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ABSTRACT 

Equations of squared skewness and kurtosis as well as sharp inequalities between these quantities are derived for the 
normal bilateral gamma (NBG) convolution and the important normal variance gamma (NVG) sub-family. Application 
to portfolio selection with CARA utility is considered. With the NVG as test return distribution, it is analyzed whether a 
recent approximate ranking function with cubic mean-variance-skewness-kurtosis trade-off should be preferred to the 
original Gaussian ranking function with linear mean-variance trade-off or not. Based on an appropriate ranking 
efficiency measure and a simulation study, one notes, up to some exceptional cases, a systematic efficiency increase of 
the approximate ranking versus the Gaussian ranking. An empirical data analysis for eight different sets of returns 
from the Swiss Market and the Standard & Poors 500 stock indices, fitted to the NVG with the moment method, 
confirms the results from the simulation study. For this, full analytical solutions to the moment equations of the 
variance gamma and the normal variance gamma turn out to be very useful. 
 
Mathematics Subject Classification: 60E15, 62E15, 62P05, 62P20, 91B16, 91G10. 
 
Keywords: bilateral gamma, variance gamma, generalized gamma function, portfolio selection, ranking function, 
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1. INTRODUCTION 
The four and five parameter normal Laplace (NL) and generalized normal Laplace (GNL) are two recent extensions of 
the normal and Laplace distributions (e.g. Reed and Jorgensen (2004), Reed (2006)). They are quite flexible for 
modelling purposes and have been used successfully in a number of different scientific contexts (e.g. Reed (2007/11), 
Reed and Pewsey (2009), Hürlimann (2008a/09/12)). The GNL is a re-parameterization of the normal variance gamma 
(NVG), which itself is a sub-family of the six parameter normal bilateral gamma (NBG) convolution (equations (2.4)-
(2.6) in Section 2). The NVG contains the prominent and important variance gamma (VG), whose first version in 
financial research has been introduced by Madan and Seneta (1990) (see the Notes 2.2 for further information). The 
purpose of the present contribution is twofold. In the theoretical part, we aim a comprehensive understanding of the VG 
and NVG with regard to their skewness and (excess) kurtosis parameters. In particular, we are especially interested in 
their maximum domain of variation and the possibility to solve analytically the moment equations. The application part 
is directly related to the theoretical results. Due to a recent contribution by Di Pierro and Mosevich (2011), moment 
methods are particularly suited to analyze the portfolio selection problem within Financial Economics. For this we use 
equivalent ranking functions and define an appropriate ranking efficiency measure as explained in Appendix 1. Its 
practical use enables taking a decision about whether the recent approximate ranking function with cubic mean-
variance-skewness-kurtosis trade-off by Di Pierro and Mosevich (2011) should be preferred to the original Gaussian 
ranking function with linear mean-variance trade-off by Lévy and Markowitz (1979) or not. It is important to remark 
that the developed theoretical results are not limited to this single application. The efficient and robust modelling of 
non-normality is also used in risk management and has gained importance due to the sub-prime and Euro crises as well 
as the new regulations in the finance industry like Basel III and Solvency II. A more detailed account of the theoretical 
and applied part follows. 
 
Section 2 starts the theoretical part with a brief taxonomy of the NBG, which is defined as convolution of the normal 
and the bilateral gamma (BG). Two important members of the NBG are the VG and NVG, which play the main role in 
our application. A first main theoretical goal is a full analytical solution of the moment equations for the VG and NVG, 
which is presented in the Theorems 3.1 and 3.2 of Section 3. Preliminaries, which are required in the proofs, as well as 
important related results of independent interest, are summarized in the Appendix 2 and 3. For the BG and NBG we  
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derive equivalent scale parameterizations in terms of the kurtosis only, or in terms of the skewness and kurtosis 
(Theorems A2.1 and A2.4). We obtain sharp inequalities between skewness and kurtosis for them (Theorems A2.2 and 
A2.5). Moreover, parameterizations of the squared skewness and kurtosis parameters are displayed (Theorems A2.3 
and Theorem A2.6), their extremal values are determined and their occurrences within the BG and NBG are discussed. 
Appendix 3 compares the skewness and kurtosis limits of the BG and NBG with other distributions. We show that the 
feasible domain of skewness and kurtosis for the BG contains the domain of the normal inverse Gaussian (NIG), which 
itself contains the domain of the generalized skew Student t (GST). Similarly, the domain of the BG encompasses the 
domain of the generalized t (GT) of Hansen (1994) provided the kurtosis exceeds the value 2.774. The Appendix 4 is 
devoted to special function representations of the BG density. They are used to derive analytical formulas for the 
densities and distribution functions of the VG and NVG. These are the required computational tools for a numerical 
evaluation of the goodness-of-fit statistics encountered in the empirical data analysis of Section 4.2. 
 
The application to portfolio selection is presented in Section 4. It is based on the financial economics ranking efficiency 
measure defined and motivated in Appendix 1, Proposition A1.1. The investigation of this ranking efficiency measure 
for the NVG as test return distribution is illustrated at two different case studies. In the simulation study of Section 4.1 
our calculations are based on monthly and quarterly equity return benchmark data. In Section 4.2 real-world equity 
return data sets from the Swiss Market and Standard & Poors 500 indices are fitted to the NVG return distribution and 
their ranking efficiency measures are calculated and compared. In the simulation study, we note, up to some 
exceptional cases, a systematic efficiency increase of the approximate ranking versus the Gaussian ranking. The 
empirical data analysis of Section 4.2 confirms this behaviour. To conclude, our statistical analysis shows that the 
approximate ranking function with cubic mean-variance-skewness-kurtosis trade-off (A1.1) should be preferred to the 
original linear mean-variance trade-off (A1.2), at least for the NVG test return distribution and up to pathological cases, 
which are not expected to occur in most of the current financial markets. 
 
2.  TAXONOMY OF THE NORMAL BILATERAL GAMMA CONVOLUTION AND SUB-FAMILIES 
The normal bilateral gamma (NBG) random variable is defined to be the convolution of a normal and a bilateral 
gamma (BG) random variable. Following Küchler and Tappe (2008a/b)) for the BG, a six parameter NBG random 
variable takes the form 
 

( ) ∞<<∞−>≥⋅−⋅+⋅+= −− νβδαγτβδαγτυβατυ ,0,,,,0,,,,,,~2
1

1
1 NBGGGZX ,    (2.1) 

 
with  )1,0(~ NZ  (standard normal), )1,(~),1,(~ 21 δγ ΓΓ GG  (standardized gamma’s with scale parameter 1), 

and ( )21 ,, GGZ   independent. The NBG convolution includes a number of important and increasingly discussed 
families of distributions. We describe them by the choice of the parameters, specific naming and symbolic 
abbreviations (as usual  σµ,   denote the mean and standard deviation, and for simplicity symmetric versions of the 
defined families are omitted): 
 
Case 1:  0>τ  
 

( ) ( )βρδαργτυβαρτυ ,,,,,,,,, === NBGNVG       :  normal variance gamma (NVG) 

( ) ( )βαρρτυρβαρτυ ,,,,,,,, NVGGNL =         :  generalized normal Laplace (GNL) 

( )βαρτυβρτυ
α

,,,,lim),,,( NVGNG
∞→

=        :  left-tail normal gamma (ℓNG) 

( )βαρτυαρτυ
β

,,,,lim),,,( NVGrNG
∞→

=        :  right-tail normal gamma (rNG) 

( ) ( )βαρτυβατυ ,,1,,,,, == NVGNL        :  normal Laplace (NL) 

( ) ),1,,(,,,lim),,( βρτυβατυβτυ
α

===
∞→

NGNLNE    :  left-tail normal exponential (ℓNE) 

( ) ),1,,(,,,lim),,( αρτυβατυατυ
β

===
∞→

rNGNLrNE    :  right-tail normal exponential (rNE) 

 
Notes 2.1: The GNL distribution, which is a re-parameterization of the NVG, has been introduced in Reed (2006) 
(equations (2.4)-(2.6) below). Its generalization to the NBG has been mentioned in Lishamol and José (2009), Section 
2, without detailed study, however. The convolution of a normal and a skew Laplace, which defines the normal 
Laplace, has been introduced in Reed and Jorgensen (2004) and Reed (2006). It can also be viewed as a convolution of 
a normal and a bilateral exponential. Since the Laplace and normal distributions constitute Laplace’s first and second 
law of errors (e.g. Kotz et al. (2001), Chap. 1), it is worthy to consider a convolution of the two error distributions for 
modelling purposes. A statistical test to discriminate between both laws has been designed by Kundu (2005). A 
probabilistic genesis of the NL distribution has been provided by Reed and Jorgensen (2004). Such a convolution arises 
naturally if a Brownian motion with normally distributed initial state is observed at an exponentially distributed random 
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time. This so-called exponential time changed Brownian motion with initial random normal state has the following 
meaning in finance applications. If the logarithmic price of a financial asset is assumed to follow a Brownian motion, 
then its logarithmic price at the time of the first trade on a fixed future date could be expected to follow a distribution 
close to a normal Laplace (e.g. Reed (2006), p.5). Similarly, a standardized gamma time changed Brownian motion 
with initial random normal state leads to a normal variance gamma distribution. The limiting cases (rNG) and (rNE) are 
simply convolutions of a normal with a gamma (NG) and an exponential (NE) respectively. We note that the latter two 
distributions are popular within the context of biological statistics and informatics (e.g. Irizarry et al. (2003), Xie et al. 
(2009), Plancade et al. (2011)). Clearly, the limiting case  ∞→∞→ βα ,   of the normal Laplace is a normal 
distribution. From a broader classification viewpoint the NBG belongs to the class of extended generalized gamma 
convolutions (EGGC) introduced by Thorin (1978) and studied in particular by Bondesson (1992) (e.g. Küchler and 
Tappe (2008b), Section 3). 
 
Case 2:  0=τ  
 

( ) ( )βδαγτυβδαγυ ,,,,0,,,,, == NBGBG  :  bilateral gamma (BG) 

( ) ( )βρδαργυβαρυ ,,,,,,, === BGVG  :  variance gamma (VG) 

( ) ( )βαρτυβαρν ,,,0,,,, == GNLGskL  :  generalized skew Laplace (GskL) 

( ) ( )αβαρυαρυ == ,,,,, VGGL   :  generalized Laplace (GL) 

( ) ( )βαρυβαυ ,,1,,, ==VGskL   :  skew Laplace (skL) 
),,0,(),,( βρτυβρυ == NGG    :  left-tail gamma (ℓG) 
),,0,(),,( αρτυαρυ == rNGrG   :  right-tail gamma (rG) 

 
Notes 2.2: The BG appears in a lot of recent papers (e.g. Küchler and Tappe (2009), Kaishev (2010), Bellini and 
Mercuri (2012), etc.). The VG special case with equal shape parameters of the gamma distributions and without shift 
has been introduced in Madan and Seneta (1990) and extensively studied (e.g. Madan and Milne (1991), Madan et al. 
(1998), Madan (2001), Carr et al. (2002), Geman (2002), Fiorani (2004), Fu et al. (2006), Stein et al. (2007), Domenig 
and Vanini (2010), etc.). Clearly, as in the Notes 2.1, the generalized skew Laplace is the re-parameterization of the 
variance gamma given by ( ) ( )βαρυρβαρυ ,,,,,, VGGskL = . In Kotz et al. (2001), Chap.4, it is called a 
generalized Laplace, and alternatively a Bessel function distribution and a variance-gamma distribution. The first 
terminology is unfortunate because the here defined generalized Laplace (GL) has been studied previously by Mathai 
(1993a/b) and Koponen (1995). We prefer the new naming because the GskL is a generalization of the skew Laplace. 
Though omitted, some symmetric versions of these families are very important, as for example the symmetric Laplace  

( ) ( )αβσαµυσµ ==== − ,2,, 1skLsL . Special instances of the BG have also been used earlier in actuarial 

science. For example, the generalized Laplace  ( )αρυ ,,0=GL   with vanishing location  0=υ   has been 
considered in Chan (1998), p.89. 
 
The cumulant generating function (cgf) of the NBG random variable is given by 
 

[ ]{ } αβ
β
βδ

α
αγτυ <<−









+
⋅+









−
⋅++⋅== t

tt
tteEtC tX

X ,lnlnln)( 22
2
1 . (2.2) 

 
From it one obtains the mean, variance and higher order cumulants as 
 

( ) .2,)1()!1()0(
,,

)(

222211

>⋅−+⋅−===

⋅+⋅+=⋅−⋅+=
−−

−−−−

rrtC rrrr
Xr βδαγκ

βδαγτσβδαγυµ
   (2.3) 

 
The BG and NBG satisfy a number of important properties. For example, the BG has a smooth (differentiable) 
unimodal probability density function (pdf) (e.g. Küchler and Tappe (2008a)). Since the NBG belongs to the EGGC 
class (Notes 2.1), it is automatically self-decomposable, and henceforth unimodal (Bondesson (1992), Sato (1999), Cor. 
15.11). In case  δγβα == ,   the pdf is symmetric and bell-shaped taking a position between the normal and the 

symmetric generalized Laplace ( ) ( )αρµυαρµ ,,,, == GLsGL . A characterization of the sGL, which directly 
generalizes the symmetric Laplace, is presented in Corollary A2.1. The parameters  βα ,   determine the behaviour in 
the left and right tail respectively. The NBG family is infinitely divisible and closed under linear transformation. It is in 
general not closed under convolution but a lot of sub-families share this property (e.g. the GNL). 
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The cgf of a GNL random variable ( )βαρτυ ,,,,~ GNLY , is related to the normal Laplace special case  

1== δγ   of the cgf (2.2) as follows: 

)()( tCtC XY ⋅= ρ .     (2.4) 
 
From this relationship one sees without difficulty that the GNL random variable takes the form 
 

2
1

1
1 GGZY ⋅−⋅+⋅⋅+= −− βαρτρυ ,   (2.5) 

 
where  21 ,, GGZ   are independent with  )1,0(~ NZ , and  21 , GG   are standardized gamma with scale parameter 

1 and shape parameter  ρ , that is with pdf  zezzg −−−Γ= 11)()( ρρ . The mean, variance and higher order cumulants 
are similarly to (2.3) given by 
 

( ) ( )
( ) .2,)1()!1()0(

,,
)(

222211

>−+−⋅===

++⋅=−+⋅=
−−

−−−−

rrtC rrrr
Yr βαρκ

βατρσβαυρµ
  (2.6) 

 
3.  SOLVING THE MOMENT EQUATIONS FOR THE VG AND NVG 
For mathematical analysis of the moment equations for the bilateral gamma  ( )βδαγυ ,,,,BG   it is convenient to 
rescale the scale parameters with the standard deviation using the transformations 
 

0,,)(,)( 11 ≥⋅=⋅= −− baba σβσα .   (3.1) 
 
The parameter set  ),( ba   is called scale parameter set and the parameters themselves scale parameters. Instead of the 
skewness and (excess) kurtosis parameters KS , , we use the proportionally scaled quantities 
 

,, 6
1

2
1 KdSc ==      (3.2) 

 
such that the moment equations can be rewritten as 
 

.,
,1,)(

4433

22

dbacba
baba

=⋅+⋅=⋅−⋅

=⋅+⋅=⋅−⋅+

δγδγ

δγµσδγυ
   (3.3) 

 
By abuse of notation the BG family and sub-families are rewritten in the changed parameter space as  

( )baBG ,,,, δγυ , ( )baVG ,,,ρυ , etc. A main goal is a full analytical solution of the moment equations for the VG 
and NVG distributions. Preliminaries, which are required in the proofs, as well as important related results of 
independent interest, are summarized in the Appendix 2 and 3. 
 
Theorem 3.1: (VG moment equations). Given is a feasible skewness and kurtosis pair  ),( KS   satisfying the 

inequality KS 3
22 ≤ . Then, there exists a unique and explicitly given variance gamma distribution ( )baVG ,,,ρυ , 

which solves the equation of skewness and kurtosis. Its parameters are fully analytical and specified as follows. 
 
Case 1:  3)1(31 21 ≤−=< − SKω  
 

).)()(1(27)(,)1(27)(

,)()()()(
3
1,)2(3

,1)sgn(,
2

1,
2

1,)(

33

3312

2

ωωψωωωωωψ

ωωωψωωψρ
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ρ
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Case 2:  3

2211 =⇔= − SKω  

1 1( ) , , , sgn( ),
2 2

b a a b Sξ ξυ µ ρ σ ξ
ρ ρ
+ −

= + − = = = 16.Kρ −=   (3.5) 

 
Proof: First of all, setting  Kw ρ=   one observes that solving the equation in (A2.9) is equivalent to finding a 

solution  [ ] 0,6,3),,( >∈ ρρ ww , to the pair of equations 
 

KwSww ρρ ==





 −

−− ,
3

62 2
3

. 

 
With the change of variables  )2(3 2Xw −=   this task is equivalent to finding a solution  [ ] )0,1,0( >∈ ρX   to 
the system of 2 polynomial equations in 2 unknowns 
 

KXSXX ρρ =−=−− )2(3,34 2232 . 
 
Inserting the second into the first equation, it suffices to solve for given  [ ]3,1)1(3 21 ∈−= − SKω   the cubic 

equation  0)1(223 =−−+ ωωXX . If  1=ω   (Case 2) the equation has a double zero at  0=X . Otherwise, the 
unique solution follows from Cardano’s formula. The parameters are found through inspection of Theorem A2.1.  ◊ 
 
Remark 3.1: The existence of a unique solution has also been shown in Ghysels and Wang (2011), Proposition 2.4. 
The new derivation is simpler and yields a closed-form solution. 
 
To investigate the moment equations for the normal bilateral gamma ( )βδαγτυ ,,,,,NBG   let us rescale the 
parameters using (3.1) and (3.2) and set further 
 

 ( ]1,0,1 2 ∈−⋅= ssστ .     (3.6) 
 
With this transformation the moment equations of the NBG can be written as 
 

2 2 2 3 3 4 4( ) , , , .a b a b s a b c a b dυ γ δ σ µ γ δ γ δ γ δ+ ⋅ − ⋅ = ⋅ + ⋅ = ⋅ − ⋅ = ⋅ + ⋅ =   (3.7) 
 
Interpreted in terms of (3.7), the BG moment equations (3.3) can be viewed as the degenerate case  1=s   of the pencil 
of ellipses  222 sba =⋅+⋅ δγ ,  ( ]1,0∈s . From a mathematical point of view the analysis can be reduced to that of 
the BG using the iterated scale transformation 
 

( ]1,0,,, 43 ∈==== ssddsccsbbsaa .   (3.8) 
 
Applied to (3.7) one obtains the two-fold scaled equations of variance, skewness and kurtosis 
 

.,,1 443322 dbacbaba =⋅+⋅=⋅−⋅=⋅+⋅ δγδγδγ   (3.9) 
 
The NBG system (3.9) has the same form as the BG system (3.3). Henceforth, a great part of the NBG analysis directly 
follows from the BG case (see Appendix 2 for details). Theorem 3.1 generalizes as follows to the NVG family. 
 
Theorem 3.2: (NVG moment equations). Given is a skewness and kurtosis pair  ),( KS   satisfying the 

inequality KS 3
22 ≤ . For each  ]1,/[ 2

3 KSs ⋅∈   there exists a unique and explicitly given normal variance 

gamma distribution ( )basNVG ,,,1, 2 ρστυ −= , which solves the equation of skewness and kurtosis. Its 
parameters are fully analytical and specified as follows: 
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Case 1:  3)1(31 212 ≤−=< −− SKsω  

).)()(1(27)(,)1(27)(
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3
1,)2(3

,1)sgn(,
2
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2

1,)(
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33142
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−
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  (3.10) 

 
Case 2:  2

3
2211 sSK =⇔= −ω  

.6),sgn(,
2

1,
2

1,)( 14 −==
−

=
+

=−+= KsSsbsaab ρξ
ρ
ξ

ρ
ξσρµυ      (3.11) 

 
Proof:  First of all, setting  Kws ρ=4   one observes that solving the equation in (A2.15) is equivalent to finding a 

solution  [ ] 0,6,3),,( >∈ ρρ ww , to the pair of equations 
 

KswSsww ρρ 426
3

,
3

62 −− ==





 −

−− . 

 
With the change of variables  )2(3 2Xw −=   this task is equivalent to finding a solution  [ ] )0,1,0( >∈ ρX   to 
the system of 2 polynomial equations in 2 unknowns 
 

KsXSsXX ρρ 422632 )2(3,34 −− =−=−− .     (3.12) 
 
Inserting the second into the first equation it suffices to solve for given  [ ]3,1)1(3 212 ∈−= −− SKsω   the cubic 

equation  0)1(223 =−−+ ωωXX . We conclude as in the proof of Theorem 3.1, where the parameters are found 
through inspection of Theorem A2.4. ◊ 
 
4.  APPLICATION TO THE RANKING EFFICIENCY IN PORTFOLIO SELECTION 
 
The examination of the ranking efficiency measure (A1.8) with the NVG as test return distribution is illustrated at two 
different case studies. In the simulation study of Section 4.1 our calculations are based on the monthly and quarterly 
equity return benchmark data provided on the website of Prof. Kenneth French over the period from July 1926 to 
December 2010 and also used in Skoulakis (2012), Section 3. In Section 4.2 real-world equity return data sets from the 
Swiss Market and Standard & Poors 500 indices are fitted to the NVG return distribution and their ranking efficiency 
measures are calculated and compared. 
 
4.1. Simulation of ranking efficiency 
Computational evaluation of (A1.8) requires formulas for the NVG test ranking function  )(*

NVGpR   and the 

approximate ranking function  )(* pR A . The skewness and kurtosis parameters are those of the NVG distribution. 
According to (A1.1) and Theorem A2.6 one has 
 

[ ] ( ]1,0,6,3,
3

62

,,
72062

)(

61
3

2

41
43322

*

∈∈⋅⋅

















 −

−−=

⋅⋅=−+−=

−

−

swswwS

swKKmSmmpR A

ρ

ρσσσµ

   (4.1) 

 
The relationship  ( ))(1)(*

NVG
U

NVG pRCERpR +=  (equation (A1.1) and CER definition) for a CARA utility 

function  ( ) )exp( mxxU −−=   is determined by 
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{ } ( )( )

ρ

βα
αβτν 








−+

+−−=
mm

mmpR NVG
U

22
2
1exp)( .   (4.2) 

 
With the transformation  11 )(,)( −− ⋅=⋅= σβσα ba   it follows that 
 

              ( )( ){ }σσρτν mbma
m

mmpRpR NVG
U

NVG −+⋅+−=−−= 11ln/))(ln()( 2
2
1

* .                           (4.3) 

 
 
Moreover, using (3.10) one gets further 
 

( )( ){ }2 21
* 2( ) ( ) (1 ) ln 1 1 ,NVGR p b a m s ma mb

m
ρµ ρ σ σ σ σ= + − − − + ⋅ + −   (4.4) 

[ ] ( ]1 1 3, , sgn( ) , 3,6 , 0,1 .
2 2 3

wa s b s S w sξ ξ ξ
ρ ρ
+ + −

= = = ∈ ∈  

 
In the first case study, the equity return benchmark data comprises two sets of monthly and quarterly returns, whose 
percentage mean and standard deviation are chosen as follows: 
 
monthly data:  { })9,5.2(),5.7,2(),6,5.1(),5.4,1(),( ∈σµ  
 
quarterly data:  { })15,5.7(),5.12,6(),10,5.4(),5.7,3(),( ∈σµ  
 
The qualitative impact of the skewness and kurtosis parameters is analyzed by varying the range of the parameters  

),,( wsρ   and the sign of skewness in (4.1) and (4.4). The absolute risk aversion is first fixed at  2=m , and the 
effect of its variation is mentioned later on. Numerical calculations reveal a systematic efficiency increase of the 
approximate ranking versus the Gaussian ranking by arbitrary sign of skewness over divers range of parameter values, 
e.g.  ( ] 2.3,1,001.0,12.0 ≥∈≥ wsρ , for the monthly returns, and ( ] 2.3,1,001.0,35.0 ≥∈≥ wsρ , for the 
quarterly returns. In case the NVG is close to a symmetric distribution, i.e.  0≈S   for  3≈w ,  an efficiency 
decrease occurs. In general, the efficiency increase decreases with increasing values of  ),( σµ , which implies lower 
bounds for  ρ . It is possible to obtain parameter constellations for which the efficiency decreases with respect to the 

Gaussian ranking. For example, with the monthly returns { }%)9%,5.2(%),5.7%,2((),( ∈σµ ,  

[ ] [ ]0,2,6,3,2.0,0016.0 −∈∈=== SKwsρ ,  the efficiency measure is always negative. To reject 
pathological cases with negative efficiency, a deeper statistical analysis of skewness and kurtosis is needed. The 
empirical data analysis of Section 4.2 suggests the approximate parameters  %5.4%,5.0 == σµ   for the monthly 
returns of the Swiss Market and Standard & Poors 500 indices over periods of 24 and 63 years. The parameters  ),( sρ   

vary in the intervals [ ] [ ]1,7.0,5.2,4.0 ∈∈ sρ . With a negative skewness and parameters  [ ]6,1.3∈w   the 
efficiency measures are always positive and exceed even 70%, as displayed in Graph 4.1. Finally, the ranking 
efficiency turns out to be a monotone decreasing function of the level of risk aversion (e.g. stronger effect for  1=m   
and weaker one for  4=m ). 
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Graph 4.1:  NVG efficiency measure for monthly returns 
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4.2. Ranking efficiency for two stock market indices 
 
In contrast to the benchmark data of Section 4.1, we consider now some stock market indices for which additionally the 
skewness and kurtosis can be estimated. Return observations stem from the following eight different Swiss Market 
(SMI) and Standard & Poors 500 (SP500) data sets: 
 
SMI 3Y/1D:    758 historic daily closing prices over 3 years from 04.01.2010 to 28.12.2012  
SMI 24Y/1D:  6030 historic daily closing prices over 12 years from 03.01.1989 to 28.12.2012  
SMI 24Y/1M:  288 historic end of month prices over 24 years from Jan. 1989 to Dec. 2012 
SP500 3Y/1D: 754 historic daily closing prices over 3 years from 04.01.2010 to 31.12.2012 
SP500 24Y/1D: 6049 historic daily closing prices over 12 years from 03.01.1989 to 31.12.2012  
SP500 24Y/1M:  288 historic end of month prices over 24 years from Jan. 1989 to Dec. 2012 
SP500 63Y/1D: 15851 historic daily closing prices over 63 years from 03.01.1950 to 31.12.2012  
SP500 63Y/1M:  756 historic end of month prices over 63 years from Jan. 1950 to Dec. 2012 
 
These data sets are typical as they contain short to medium high volatile periods (recent 3 years), long term periods (24 
years) as well as very long term periods (63 years). The SMI exists only for 24.5 years. Hence, the SMI cannot be 
compared with the SP500 for longer periods. 
 
The observed sample logarithmic returns of stock-market indices are negatively skewed and have a much higher excess 
kurtosis than is allowed by a normal distribution, at least over shorter daily and even monthly periods. A simple test of 
rejection of the normal distribution is the Bera-Jarque (1987) statistic defined by 
 











+⋅=

24

ˆ

6

ˆ 2KSnJB ,     (4.5) 

where  n   is the sample size, and  KS ˆ,ˆ   are estimates of the skewness and (excess) kurtosis. This statistic is 

asymptotically  2
2χ   distributed, and has a critical value of 5.99 for a 95% confidence level. As seen from Table 4.2 

below, the JB statistic is far beyond the critical value except for the monthly returns over 24 years (relatively small 
sample size of 288 observations). Therefore, the normal distribution is retained for comparison for the 3 monthly return 
data sets only. The VG and its NVG extension are fitted to the data following the moment method described in the 
Theorems 3.1 and 3.2. If the empirical counterparts of the domains of variation of the skewness and kurtosis are big 
enough, a unique solution is obtained, which is the case here. 
 
To do so, the mean, variance, skewness and kurtosis, which are used in the moment method, must be estimated. We use 
the well-known k-statistics of Fisher (1928), which provide unbiased estimates of the cumulants as follows (assume  

3>n ): 
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 (4.6) 

 
where  ,,...,1, niri = are the sample logarithmic returns (Table 4.2 lists the obtained values). 
 
The goodness-of-fit (GoF) of the chosen estimation method is based on statistics, which measure the difference between 
the empirical distribution function  )(xFn   and the fitted distribution function  )(xF . We use the Cramér-von Mises 
family of statistics defined by (e.g. D’Agostino and Stephens (1986), Cizek et al. (2005) and Burnecki et al. (2010)) 
 

[ ] )()()()( 2 xFdxwxFxFnT n∫
∞

∞−

−⋅= ,    (4.7) 

where  )(xw   is a suitable weighting function. If  1)( =xw   one obtains the  2W   Cramér-von Mises statistic 

(Cramér (1928), p.145-47, von Mises (1931), p.316-35). If  [ ])()(/1)( xFxFxw =   one gets the  2A   Anderson-
Darling statistic (Anderson and Darling (1952)). Consider the order statistics of the return data such that  

nrrr ≤≤≤ ...21   and let  ( ) ,,...,1,ˆ nirF i = be the fitted values of the distribution function. Then one has the 
formulas 

( ) ( ) ( ){ }∑ ⋅⋅
−

−−=∑ 
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.  (4.8) 

 
 

The fitted values  ( )irF̂   are obtained numerically by integration of the expression (A4.21) for the VG, and by 

evaluation of (A4.28) for the NVG. The GoF statistic  2A   yields one of the most powerful test if the fitted distribution 
departs from the true distribution in the tails (e.g. D’Agostino and Stephens (1986)), and is recommended in this 
situation. Now, the observed sample logarithmic return data is negatively skewed and has a much higher kurtosis than 
is allowed by a normal distribution, which indicates that the fit in the tails matters and justifies the use of the GoF 
statistics (4.8). Needless to say, the moment method is only a starting point for improved GoF estimation methods, 
which include maximum likelihood estimation (MLE), minimum chi-square estimation, and miminization of the GoF 
statistics (4.8). However, such a more complex data analysis, undertaken by Hürlimann (2012) in another context, is 
beyond the scope of the present paper. 
 
Fitting results are summarized and compared in the Table 4.1 below. Some comments are in order. Except for the SMI 
24Y/1M data set, the NVG always provides the smallest GoF statistics. Sometimes the “best” fitted NVG is rather close 
to the VG (SP500 3Y/1D), close to VG (SMI 3Y/1D and SP500 24Y/1M), but also clearly departs from a VG (SMI 
24Y/1D, SP500 24Y/1D, SP500 63Y/1D and SP500 63Y/1M). Even if the normal distribution is not rejected by the JB 
test, its fit is rather poor compared to the “best” NVG fit. 
 
Since the NVG fits well the data for our purpose, no attempt has been made to compare the results with other test return 
distributions. Two classical competing analytically tractable choices are the normal inverse Gaussian and the 
generalized skew Student t (e.g. Aas and Haff (2006)), which have both been used successfully in Hürlimann (2009). 
To these models one can add another generalization of the Student t distribution by Hansen (1994) that has been studied 
by Jondeau and Rockinger (2003). Some comparisons about the feasible skewness and kurtosis limiting boundaries of 
these distributions are found in Appendix 3. Further interesting related choices include alternative skew Laplace 
versions and their extensions by Yu and Zhang (2005) and Wichitaksorn et al. (2012). The first authors construct the 
skew Laplace by combining two exponentials while the second author obtains it through a mixture of two scaled 
normal distributions. Another related family, which should be compared to the NVG, is the two-piece normal-Laplace 
family considered by Ardalan et al. (2012). Finally, it is important to mention that other methods and distributions are 
also able to capture the non-normality of return data, among others GARCH type models with a skewed t distribution, 
jump-diffusion models, generalized hyperbolic, stable and tempered stable distributions, as well as extreme value 
theory. 
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Table 4.1:  Parameter estimates and GoF statistics for the NVG family 
 

data set
s υ τ ρ α β A² W²

SMI 3Y/1D 1 0.00079 0 0.85686 137.59 122.70 1.01399 0.16468
0.93 0.00069 0.00372 0.64228 128.73 113.79 0.37267 0.04489

0.915 0.00067 0.00408 0.60214 126.83 111.88 0.35449 0.04407
0.90 0.00065 0.00441 0.56391 124.94 109.97 0.35799 0.04714

SP500 3Y/1D 1 0.00170 0 0.83167 122.17 101.43 0.40667 0.09112
0.995 0.00168 0.00117 0.81544 121.65 100.90 0.34676 0.07623
0.985 0.00166 0.00202 0.78370 120.61 99.83 0.32735 0.07074

0.98 0.00164 0.00233 0.76818 120.10 99.30 0.34026 0.07326
SMI 24Y/1D 1 0.00075 0 0.42263 81.135 74.047 83.613 16.359

0.83 0.00060 0.00663 0.20133 68.181 61.048 1.327 0.215
0.82 0.00059 0.00680 0.19186 67.422 60.285 1.232 0.210
0.81 0.00058 0.00697 0.18273 66.662 59.522 1.270 0.227

SP500 24Y/1D 1 0.00062 0 0.34901 74.756 69.580 94.937 18.683
0.88 0.00054 0.00551 0.20961 66.186 60.997 3.252 0.421
0.87 0.00054 0.00572 0.20028 65.473 60.282 2.992 0.415
0.85 0.00052 0.00611 0.18254 64.046 58.853 3.153 0.519

SP500 63Y/1D 1 0.00066 0 0.11118 52.59512 44.65563 2185.79 354.64
0.77 0.00051 0.00625 0.03981 42.16243 33.96995 25.44 1.83
0.76 0.00050 0.00637 0.03782 41.71793 33.50838 23.34 1.76
0.75 0.00050 0.00648 0.03592 41.27453 33.04714 22.05 1.81
0.74 0.00049 0.00659 0.03408 40.83230 32.58625 21.31 1.95
0.73 0.00049 0.00669 0.03232 40.39129 32.12571 21.32 2.18

SMI 24Y/1M 1 0.03248 0 2.15686 62.759 35.041 0.32359 0.04054
0.99 0.03214 0.00677 2.08393 62.778 34.712 0.33634 0.04248
0.98 0.03180 0.00955 2.01310 62.819 34.384 0.34940 0.04451
0.95 0.03083 0.01499 1.81285 63.102 33.408 0.38922 0.05094

2.60679 0.43223
SP500 24Y/1M 1 0.03468 0 2.48138 78.840 40.882 0.41544 0.07644

0.93 0.03267 0.01595 1.96388 81.799 38.342 0.39113 0.07145
0.92 0.03243 0.01701 1.89885 82.520 37.991 0.39079 0.07141
0.91 0.03221 0.018 1.83596 83.348 37.642 0.39105 0.07150

2.19806 0.37436
SP500 63Y/1M 1 0.01915 0 1.40715 50.036 33.985 1.38726 0.26121

0.77 0.01478 0.02692 0.54708 45.817 26.233 0.25640 0.03680
0.76 0.01462 0.02742 0.52287 45.785 25.909 0.25430 0.03586
0.74 0.01433 0.02838 0.47714 45.798 25.266 0.25636 0.03507
0.73 0.01419 0.02884 0.45558 45.848 24.947 0.26031 0.03518

3.26036 0.51397

normal distribution

normal distribution

normal distribution

GoF statisticsparameter estimates

 
 
Let us now return to the main application, which is the evaluation of the efficiency measure (A1.8). Since the chosen 
estimation method is the moment method, the approximate ranking function  )(* pR A   follows from (4.1) through 
direct insertion of the estimated paarameters. Moreover, to each solution (3.10)-(3.11) of the NVG moment problem, 
the corresponding test ranking function  )(*

NVGpR   is evaluated using formula (4.4). In this way the ranking 
efficiency measure is obtained. The numerical results of our case study are summarized in Table 4.2. We note a 
systematic efficiency increase of the approximate ranking for the NVG over the Lévy and Markowitz (1979) 

benchmark. For each feasible value  ]1,/[ 2
3 KSs ⋅∈   the efficiency increase is limited to a small range of 

variation. The maximum efficiency increase is here attained for the VG with  1=s   and the minimum for the NVG 

with  KSs /2
3⋅= . 
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Table 4.2:  NVG efficiency measures for SMI and SP500 data sets 
 

data set JB min  s
μ σ S K statistic |S|∙√(1.5/K) min max

SMI 3Y/1D 0.00004 0.01011 -0.26118 3.54668 364 0.17027 92.83657 93.35457
SP500 3Y/1D 0.00031 0.01169 -0.42731 3.72928 383 0.27100 94.78351 95.04308
SMI 24Y/1D 0.00026 0.01189 -0.29736 7.15740 12568 0.13613 83.64588 86.15996

SP500 24Y/1D 0.00027 0.01160 -0.25716 8.63988 18552 0.10715 76.13769 81.19789
SP500 63Y/1D 0.00028 0.00980 -1.03074 27.69192 503713 0.23989 85.1725 87.14109
SMI 24Y/1M 0.00530 0.04800 -0.74866 1.77381 1.8148 0.68846 94.14608 94.27808

SP500 24Y/1M 0.00546 0.04340 -0.76442 1.61037 -5.5531 0.73776 95.35316 95.42011
SP500 63Y/1M 0.00586 0.04220 -0.65537 2.42167 102 0.51579 91.77448 92.20746

unbiased estimates efficiency

 
 
Appendix 1:  Efficiency of portfolio selection ranking functions with CARA utility 
 
Modern portfolio theory is mainly based on the classical mean-variance approach by Markowitz (1952) and subjective 
choice based on utility theory (von Neumann and Morgenstern (1947), Nash (1950)). To restrain the general problem 
by leaving out portfolio construction one focusses on portfolio selection only. Given is a finite set of portfolios, each 
with its own return distribution  ( )xpp = , and a rational investor with utility function ( )xU , which is defined up to 
positive affine transformation. The portfolio selection problem consists to rank portfolios using the expected utility 

ranking function ∫= ∞
∞− dxxpxUpRU )()()( , or a function equivalent to it. Two ranking functions 1R  and 2R  are 

equivalent, written 21 ~ RR , if, and only if, there exists a monotone increasing function  ( )xh   such that 

)))(()( 12 pRhpR =   for all p . Though the effects of higher moments on portfolio theory have been analyzed since 
many years (e.g. Samuelson (1970), Prakash et al. (2001), Jondeau and Rockinger (2006), Briec et al. (2007), Cvitanic 
et al. (2008), Jurczencko et al. (2008), Kleniati and Rustem (2009), Cesari and D’adda (2010)), so far not many simple 
results of general validity have been derived. Among the most important utility functions in use, one finds the constant 
absolute (CARA) and constant relative (CRRA) risk averse forms by Arrow (1965/71) and Pratt (1964)), the hyperbolic 
absolute risk averse form by Merton (1971), and the flexible three parameter (FTP) form considered by Conniffe 
(2007). Di Pierro and Mosevich (2011) attempt to clarify this issue for a rational risk-averse investor with a CARA 
utility function ( ) )exp( mxxU CARA −−= , also called exponential utility. For portfolio selection without risk-free 
asset, and assuming finite moments, these authors derive through a simple Taylor series expansion the approximate 
ranking equivalence such that 

72062
)(/))(ln()(~)(

43322

**
KmSmmpRmpRpRpR A

UU CARACARA

σσσµ −+−=≈−−= ,     (A1.1)  

 
where the parameters  KS ,,,σµ   represent the mean, standard deviation, skewness and excess kurtosis of the 

portfolio return  p , and the approximation error is of order  )( 54σmO . For Gaussian distributed return  Gp   
equation (A1.1) reduces to the exact ranking function 

2
)(

2

*
σµ mpR G −= ,      (A1.2) 

 
due to Lévy and Markowitz (1979). It is important to ask whether the approximate ranking function (A1.1) with cubic 
mean-variance-skewness-kurtosis trade-off should be preferred to the original ranking function with linear mean-
variance trade-off (A1.2) or not. 
 
To answer this question we examine the efficiency increase/decrease obtained using  )(* pR A   instead of  )(*

GpR . 
For this, let  S   be an appropriate set of test return distributions, whose ranking functions  

mpRpR U /))(log()(* −−=   can be determined exactly or to an arbitrary level of accuracy for all  Sp∈ . A 

naive approach to efficiency consists to measure the distance between two portfolio returns  1p   and  2p   through the 
ranking distance 

)()(),( 2*1*21
* pRpRppD −= .    (A1.3) 
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Now, let  )(*

GpR , resp.  )(*
SpR , be the ranking functions with Gaussian return, called Gaussian ranking, resp. test 

return  Sp S ∈ , called test ranking, and let  )(* pR A   be an approximate ranking valid for all returns  p   in a large 
set  L   of portfolio return distributions with finite moments. Then, a ranking efficiency measure of the approximate 
ranking versus the Gaussian ranking, given a test return  Sp S ∈ , is described by the deviation of the distance 

measures  ),(* ppD S   and  ),(* ppD G , Lp∈∀ , relative to the distance  ),(* ppD G , in formula 
 

,,,1
)()(

)()(

),(
),(),(),(

**

**

*

**
* SpLp

pRpR

pRpR

ppD
ppDppDppE S

AG

AS

G

GS
G

S ∈∈∀−
−

−
=

−
=  (A1.4) 

 
which quantifies the efficiency increase (if positive) respectively decrease (if negative) of the approximate ranking 
versus the Gaussian ranking. A similar approach, which is valid for any utility function  ( )xU , consists to replace 
(A1.3) by the expected utility distance 

)()(),( 2121 pRpRppD UU
U −= .    (A1.5) 

 
Now, similarly to the above, consider the quantities 
 

)( G
U pR    : the expected utility with Gaussian return, or Gaussian utility 

)( S
U pR    : the expected utility with test return, or test utility 

)( pR A
U       : an approximation for the expected utility of returns  Lp∈ , or approximate utility 

 
Repeating the above explanation, one obtains the expected utility efficiency measure 
 

SpLp
pRpR

pRpR
ppE S

A
U

G
U

A
U

S
UGU

S ∈∈∀−
−

−
= ,,1

)()(

)()(
),( .  (A1.6) 

 
Now, there is a well-known problem with the utility distance (A1.5). Since utility functions are only defined up to 
positive affine transformations, the naive distance (A1.5) is not appropriate (e.g. Lévy and Markowitz (1979), 
Hlawitschka (1994), etc.). A more meaningful approach must be considered (e.g. Kallbergaard and Ziemba (1979), 
Pulley (1983), etc.) and instead of expected utility the certainty equivalent return (CER) has been proposed as an 
alternative (e.g. Skoulakis (2012) for the CRRA utility or power utility used by Merton (1971)). 
 
Let  ( ) ( ) 1)()( 1 −= − pRUpRCER UU   be the CER associated to a utility function  ( )xU   with inverse  ( )xU 1− . 
Now, let us paraphrase the preceding construction. With the CER distance   

( ) ( ))()(),( 2121 pRCERpRCERppD UU
CER −= , and the CER quantities  ( ))( G

U pRCER , the Gaussian 

CER,  ( ))( S
U pRCER , the test CER,  and  ( ))( pRCER A

U , Lp∈ , an approximate CER, one obtains, similarly to 
(A1.4) and (A1.6), the CER efficiency measure 
 

( ) ( )
( ) ( ) SpLp

pRCERpRCER

pRCERpRCER
ppE S

A
U

G
U

A
U

S
UGCER

S ∈∈∀−
−

−
= ,,1

()(

()(
),( .  (A1.7) 

 
For a CARA utility function the following result holds. 
 
Proposition A1.1: (CER efficiency measure with CARA utility). Suppose the expected utility of returns  Lp∈   is 

approximated by the formula  ( ))()( * pRUpR AA
U = , where  ( )xU   is the CARA utility. Then the (naïve) ranking 

efficiency measure (A1.4) coincides with the CER efficiency measure (A1.7) such that 
 

SpLp
pRpR

pRpR
ppEppE S

AG

AS
G
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GCER
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−
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*** .  (A1.8) 
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Proof: For CARA utility one has the equalities  ( ) ( ))()(,)()( **

GG
U

SS
U pRUpRpRUpR == . Since by 

assumption the equality  ( ))()( * pRUpR AA
U =    holds, the result follows by noting that 

 
( ) ( ) ( ) ,1)()(,1)()(,1)()( *** −=−=−= pRpRCERpRpRCERpRpRCER AA

U
GG

U
SS

U  
 
and inserting these equalities into (A1.7).  ◊ 
 
Appendix 2:  Skewness and kurtosis for the BG and NBG 
 
Starting point are the BG scaled moment equations (3.3). We derive first two explicit parameterizations in terms of the 
scaled parameters. While the first one is function of the kurtosis only, the second one depends on both skewness and 
kurtosis. Their equivalence follows from the fact that the squared skewness is an explicit function of the kurtosis (later 
equation (A2.8)). It is convenient to use the following one-to-one transformation of the shape parameters 

.
1

,
1

1,0,,, 2

2

2
2

q
qp

q
pqpqp

+
⋅=

+
⋅=>=+= δγ

γ
δδγ   (A2.1) 

 
Theorem A2.1: (BG scale parameterizations). The BG scale parameters  ),( ba   are well-defined if, and only if, one 

has  )]1(6,6[ )sgn(211 SqppK ⋅−− +∈   and the following equation holds: 

,],[1)sgn(,11)1( 1
31

2
3

12 qqpdS
p
qq

p
qqpc −

−
− −∈−⋅=




















 −
⋅−







 +
⋅+⋅= ξξξ

   (A2.2) 

 
where by convention  1)0sgn( ==S . The scale parameters are determined as follows: 
 
Scale parameterization (I)

p
qb

p
qa ξξ 11,1 −−

=
+

=

 (kurtosis dependence only) 
 

.    (A2.3) 

 
Scale parameterization (II)

.})1()({)(

,})()1({)(
21

21

cdqcqpdb

cdqcqpda

−⋅++−−⋅=

−⋅−++⋅=
−

−

ξξ

ξξ

 (dependence on skewness and kurtosis) 
 

   (A2.4) 

 
Proof: Comparing the scaled variance and kurtosis equations in (3.3) one obtains 
 

)11(),11( 11212 −±⋅=−±⋅= −−− pdqpbpdqpa . 
 
Taking into account the sign of the skewness according to the skewness equation in (3.3) one has with the defined 
quantity  ξ   in (A2.2) that 

)1(),1( 11212 ξξ −−− −=+= qpbqpa .   (A2.5) 
 
Both squares are non-negative and well-defined real numbers if, and only if, one has  ],[ 1 qq −−∈ξ   and  

012 ≥−= pdξ  (existence of square root in definition of  ξ ). Now, by definition of the parameter  ξ , one has  

],0[ q∈ξ   if  0≥S   and  ]0,[ 1−−∈ qξ   if  0<S . These conditions are equivalent with  

)]1(,[)1( )sgn(21121 Sqpppd ⋅−−− +∈+= ξ   or  ]1(6,6[ )sgn(211 SqppK ⋅−− +∈ , which settles the condition on the 

kurtosis. Inserting (A2.5) into the skewness equation  cbqaqp =⋅−⋅+⋅ − )()1( 32312   yields further the condition 
(A2.2), and the first part of the result is shown. The parameterization (A2.3) is trivial in view of (A2.5). On the other 
hand, taking into account (A2.5), the skewness equation can be rewritten as 

cqaqqbq )1()1()( 2+−+=− ξξ . 
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Squaring, multiplying by  p   and using the variance relationship  2222 1 paqbpq −+=   one obtains the quadratic 
equation 
 

0)1())(1()1)(1(2})()1({ 222222222 =++−+−++−−++ pcqqqaqqpcaqqp ξξξξ , 
 
or equivalently 

0)1()()1(2)1( 22222 =++−−+−+ pcqqaqpcap ξξξ . 
 
The reduced discriminant is equal to 
 

)()(})1()1)(1({))(1( 2222222222 cdqpqqcpqp −−=+−++−−+=∆ ξξξξξ , 
 
where, in the first term, use is made of the relation  pd=+ 21 ξ . Since  0≥∆   by the inequality of Theorem A2.2 
below, the solution of this quadratic equation yields the expression for  a   (and similarly for  b ) in (A2.4), where a 
priori both signs ± for the square root term are possible. A final calculation shows that the + sign is adequate such that 
(A2.4) solves (3.3).  ◊ 
 
Theorem A2.2: (BG inequality between skewness and kurtosis). The inequality  KS 3

22 ≤   is sharp and attained at 

the pairs  ))1(6,)1(2(),( 2121 εεε qpqpKS ++= −− , )sgn(S=ε , that is for the limiting left- and right-tail 

gamma distributions  ),,( −−− αρυG  and  ),,( +++ αρυrG   with  ,)1( 12 −±± +⋅±= qpσµυ  

12112 )1(,)1( −±−±−±± +⋅=+= qpqp σαρ , and  ±  stands for  ε . 
 
Proof: Recall that  c   satisfies the equation in (A2.2) and that 21 ξ+=pd . To derive the inequality  KS 3

22 ≤ , or 

equivalently  dc ≤2 , one must therefore show that 
 

0],,[,
1
1

1
1

1
1 1

2

2
2

3

2

1
2

3

2 >∀−∈∀
+
+

≤






















+
−

⋅−







+
+ −

−

qqq
qq

qq
q
q ξξξξ

. (A2.6) 

 
For this it suffices to discuss the analytic properties of the auxiliary function 

],[,
1

1
1
1

1
1)( 1

2
2

3

2

1
2

2
3

22

2

qqx
q

xqq
q
qx

q
xxf −

−

−∈





















+
−

−







+
+

−
+
+

= . 

Set  
2

2
3122

322232 )1()1()1()1()()1()( 



 −−+−++=+= − xqqqxxqxfqxg  to see that 

 

)1)(1())(1(2)1()41()1(32)( 13224222 xqqxxqqxqxqqxqqxqqqxg −−+−++−−+−+−+= . 
 
Since  0)( =± ±qg   and the square-root term is divisible by the product of linear factors ))(1( xqqx −+ , the 
polynomial expression of third degree must be divisible by these linear factors. A calculation shows that  

)())(1()( xhxqqxxg −+=   with 
 

)1)(1(22)1()( 12 xqqxqqxqxh −−+++−= . 

Now, if  ],[ 1 qqx −−∈   we have  qxqx −≥−−≥ − ,1 , and we see that 
 

0)1)(1(2)1)(1(22)( 1112 ≥−+≥−+++−−≥ −−− xqqxqxqqxqqqqqxh . 
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Therefore  0)( ≥xf   on  ],[ 1 qq −− , which is (A2.6). Since  0)( 1 =± ±qf   the inequality is sharp and attained 

exactly when  1±±= qξ . With (A2.2) this yields )1(),1( 2121 ±−±− +±=+= qpcqpd , or 

)1(2),1(6 2121 ±−±− +±=+= qpSqpK . Moreover, with (A2.3) the case  1−−= qξ   implies  0=a , or  

∞→α , and  )1( 21 −− += qpb . The case  q=ξ   implies  0=b , or  ∞→β , and  )1( 21 qpa += − . 
These conditions characterize the limiting left- and right-tail gamma distributions. The values of the parameters follow 
by inserting the scale parameters  ),( ba   into the moment equations (3.3).  ◊ 
 
Remarks A2.1: Theorem A2.2 includes the important VG with parameters  ρ2,1 == pq . In this special case the 
inequality between skewness and kurtosis has also been derived in Ghysels and Wang (2011), Proposition 2.4. It is 
important to ask whether the whole domain of variation between skewness and kurtosis can be attained for some of its 
members. A positive answer has been provided in Theorem 3.1. 
 
Corollary A2.1: (Symmetric BG scale parameterizations). The scale parameters of the symmetric generalized Laplace 

),,,,(),,( abaBGasGL ===== ρδργµνρµ , are well-defined if, and only if, one has  

)6,0(),( 1−= pKS , and   ),(),( 1
2
1 −= ppaρ . 

 

Proof: In case  ab =   one has by (A2.3) that 0)( 1 =+ − ξqq , hence 0=ξ , and thus  1−== pab . By 

symmetry  0=S   and  16 −= pK   follows because  1=pd   in (A2.2).  ◊ 
 
Since  ξ   depends on the kurtosis, one notes that (A2.2) is an exact relationship between skewness and kurtosis. 

Explicitly, squaring (A2.2) and multiplying with  22 )1( qp +   one gets 

),()1()1(

)()1(2)1(6)1(3)1(

))()1(()1(

222

323322224

2323222

ξξ

ξξξξξ

ξξ

gq

qqqqqqqqq

qqqcqp

−++=

−+−−++−−+=

−−+=+

 

 
where for the last equality the auxiliary function  )(xg   from the proof of Theorem A2.2 has been used. A further use 
of the factorization  )())(1()( xhxqqxxg −+=   yields the equation 
 

)].1(6,6[,)6(6)sgn(

,)()1(2)2)1)(()(1()1()1(

)1(

)sgn(21

3232222

222

SqpKpKS

qqqqqqqq

cqp

⋅− +∈−⋅=

−+−+−−+−++=

+

ξ

ξξξξξξ  (A2.7) 

 
The VG special case  ρ2,1 == pq   simplifies considerably. From (A2.7) and the relationship  212 ξρ +=d   one 
gets 

))1(213(
2
1 32 ddc ρρ
ρ

−−−= .    (A2.8) 

 
Theorem A2.3: (VG equation of skewness/kurtosis and extremal values). The squared skewness is an increasing 
concave function of the kurtosis, which satisfies the sharp inequalities 
 

[ ]6,3,4
3

620 1
3

12 ∈≤


















 −

−−⋅=≤ −− KKKS ρρρρρ .  (A2.9) 

 
The minimum squared skewness is attained for a symmetric generalized Laplace  )3,0(),( 1−= ρKS , and the 

maximum for the left- and right-tail gamma distributions with  )6,2(),( 11 −−±= ρρKS . 
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Proof: Descaling (A2.8) with the transformation (3.2), one obtains the equation of skewness and kurtosis in (A2.9). On 

the other hand, the auxiliary function  3)1(213)( xxxh ρρ −−−=   associated to (A2.8) is increasing concave for  

[ ]1,2
1∈xρ . Therefore, the extremal values of (A2.7) are attained at  0)( 1

2
1 =−ρh   and  2)( 1 =−ρh . This implies 

the inequalities in (A2.9). The fact that the pairs  )3,0(),( 1−= ρKS , )6,2(),( 11 −−±= ρρKS   belong to the 
symmetric generalized Laplace respectively to the left- and right-tail gamma follows from Corollary A2.1 respectively 
Theorem A2.2.  ◊ 
 
Starting point of the analysis for the NBG are the scaled moment equations (3.9). Since this system has the same form 
as the BG system (3.3), a great part of the NBG analysis directly follows from the BG case. Theorem A2.1 generalizes 
as follows to the NBG family. 
 
Theorem A2.4: (NBG scale parameterizations). For each  ( ]1,0∈s   the scale parameters  ),( ba  of the normal 

bilateral gamma  ),,,,1,( 2 sbsasNBG δγστν −=   are well-defined if, and only if, one has  

)]1(6,6[ )sgn(21414 SqpspsK ⋅−− +∈   and the following equation holds: 
 

,],[1)sgn(,11)1( 1
31

2
3

12 qqdpS
p
qq

p
qqpc −

−
− −∈−⋅=




















 −
⋅−







 +
⋅+⋅= ξξξ

   (A2.10) 

 
The scale parameters are determined as follows: 
 
Scale parameterization (I)

p
qb

p
qa ξξ 11,1 −−

=
+

=

 (kurtosis dependence only) 
 

.     (A2.11) 

 
Scale parameterization (II)

.})1()({)(

,})()1({)(
21

21

cdqcqdpb

cdqcqdpa

−⋅++−−⋅=

−⋅−++⋅=
−

−

ξξ

ξξ

 (dependence on skewness and kurtosis) 
 

   (A2.12) 

 
Proof: It suffices to rewrite Theorem A2.1 in terms of the iterated scale parameters. The kurtosis condition follows 
from the fact  )]1(,[ )sgn(211 Sqppd ⋅−− +∈   in the proof of Theorem A2.1.  ◊ 
 
Theorem A2.5: (NBG inequality between skewness and kurtosis). The inequality   ( ]1,0,2

3
22 ∈≤ sKsS   is sharp 

and attained at  ))1(6,)1(2(),( 214213 εεε qpsqpsKS ++⋅= −− , )sgn(S=ε , that is for the limiting left- and 

right-tail normal gamma distributions  ),,,1,( 2 −−− −= αρστυ sNG  ),,,1,( 2 +++ −= αρστυ srNG  

,)1( 12 −±± +⋅±= qpsσµυ  12 )1( −±± += qpρ , 121 )1()( −±−± +⋅= qpsσα , and  ±  stands for the sign 
of skewness. 
 
Proof: The inequality  2cd ≥   is the counterpart of the inequality  2cd ≥   in the proof of Theorem A2.2. The 
inequality 2

3
22 KsS ≤  follows by de-scaling the parameters using that  4

6
143

2
13 , −−−− ==== KsdsdSscsc . 

The inequality is sharp and attained exactly when  1±±= qξ , i.e.  )1(),1( 2121 ±−±− +±=+= qpcqpd , or  

)1(2),1(6 213214 ±−±− +±=+= qpsSqpsK . The case  1−−= qξ   implies  0=a , or  ∞→α , and  

)1( 21 −− += qpb . The case  q=ξ   implies  0=b , or  ∞→β , and  )1( 21 qpa += − . These conditions 
characterize the limiting left- and right-tail normal gamma distributions. The values of the parameters follow by 
inserting the scale parameters  ),( ba   into the moment equations (3.9) and de-scaling the parameters.  ◊ 
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Remark A2.2: The generic NBG inequality ( ]1,0,2

3
22 ∈≤ sKsS , is more restricted than the BG inequality stated in 

Theorem A2.2. However, in case the parameter  s   is sufficiently high, the NBG is enough flexible for modelling 
purposes, as demonstrated in Section 4.2. 
 
Similarly to (A2.7) the equation (A2.10) can be rewritten as 
 

2 2 2 2 2 2 2 3 2 3

1 4 4 2 sgn( )
2

(1 ) (1 ) (1 ) (1 )( )(( 1) 2 ) 2 (1 ) ( ) ,

sgn( ) 6 ( 6), [6,6(1 )].S

p q c q q q q q q q q

S ps ps K q

ξ ξ ξ ξ ξ ξ

ξ γ− − − ⋅

+ = + + − + − − + − + −

= ⋅ − ∈ +
 (A2.13) 

 
The NVG special case  ρ2,1 == pq   simplifies. From (A2.13) and the relationship  212 ξρ +=d   one gets 

))1(213(
2
1 32 ddc ρρ
ρ

−−−= .    (A2.14) 

 
Theorem A2.6: (NVG equation of skewness/kurtosis and extremal values). The squared skewness is an increasing 
concave function of the kurtosis, which satisfies the sharp inequalities 
 

[ ] ( ]1,0,6,3,4
3

6)2(0 4461
34

2412 ∈∈≤



















 −
−−⋅=≤ −− sssKsKsssKS ρρρρρ .     (A2.15) 

 
The minimum squared skewness is attained for a symmetric normal generalized Laplace  

),2)(,1,( 12 αβρσαστµν ==−== −sssNGL   with  )3,0(),( 41sKS −= ρ , and the maximum for the 

left- and right-tail normal gamma with  )6,2(),( 4113 ssKS −−±= ρρ . 
 
Proof: The equation (A2.15) follows from (A2.14) by de-scaling with  4

6
13

2
1 , −− == KsdSsc . The extremal values 

of  2c   are 0 and 1−ρ   and are attained at  1
2
1 −= ρd   and  1−= ρd . In case  1

2
1 −= ρd   one has  

1
2
141 ,0),3,0(),( −− ==== ρξρ sbasKS , which is the normal symmetric generalized Laplace. The case  

1−= ρd   corresponds to the pairs  )6,2(),( 4113 ssKS −−±= ρρ , which are the left- and right-tail normal 
gamma according to Theorem A2.5.  ◊ 
 
 
Appendix 3:  Comparison of some skewness and kurtosis boundaries 
 

),( ∞−∞

Comparison with the domain of maximum size 
 
It is instructive to compare the BG inequality of Theorem A2.2 with the general inequality between skewness and 
kurtosis for arbitrary distributions on  , namely 

22 −≥ SK   or equivalently  )31(
2
12 dc +≤ ,   (A3.1) 

which is sharp and attained at a biatomic random variable with support  { }1, −−= ωωω  , where  

)4(
2
1 2SS +−=ω  (Pearson (1916), Wilkins (1944), Guiard (1980), Hürlimann (2008b), Theorem I.4.1). A 

family of distributions, which is able to model any admissible pair  ),( KS , is the Johnson system introduced in 
Johnson (1949) (see also Johnson et al. (1994), George (2007) among others). Note that for distributions with a finite 
range  [ ] ∞<<<∞− BABA ,, , the inequality (A3.1) extends to a two-sided inequality (furthermore information is 
found in Hürlimann (2008b), Chap.I.4). Clearly, the domain of variation of skewness and kurtosis for the BG, and a 
fortiori NBG, is much more restricted than the domain of maximum size prescribed by the inequality (A3.1). This 

follows because trivially  )31(
2
12 ddc +≤≤   is always satisfied. 
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( )βαδµδµ ,,,~ NIGZX ⋅+=

Comparison with the normal inverse Gaussian and the generalized skew t 
 
The domain of variation between skewness and kurtosis is larger for the BG than for the normal inverse Gaussian 
(NIG). Indeed, consider the NIG random variable  , with  ),(~ βαSNIGZ   a 
standard NIG random variable such that  1,0 == δµ . The cgf of the latter equals 

2222 )()( ttCZ +−−−= βαβα . 
 
Setting  αβζ /=   one expresses the squared skewness and kurtosis as 

2

2

2

2
2

1
)41(3,

1
9

ζα

ζ

ζα

ζ

−

+
=

−
= KS , hence  1

43
0 2

2
2 ≤

−
=≤

SK
Sζ , 

 
which shows that the NIG domain  KS 5

32 ≤   is contained in the BG domain  KS 3
22 ≤ . The corresponding result 

for the VG special case is found in Ghysels and Wang (2011), p.8. These authors also show that the NIG domain 
contains the domain of the generalized skew t distribution (GST) (applications of the GST are found in Frecka and 
Hopwood (1983), Theodossiu (1998), Aas and Haff (2006), Hürlimann (2009), etc.). 
 

( ]1,0,3
2 ∈±= ssKS

Comparison with Hansen’s generalized t 
 
Hansen (1994) considers another generalization of the Student t distribution, simply called generalized t (GT) by 
Jondeau and Rockinger (2003). By the Theorems A2.2 and A2.5 the boundaries of maximum skewness by given 

kurtosis for the BG and NBG are delimited by the two curves  . This domain is in particular 

maximum for the BG and VG, both realized when  1=s . In this situation, let  KKSBG 3
22 )( =   denote the maximum 

squared skewness as a function of K . The GT skewness and kurtosis boundary has been determined in Jondeau and 
Rockinger (2003), Section 2.2, Fig. 5 (note that the excess kurtosis is obtained by subtracting the constant 3 from the 
expression (3) in Section 2.1). Let  )(2 KSGT   denote the corresponding maximum squared skewness. The GT domain 
is contained in the BG (and VG) domain for kurtosis higher than some relatively moderate value. One has 
 

.),()(,774.2),()( 0
22

0
22 KKKSKSKKKSKS GTBGGTBG >∀>=≤∀≤   (A3.3) 

 
Finally, the NBG kurtosis is bounded from below by zero, i.e. the NBG does not allow tails to be thinner than those of 
the normal (limiting case  ∞→∞→ βα ,   of the NL in the Notes 2.1). This property is shared with the GT, as 
observed by Jondeau and Rockinger (2003), Section 2.2. 
 
 
Appendix 4:  Special function representations of densities and distributions 
 
It suffices to restrict the attention to the BG with vanishing location  0=υ . The BG pdf, denoted by  

( )βδαγ ,,,;)( xfxf = , is the convolution  ))(()( 21 xffxf ∗=   of the two gamma pdf’s defined by 
 

{ } { }.01)()(,01)()( 11
2

11
1 ≤⋅Γ=≥⋅Γ= −−−−−− xexxfxexxf xx βδδαγγ βδαγ  (A4.1) 

 
A formula from Oldham et al. (2009) will be referred to as a formula from Atlas (2009). 
 

( )βδαγυ ,,,,0=BG

Generalized gamma or Tricomi function representation 
 
The first “generalized gamma function” representation seems new. It is equivalent to the representation (A4.6) below in 
terms of the confluent hyper-geometric function of the 2nd kind. 
 
Theorem A4.1: (Generalized gamma function representation). The probability density function of the bilateral gamma  

  is given by 

( )
( ) ,0),)(,,()()()(

,0),)(,,()()()(
111

111

<+Γ⋅ΓΓ=

>+Γ⋅ΓΓ=
−−

+
−−

−−
+

−−

xxexxf

xxexxf
x

x

βαδγβδγ

βαγδαδγ
βδδγ

βα
α

αγγδ

βα
β

 (A4.2) 
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with the generalized gamma function 

∫ +=Γ
∞

−−−−

0

111 )1(),,( dtetxtxba tba .    (A4.3) 

 
Proof: Using the symmetry relation  ( ) ( )αγβδβδαγ ,,,;,,,; xfxf −=   it suffices to consider the case  

),0( ∞∈x . Through elementary integration (change of variables txy −= ) one obtains 

,)1()()()(

),()()()()())(()(

0

)(111
0

)(11

11
0

2121

∫ +=∫ −−=

⋅ΓΓ=∫ −=∗=

∞
+−−−−+

∞−

+−−

−−−

∞−

dtettxdyeyyxxI

xIedyyfyxfxffxf

xty

x

βαδγδγβαδγ

αδγ βαδγ
 

 
The transformation  uxct 1)( −=   with  xxc )()( βα +=   yields further 
 

))(,,()())(1()()( 1

0

1111 xcxdueuuxcxcxxI u γδβα δγδγδδγ Γ⋅+=∫ +⋅= −−
∞

−−−−−−+ . 

 
Insert into the first integral expression for  )(xf   to get (A4.2).  ◊ 
 

Remarks A4.1: In virtue of the limiting property  )(),,(lim
0

1 adtetxba ta

x
Γ=∫=Γ

∞
−−

∞→
  the naming of the integral 

(A4.3) is justified. Furthermore, one has also trivially  )(),1,( axa Γ=Γ . Another justification arises from the fact 
that when  ∞→α   or  ∞→β   the pdf converges to a left- and right-tail gamma pdf respectively, as should be. 
Moreover, a close look at the confluent hyper-geometric function of the 2nd kind, introduced by Tricomi (1947) and also 
called Tricomi function, shows the relationship 
 

),,()(),,( xbaaUxaxba a +Γ=Γ ,    (A4.4) 
 
where the Tricomi function is defined by (e.g. Atlas (2009), 48:3:6 and 48:3.7) 
 

∫ −⋅Γ=∫ +⋅Γ=
−−−−−−

∞
−−−−−

1

0

)1(11

0

111 1

)1()()1()(),,( dtettadtettaxbaU txtbaxtaba .  (A4.5) 

 
The generalized gamma function is a transformed Tricomi function and (A4.2) rewrites as 
 

( )
.0),)(,,()()()(

,0),)(,,()()(
11

11

<++⋅Γ=

>++⋅Γ=
−−−

−−−

xxUxexxf

xxUxexxf
x

x

βαδγγαβδ

βαδγδβαγ
γβδδ

δαγγ

  (A4.6) 

 
Further alternative special function representations of the BG density are available. 
 

b

Kummer function representation 
 
Provided    is not an integer, the Tricomi function (A4.5) can be represented as a weighted sum of two Kummer 
functions. Otherwise, the situation can be handled using a complicated formula (e.g. Atlas (2009), 48:3:1 and 48:3:3) 
 
Case 1:  Nbaba ∉+> ,0,  

),2,1(
)(

)1(),,(
)1(

)1(),,( 1 xbabMx
a
baxbaaM

b
baxbaaU ba −−−

Γ
−+Γ

++
−Γ
−−Γ

=+ −−       (A4.7) 

 
where the Kummer function is defined by the convergent power series expansion 

)(
)()(,

!)(
)(

),,(
0 y

kyyx
kb

a
xbaM k

k

k k

k

Γ
+Γ

=⋅∑=
∞

=
   (Pochhammer symbol).  (A4.8) 
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Case 2:  Nnbaba ∈=+> ,0,  
 

,
!)(

)(
])ln()()1()([

)1()!1(
)1(

!)2(
)1(

)(
)!2(),,(

0 j

j

2

0

1

∑ ⋅++−+−+⋅
−+Γ−

−
+

⋅∑
−
−+

⋅
Γ
−

=

∞

=

−

=

−

j

j
n

kn

k k

kn

x
jn

a
xnjjaj

nan

x
kn

na
x

a
nxnaU

ψψψ
  (A4.9) 

 
with the digamma function  )(⋅ψ . Simplification occurs if  2,1=n . 
 
With this the Tricomi representation (A4.6) translates to the Kummer representation (for simplicity only Case 1 with  

N∉+δγ   for  0>x   is reproduced here): 

( )

[ ]
.0,

))(,2,1()(
)(

)1(

))(,,(
)1(

)1(
)()(

1

11

>



















+−−−+
Γ

−+Γ
+

++
−Γ
−−Γ

⋅⋅Γ=

−−

−−−

x
xMx

xM

xexxf x

βαδγγβα
δ
δγ

βαδγδ
γ
δγ

βαγ

δγ

δαγγ

  (A4.10) 

 
In view of the series (A4.8) the Kummer representation is suitable for numerical evaluation. 
 

)(, xM µν

Whittaker function representation 
 
Whittaker has introduced the normalized versions    and  )(, xW µν   of the Kummer and Tricomi functions. 
They depend upon the following one-to-one parameter transformation: 
 

.21,),1(, 2
1

2
1

2
1 µνµµν +=−+=−=−= babab   (A4.11) 

 
The Whittaker functions relate to the Kummer and Tricomi functions through the relationships (e.g. Atlas (2009), 
48:13:2) 

)(),,(),(),,( ,,
2
1

2
1

2
1

2
1

xMexxbaMxWexxbaU xbxb
µνµν

−− == .  (A4.12) 
 
Some relationships are more symmetrical in Whittaker’s notation (e.g. Atlas (2009), 48:13:3 and 48:13:4) 

)()1()(),()( ,,,,
2
1

xMxMxWxW µν
µ

µνµνµν −
+

− −=−= .   (A4.13) 
 
Inserting (A4.12) into (A4.6) one obtains the Whittaker representation (here for  0>x   only) 
 

( ) .0,)(
)(

)()(
2
1

2
1

2
1

2
1

2
1

2
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+
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βαδγ

δγ

δγ

 (A4.14) 

 
This representation is displayed in Kücher and Tappe (2008a/b) as formula (3.4) respectively (4.4). Similarly to (A4.7) 
the Whittaker function  )(, xW µν   can be expressed as weighted sum of two Whittaker functions  )(, xM µν   as 
follows (e.g. Gradshteyn and Ryzhik (2000), p.1014): 
 

)(
)(

)2()(
)(

)2()( ,
2
1,

2
1, xMxMxW µνµνµν µν

µ
µν

µ
−+−Γ

Γ
+

−−Γ
−Γ

= .   (A4.15) 

 
Since (A4.15) can be expressed via (A4.12) as function of the convergent series (A4.8), the expression (A4.14) can be 
evaluated numerically. This is mentioned in Küchler and Tappe (2008a/b) without the required restriction to non-
integer values of  δγ + , however. 
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Remark A4.2: It is also possible to express the BG density in terms of Dirichlet B-spline functions as advocated in 
Kaishev (2010). 
 
Examples A4.1:  BG sub-families and the VG density 
 
There exist a number of important special cases under which the presented special function representations simplify 
considerably and are mathematically much more tractable. 
 

( )0,1 >= δγ

Bilateral exponential gamma and bilateral gamma exponential  
 
The shape parameters are    and  ( )1,0 => δγ . We need the special cases of the Tricomi functions 
(Atlas (2009), 48:4:2 and 48:4:6): 
 

),,1(),,1(,),1,( 1 xbexxbUxxaaU xba −Γ==+ −−    (A4.16) 
where  ),( xνΓ   is the upper incomplete gamma function. Using (A4.6) one obtains the formulas 
 
Case 1:     ( ) ( )βδαγυβδα ,,,1,0,, === BGBEG  
 

( ) ( ) .0),)(,()()(,0,)( 1 <+Γ⋅Γ=>= +
−−

+ xxexfxexf xx βαδαδα αδ

βα
βαδ

βα
β  (A4.17) 

 
Case 2:     ( ) ( )βδαγυβαγ ,1,,,0,, === BGBGE  
 

( ) ( ) .0,)(,0),)(,()()( 1 <=>+Γ⋅Γ= −
++

− xexfxxexf xx βγ
βα

αβγ
βα

α ββαγβγ  (A4.18) 
 
Bilateral exponential or skew Laplace ( ) ( )βδαγυβα ,1,,1,0, ==== BGskL      
 

( ) ( ) .0,)(,0,)( <=>= −
+

−
+ xexfxexf xx β

βα
αα

βα
β βα    (A4.19) 

 
Variance gamma ( ) ( )βρδαργυβαρ ,,,,0,, ==== BGVG      
 
In this situation the relevant Tricomi or Whittaker function reduces to a Macdonald function (modified Bessel function 
of the 2nd kind, hyperbolic Bessel function of the 3rd kind, Basset function, modified Hankel function) of the type (Atlas 
(2009), 48:4:3 and 48:13:6) 
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1

2
1

2
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−

.   (A4.20) 

 
Inserting these expressions into the Tricomi or Whittaker representation (A4.6) or (A4.14) one obtains the VG pdf 
 

( ) 0),)(()(exp
)(

)()( 2
1

2
1

2
1

2
1

≠+⋅−−⋅








+Γ
=

−

−

xxKx
x

xf βαβα
βαρπ

αβ
ρ

ρρ

. (A4.21) 

 
This closed-form expression has been first derived in Madan et al. (1998) for the parameterization 
 

( ) ( )11112 ,)(2,)(,, −−−− −= ρραβρβανσµ .   (A4.22) 
 
In its original form the VG pdf takes the less symmetrical form 
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. (A4.23) 

 
In case the shape parameter  ρδγ ==   is an integer, further simplification to exponentials is obtained using the 
spherical Macdonald functions (Atlas (2009), Section 26:13). 
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n=γ

Bilateral gamma with integer shape parameter 
 
The case of integer shape parameter    or/and  m=δ   is best analysed in terms of the generalized gamma 
function representation of Theorem A4.1 and the following auxiliary result. 
 
Lemma A4.1: (Finite series expansion of the generalized gamma function). For integer  n   one has 

∑
−

=Γ
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=

−
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0

)()(),,(
n

k

kkk x
k
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Proof: Expanding the second term of the integral into a binomial series one obtains 
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Using that  )()1( kkk Γ=+Γ   and the Pochhammer symbol one obtains (A4.24).  ◊ 
 
The following result relates to Proposition 3.1 in Küchler and Tappe (2008a), with the difference that our formulation is 
simpler and more symmetrical. It expresses the BG densities on each half of the real axis as finite linear combinations 
of gamma densities. The density of the standard gamma  )1,(γΓ   with scale parameter 1 is denoted by  

xexxg −−−Γ= 11)();( γγγ . 
 
Theorem A4.2: (Bilateral gamma density as finite linear combination of gamma densities). For integer shape 
parameter  n=γ   or/and  m=δ   the following gamma representations hold: 
 
Case 1:  ( ) 0,,,,,0 >== xnBG βδαγυ  
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Case 2:  ( ) 0,,,,,0 <== xmBG βδαγυ  
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Proof: It suffices to insert (A4.24) into (A4.2) and rearrange terms taking into account the definition 
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of the generalized binomial coefficient.  ◊ 
 
As a consequence the VG pdf with integer shape parameter is a closed-from expression. It suffices to restate (A4.25)-
(A4.26) for  n== δγ   by changing the order of summation. 
 
Variance gamma ( )βαρ ,,nVG =   
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Remarks A4.2: (A4.27) is also obtained by inserting into (A4.21) the following special case of the Macdonald function 
(Watson (1995), p.80, or Abramowitz and Stegun (1965), p.443): 
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The VG with integer shape parameter is a member of the rich class of two-sided exponential-polynomial-trigonometric 
(EPT) functions, for which some interesting computational tools are available (see Sexton and Hanzon (2012), Section 
3, and Hanzon et al. (2012), Section 7). 
 
Example A4.2:  NVG distribution 
 
According to formula (2.1) with  ρδγ ==   the normal variance gamma ( )βαρτυ ,,,,NVG   is the convolution 

of the normal  ),( τυN   and the variance gamma  ( )βαρ ,,VG . Therefore, its distribution satisfies the infinite 
integral representation 

∫Φ=
∞

∞−

−− dzzfxF VG
zx

NVG )()()( τ
υ ,    (A4.28) 

 
where  )(xfVG   is the pdf (A4.21) of the VG and  )(xΦ   is the standard normal distribution. 
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