the updating formula becomes: 
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1.2. Some other Scaling Factors 
 
(Luksan and Vlcek, 1995) in their contribution, proposed an extremely simple scaling strategy which considerably 
decreases number of function evaluations if VM-methods from the (Broyden, 1970) class are used for unconstrained 
minimization of functions with number of variables not extremely small. They deal with the BFGS method, since 
scaling of other VM-methods has very similar properties. After describing their scaling strategy, they compare six 
scaling techniques, using an extensive collection of test problems, and they presented some useful conclusions. 
 
Recently, (Bin Embong, et al, 2011)  proposed a new self-scaling VM-method in which the smallest eigenvalue of the 
Hessian approximation 0λ  was proposed as an alternative scaling factor of initial scaling on 1H .  An improvement 
over unscaled BFGS is achieved, as for most of the cases, of their  trails, the number of iterations are reduced. They 
suggested further investigation by using an alternative scaling factor, 0λ  on the other types of QN-methods. The 
relationship between the smallest eigenvalue of Hessian approximation and the optimal step-size was also of the 
interest in their future research, triggering the possibility of using eigenvalue as a new step-size in the QN-methods.  
Replacing step-size, α   with the smallest eigenvalue of 1H , yields: 
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where kr  is a vector defined in (6d). As proposed by Shanno and Phua (1978)  this update is also an initial scaling on 
the Hessian approximation.  After the initial iteration, the Hessian approximation  is never rescaled.  
                                                              
2.  A NEW SELF-SCALING VM-METHOD 
In this section a new formula for a self scaling VM-method is presented. If 1+kH  is to be viewed as an approximation  

to 1−G , it is natural to require that: 
 

kkk vyH =+1                                                                 (11) 
 
which is called the exact QN-condition. For the new method we have investigated a new expression for the QN-
condition as follows :  let  for  a weak QN-like condition: 
 

kkkk vyH ξ=                                                                (12a) 
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and let for the actual QN- like condition:  
 kkkk vyH γ=+1                                                (12b) 

 
where 

0, >kk γξ                                                                      (12c) 
 

Then we get the following relationship from (11) and (12):  
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These implies that the condition number  

kkk HR ξγ /)( = ,                                                 (15) 
     
Therefore, to compute the new formula, kγ ,  it may be chosen so that, from (12): 

kkkkkkk yHvyH −+=+ )(1 ξγ                                                                          (16) 
            
Now multiplying (16) by 1−

ky  and  multiplying and dividing the first and second terms of right hand side of equation 

(16) by kv   and ky   respectively, yields: 
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Equation (17) can be further simplified using equation (11) as follows:  
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Equation (18) is a scaled DFP method. Now taking 0=φ  in (7) yields: 
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Multiplying (19) by (1/ kη ) and comparing with (18) we get: 
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which is the new parameter for the self-scaling DFP-algorithm. Certainly, it satisfies the new QN-like condition. 
 
2.1. Convergence Property of the New Proposed Method. 
 
Theorem (2.1): assume that )(xf be a quadratic function defined by:  

xbGxxxf TT +=
2
1)(                                                                             (21) 

 
and the line searches are exact.  If kH  is any symmetric positive definite matrix and new

kH 1+  is a new VM-formula 
defined by: 
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where kγ  is a positive scalar  defined by (20); denoting the new values by  (*), then the search directions  

*** gHdnew −=  are identical to the (Hestenes and Stiefel, 1952) Conjugate Gradient (CG) direction  *
CGd  defined by:         
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T
kCG ddygygd )/( *** +−=  for  k>1                                                                          (23) 

 
Proof:  the update (22) can be written as:             
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Using the property 0* =gvT

k ,  for  exact line searches:         
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This is the preconditioned Hestenes and Stiefel CG-method. Hence for a positive definite matrix kH , the vector *g  

can be substituted for *gH k  by using the following property: **
1 gHgH ki =+ , for all  nki ≤<≤0  (see Al-

Bayati, 1991). 
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We also know that *
DFPd   and  *

CGd  are identical; for the  proof of this fact see (Nazareth , 1979). Hence *
newd  is 

identical to *
DFPd  with ELS and equation (23) becomes: 
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Hence, the proof is complete.  
           
2.2. New Algorithm. 
Step (1):  Initialize 0x ,  IH =0 , 510−=ε , k=1 

Step (2):  Set  kkk gHd −=  

Step (3):   Set kkkk dxx α+=+1 ;   kα  is optimal step-size determined by the cubic Interpolation Uni-model line  
                 search. 
Step(4):   If  the stopping criterion is satisfied,  stop; otherwise  
Step (5):   Set   kkk xxv −= +1  and  kkk ggy −= +1   

Step (6):   Compute [ ]T
kkkk
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1 ; kγ   is defined by (20) 

Step (7):   Set 1+= kk  and go to Step (2). 
 
3. NUMERICAL RESULTS 
Ten well-known test functions (given in the Appendix) with two different dimensions, are tested in the range 
( 1000100 ≤≤ n ). The Programs are written in  Fortran 90  language and for all cases the stopping criterion is taken 
to be: 
 
 { 5

1 10−
+ <kg or   (either NOI exceeds 500 or NOF exceeds 1000)}                                                         (24) 

 
The line search routine used is the cubic interpolation which uses function and gradient values and it is an adaptation of 
the routine published by (Bunday, 1984). Our numerical results are given in the Tables (3.1); (3.2) and (3.3) and 
specifically quoting the number of function calls (NOF) and the number of iterations (NOI). Experimental results in  
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Table (3.1) confirms that the new algorithm is superior to both standard BFGS and Biggs algorithms. Table (3.2) 
confirms that the improvement of the new algorithm against the others; namely there are (75-77)% (NOI-NOF) 
improvements comparing with BFGS. Also, there are (77-81)% (NOI-NOF) improvements comparing with Biggs 
algorithm. However, Oren and Al-Bayati algorithms are beat the new algorithm in about (4-6)% (NOI-NOF) only. 
Finally, we have found from (20) best results (indicated in Table (3.1)) that the New algorithm has (40)% NOI best 
results and (20)% NOF best results. This indicates that self-scaling plays a good rule in the theory of VM-updates. 
 

Table 3.1: Comparisons of Different VM algorithms  
 

    Test Functions N 
BFGS Biggs Oren Al-Bayati New 

NOI (NOF) NOI (NOF) NOI (NOF) NOI (NOF) NOI (NOF) 

POWELL  
(3,-1,0,1,…) 

100 42(117)   85(225) 35(121) 45(93) 55(120) 

1000 44(113) 108(283) 37(122) 51(106) 60(153) 

WOOD  
  (-3,-1,-3,-1,.) 

100 347(1001) 336(898) 20(68) 21(46) 28(61) 

1000 259(1003) 247(1003) 20(68) 21(46) 30(65) 

ROSEN 
  (-1.2,...…....) 

100 236(679) 295(752) 26(101) 23(57) 30(87) 

1000 448(1002) 316(801) 26(101) 23(57) 35(98) 

NON-D.  
  (-1,……..…) 

100 107(268) 48(116) 23(90)  24(54) 31(101) 

1000 172(483) 113(283) 23(100) 24(54) 38(155) 

Miele (1,2,2,2,….) 
100 31(102) 31(99) 30(101) 32(88) 31(127) 

1000 45(147) 40(124) 44(151) 41(114) 32(129) 

Cantrell  
(1,2,2,2,….) 

100 14(69) 26(144) 14(62) 16(105) 12(82) 

1000 14(69) 28(179) 14(62) 16(105) 13(99) 

CUBIC 
  (-1.2,1.,….) 

100 18(68) 24(192) 25(92) 22(57) 23(65) 

1000 18(68) 23(192) 25(92) 22(57) 23(65) 

SUM 
 (1,…………) 

100 247(1001) 213(804) 11(57)  11(66) 10(65) 

1000 161(1003) 178(1003) 17(81) 15(91) 16(81) 

SHALLOW  
(-2.,……….) 

100 6(17) 6(17) 6 (26) 6 (16) 5 (15) 

1000 6(17) 6(17) 6 (26) 6 (16) 5(15) 

WOLFE  
  (-1,………) 

100 72(145) 74(149) 43(128) 42(85) 41(83) 

1000 94(189) 96(193) 48(141) 47(95) 46(93) 

    TOTAL 2297(7561 2294(7474) 493(1790) 507(1316) 564(1759) 
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4. DISCUSSION. 
From Table (3.1), the percentage performance of the new algorithm against other algorithms for 100% NOI and NOF 
are given in Table (3.2). 

 
Table 3.2:  Percentage Performance of the New Algorithm 

 
 
 
 
 
 
 
 
Furthermore, counting the best results in Table (3.1), we have found that from (20) best results for both NOI and NOF 
and for each test problem, we have (2) best results for BFGS; (7) best results for Oren; (3) best results for Al-Bayati 
and (8) best results  for the New algorithm. While for the NOF, we have (4) best results for Oren;  (12) best results for 
Al-Bayati and (4) best results for the New algorithm. Arranging these results in a percentage Table (3.3), we have: 
 

Table 3.3:  Percentage Performance (Best Results) 
 

 
 
 
  
 
 
 
5. APPENDIX 
 
All the test functions used in this paper are from general literature:  
  
1. Powell function:  
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2. Rosen function:  
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3. Cubic function: 
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5. Wolfe function: 
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6. Non-diagonal function: 
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Tools BFGS Biggs Oren Al-Bayati New 

NOI 100% 99% 21% 22% 25% 

NOF 100% 98% 24% 17% 23% 

Tools  BFGS Biggs Oren Al-Bayati New 
NOI     10% ---- 35% 15% 40% 

NOF ---- ---- 20% 60% 20% 
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7. Wood function: 
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 8.     Miele function: 
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