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ABSTRACT

In this paper a new self-scaling Variable Metric (VM) method for solving a number of nonlinear unconstrained
optimization problems is proposed. In this work we have suggested a new formula for the VM-update with a new
Quasi-Newton (QN) like condition used for designing this update. Numerical experiments indicate that this new self-
scaling method is effective and superior to both BFGS and Biggs VM-methods, with respect to the number of function
evaluations (NOF) and the number of iterations (NOI).
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1. INTRODUCTION
The QN family of the VM formula which was introduced by (Broyden, 1970) is the most efficient technique for

minimizing non-linear functions f (X) by generating a sequence of points X, and matrices Hk as follows:
d =-H.g9,k=012,.. (1)

where (, isthe gradient of fat X, .
X =X, +,d,. @)

where the step-size oy satisfies Wolfe's conditions:

f(x, +ad, )< f(x,)+06,0.d] g, (3a)

g(xk+akdk)Tdk Z52d|<Tgk (3b)
1

0<81<E and 9, <9, <1.

Or at least it satisfies another equivalent condition:
f (X)) < f(Xk)_§3adegk (3¢)

for some predetermined J;, or more likely in theoretical analysis it is chosen to

min f(x, +,d,) (4)
so that
g-kr+ldk = O’

®)
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this is an exact line search (ELS). However, based on a new nonlinear conjugate gradient method investigated by
(Hagar and Zhang, 2005) and under some mild conditions, (Chen, 2012) proved it's global convergence property with

some sort of Wolfe type line search procedure. Now, having determined the point X,,, an improved inverse Hessian
matrix H,, is obtained by incorporating the information generated in the last iteration. The matrix H, , is given
by for the parameter ¢ € [0,1].

v,v, H TH
Hk+l=Hk+ $ < kTykyk : +¢rkrkT (69)
Vi Y Y Hi Vi

where
Ye = O — Ok (6b)
V, =X 4 — X, (6¢)
T
Vi Y HiYi
H, =1 (6e)

Different values of the scalar ¢ in (6) correspond to different member of QN-family. It will be noted that ¢ =0

corresponds to the original DFP algorithm introduced by (Davidon, 1959) and (Fletcher and Powell, 1963). In studying
the theoretical behavior of this technique it was shown by Fletcher and Powell that, on quadratic function with the

accurate line search defined in (5), the original (¢ = 0) formula generates conjugate directions and hence minimizes a
quadratic function in at most K iterations.

The theory of the VM-methods is beautiful and we have a fairly good understanding of their properties. One of the best
known VM-method is the BFGS method which was proposed independently by (Broyden, 1970); (Fletcher, 1970);

(Goldfarb, 1970) and (Shanno, 1970). It is a line search method. At the k™ iteration, a symmetric and positive H, is

given and a search direction is computed by (1) and (2). It has been found that it is best to implement BFGS formula

defined by formulae (6) where ¢ =1. Broyden had shown that if the search along all k conjugate directions is
1 1

necessary with analysis based on the error matrix R, =G 2HG 2 and determined a value of @ then the sequence

H «_converges steadily to G™.
1.1. Self-Scaling VM-Updates.
Many modifications have been applied on QN-methods in attempt to improve its efficiency. In this section, the

discussion will be on the self-scaling VM-algorithms developed by Oren (1974). Oren's formula can be written for
the parameter ¢ :

H.y vy H v,V
Hk+1:[Hk_%+¢rkrkT]nk+ $ . (72)
K A Y Vi Y
where
Vi Vi
p=1land n, =———— (7b)
‘ yIHkyk

The formula (7) is known as self-scaling VM-method. Clearly when 77, =1, formula (7) reduces to Broyden’s class
update defined in (6). Oren's update (7) processes the following properties for a quadratic function:

(@ If a, minimizes f(Xk —aHkgk) for all k, then the vector dk are mutually conjugate (with respect to G) and

hence the solution is obtained in at most n iterations.
1 1

(b) The condition number of the matrix R, = G2H, G? is strictly monotonically decreasing.
© 2013, IJMA. All Rights Reserved 185



Abbas Y. Al Bayati1 * and Sabah A. Mohamedz/A New Self-Scaling Variable Metric Algorithm for Nonlinear Optimization/
IUMA- 4(5), May-2013.

(c) If ar, =1 forall k, then the algorithm convergent" two- step super linearly", i.e.
||Xk+l -X

|im—min|| =0.
R LR

The proofs of these properties can be found in Oren (1974). Another self-scaling VM-update had been investigated by
(Biggs, 1973):

T T

Hk+l:Hk_M+¢rkrkT+tk(V!;Vk) (8a)
Y Hie i Vi Y

p=land t = (V; yk)/(4vggk+1+zvggk —6(f(x.)— f(X.1)) (8b)

Al-Bayati found another interesting family of VM-updates by further scaling of Biggs and Oren families of VM-
updates with a scalar:

1
¢=1; o, :77— and t, =1 (Al-Bayati, 1991) (9a)
k
So that the updating formula becomes:
1 yiH. Yy
Hk+1:Hk+WKO'k+I§/T—;k ViVie =V Vi Hie = Hy v ()
k Jk k Jk

1.2. Some other Scaling Factors

(Luksan and VIcek, 1995) in their contribution, proposed an extremely simple scaling strategy which considerably
decreases number of function evaluations if VM-methods from the (Broyden, 1970) class are used for unconstrained
minimization of functions with number of variables not extremely small. They deal with the BFGS method, since
scaling of other VM-methods has very similar properties. After describing their scaling strategy, they compare six
scaling techniques, using an extensive collection of test problems, and they presented some useful conclusions.

Recently, (Bin Embong, et al, 2011) proposed a new self-scaling VM-method in which the smallest eigenvalue of the
Hessian approximation A, was proposed as an alternative scaling factor of initial scaling on H;. An improvement
over unscaled BFGS is achieved, as for most of the cases, of their trails, the number of iterations are reduced. They
suggested further investigation by using an alternative scaling factor, A, on the other types of QN-methods. The

relationship between the smallest eigenvalue of Hessian approximation and the optimal step-size was also of the
interest in their future research, triggering the possibility of using eigenvalue as a new step-size in the QN-methods.

Replacing step-size, & with the smallest eigenvalue of H, , yields:

T T
H1={Ho—%+¢rkr[}io+v$vk (10)
Y Fo Y Vie i

where I, is a vector defined in (6d). As proposed by Shanno and Phua (1978) this update is also an initial scaling on
the Hessian approximation. After the initial iteration, the Hessian approximation is never rescaled.

2. ANEW SELF-SCALING VM-METHOD
In this section a new formula for a self scaling VM-method is presented. If H .1 1S to be viewed as an approximation

to G_l, it is natural to require that:

H Yk = Vi 11)

which is called the exact QN-condition. For the new method we have investigated a new expression for the QN-
condition as follows : let for a weak QN-like condition:

H.y, =&V (12a)
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and let for the actual QN- like condition:

Hia Ve = 7V (12b)
where
En e >0 (12¢)
Then we get the following relationship from (11) and (12):
Y
He, =-“H, (13)
S
This implies that:
M = 7_k (14)
H &
These implies that the condition number
R(H)=7r1&. (15)
Therefore, to compute the new formula, y, , it may be chosen so that, from (12):
HiaYe =V (e + &) —Hye Y (16)

Now multiplying (16) by yk’l and multiplying and dividing the first and second terms of right hand side of equation
(16) by V, and Y, respectively, yields:
_ (7 + &V Ve _ H, Y Yk

H.. = = @17
Yi Vi Y Yk
Equation (17) can be further simplified using equation (11) as follows:
H 'H V.V,
Hk+1:Hk_ kTykyk <+ k ka (18)
Y Hi Vi Y Vi
Equation (18) is a scaled DFP method. Now taking ¢ = O in (7) yields:
Hov Ve Hiy | Vi
He ={H, - T .+ T (19)
Y Hi Vi Y Vi
Multiplying (19) by (1/ 77, ) and comparing with (18) we get:
T
H
y. = Yk ) k Yk (20)
Vk yk
which is the new parameter for the self-scaling DFP-algorithm. Certainly, it satisfies the new QN-like condition.
2.1. Convergence Property of the New Proposed Method.
Theorem (2.1): assume that f (X) be a quadratic function defined by:
1
f (X) =EXTGX+bTX (21)
and the line searches are exact. If H, is any symmetric positive definite matrix and H /%, is a new VM-formula
defined by:
1
HIT = Hy 4 () = (g HO) = (Hy ) 22)

k Yk
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where y, is a positive scalar defined by (20); denoting the new values by (*), then the search directions

d. . =-H *g* are identical to the (Hestenes and Stiefel, 1952) Conjugate Gradient (CG) direction déG defined by:

des ==9" +(yx 9 /ygd,)d, for k1 (23)

Proof: the update (22) can be written as:

H:ew =H, _kaIHk/Vka _HkYkVI /VIYk + 7k (VkVI /ngk)

Now usingd ., =—H"g", yields
oo = =H @+ (Y H @™ /vy Vi + () H YD Y =70 (Ve 9 ) (Ve vi)vi

Using the property VI g* =0, for exact line searches:
==H, 9" +(y H, 9™/ yev v, (24)
This is the preconditioned Hestenes and Stiefel CG-method. Hence for a positive definite matrix H, , the vector g*

can be substituted for H, g~ by using the following property: H,.,g" =H,g", forall 0<i<k<n (see Al-
Bayati, 1991).

Orow ==9" + (Ve 9 1YV, )V, (25)

We also know that d;FP and déG are identical; for the proof of this fact see (Nazareth , 1979). Hence d:ew is

identical to d;FP with ELS and equation (23) becomes:
Qrow ==0 + (¥4 9 /Yy deg)dee =dgg- (26)
Hence, the proof is complete.

2.2. New Algorithm.

Step (1): Initialize X,, H, =1,£=10" k=1

Step (2): Set d, =—H, 9,

Step (3): Set X,,, =X, + akdk ; «, isoptimal step-size determined by the cubic Interpolation Uni-model line

search.
Step(4): If the stopping criterion is satisfied, stop; otherwise

Step (5): Set V, =X, — X and Y, =0, — 0,

1
Step (6): Compute H,%) = H, "‘T—[VkaVI -V, ¥y H, —H,y,v, ]; 7\ s defined by (20)
Vi ¥
Step (7): Set K =Kk +1 and go to Step (2).

3. NUMERICAL RESULTS
Ten well-known test functions (given in the Appendix) with two different dimensions, are tested in the range

(100 £ n <£1000). The Programs are written in Fortran 90 language and for all cases the stopping criterion is taken
to be:

{||g k+1|| <1070r (either NOI exceeds 500 or NOF exceeds 1000)} (24)

The line search routine used is the cubic interpolation which uses function and gradient values and it is an adaptation of
the routine published by (Bunday, 1984). Our numerical results are given in the Tables (3.1); (3.2) and (3.3) and
specifically quoting the number of function calls (NOF) and the number of iterations (NOI). Experimental results in
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Table (3.1) confirms that the new algorithm is superior to both standard BFGS and Biggs algorithms. Table (3.2)
confirms that the improvement of the new algorithm against the others; namely there are (75-77)% (NOI-NOF)
improvements comparing with BFGS. Also, there are (77-81)% (NOI-NOF) improvements comparing with Biggs
algorithm. However, Oren and Al-Bayati algorithms are beat the new algorithm in about (4-6)% (NOI-NOF) only.
Finally, we have found from (20) best results (indicated in Table (3.1)) that the New algorithm has (40)% NOI best
results and (20)% NOF best results. This indicates that self-scaling plays a good rule in the theory of VM-updates.

Table 3.1: Comparisons of Different VM algorithms

Test Functions

POWELL

BFGS

Biggs

Oren

Al-Bayati

New

NOI (NOF)

42(117)

NOI (NOF)

85(225)

NOI (NOF)

35(121)

NOI (NOF)

45(93)

NOI (NOF)

55(120)

(3,-1,0,1,...)

44(113)

108(283)

37(122)

51(106)

60(153)

WOOD

347(1001)

336(898)

20(68)

21(46)

28(61)

(-3,-1,-3,-1,)

259(1003)

247(1003)

20(68)

21(46)

30(65)

236(679)

295(752)

26(101)

23(57)

30(87)

448(1002)

316(801)

26(101)

23(57)

35(98)

107(268)

48(116)

23(90)

24(54)

31(101)

172(483)

113(283)

23(100)

24(54)

38(155)

Miele (1,2,2,2,....)

31(102)

31(99)

30(101)

32(88)

31(127)

45(147)

40(124)

44(151)

41(114)

32(129)

Cantrell

14(69)

26(144)

14(62)

16(105)

12(82)

(1,2,22,...))

14(69)

28(179)

14(62)

16(105)

13(99)

18(68)

24(192)

25(92)

22(57)

23(65)

18(68)

23(192)

25(92)

22(57)

23(65)

247(1001)

213(804)

11(57)

11(66)

10(65)

161(1003)

178(1003)

17(81)

15(91)

16(81)

6(17)

6(17)

6 (26)

6 (16)

5 (15)

6(17)

6(17)

6 (26)

6 (16)

5(15)

72(145)

74(149)

43(128)

42(85)

41(83)
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94(189)

2297(7561

96(193)

2294(7474)

48(141)

493(1790)

47(95)

507(1316)

46(93)

564(1759)
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4. DISCUSSION.
From Table (3.1), the percentage performance of the new algorithm against other algorithms for 100% NOI and NOF
are given in Table (3.2).

Table 3.2: Percentage Performance of the New Algorithm

Al-Bayati
22%
17%

Furthermore, counting the best results in Table (3.1), we have found that from (20) best results for both NOI and NOF
and for each test problem, we have (2) best results for BFGS; (7) best results for Oren; (3) best results for Al-Bayati
and (8) best results for the New algorithm. While for the NOF, we have (4) best results for Oren; (12) best results for
Al-Bayati and (4) best results for the New algorithm. Arranging these results in a percentage Table (3.3), we have:

Table 3.3: Percentage Performance (Best Results)

Al-Bayati
15%

60%

5. APPENDIX
All the test functions used in this paper are from general literature:

1. Powell function:
n/4

f= Z[(XM—S +10X4;5)* +5(Xg 5 =X )* + (Xgip = 2X44)* +10(X 5 = X4) ] % = (3-101..)"
i1
2. Rosen function:

f =100(x, —x7)* +(L—X,)%, X, =(-1.2,1.0)"

3. Cubic function:
f =100(x, —x7)? +(1-x,)*, X, =(-1.2,1.0)"

4. Shallow function:
n/2

f= Z(Xzzi—l - X2i)2 + (1_ Xzi_1)2 v Xo = (_2;---)T
i=1
5.  Wolfe function:
n-1
f= (_X1(3_ X1/2) + 2X2 _1)22(Xi—1 =X (3_ Xi/2) + 2Xi+l _1)2 + (Xn—l - X, (3_ anz) _1)2
i=1
X, =(-1L..)"

6. Non-diagonal function:

f = Y000, —x7)* +@L-%)], % = (-L..)"
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Wood function:
n/4

f= Z[lOO(XMfz - infs)z + (1_ X4i—3)2 + 90(X4i - in—l)z + (1_ X4i—1)2 +10'1(X4i—2 _1)2
i=1
+ (X, —1)?+19.8(X,, (X, =) X, =(-3,-1-3-L...)"

Miele function:
f=(e* -1)tan*(x, — x,) +100(x, — X;)°® + X" + (X, =1), x, = (1,2,2,2)"

Cantrell function:
f=("2—x,_,)" +100(X,;_, — X4;4)® + Atan((X,,_, — X, )" + X5 5,
Xy = (1,2,2,2)T

10. SUM function:

f (X) :_Zn:(xi —-i)*, %, =(.1.,...1.1)".
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