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ABSTRACT 
In this paper, we introduce the notion of 𝑔𝑔𝜁𝜁∗-closed sets in topological spaces and investigate some of their properties 
and we construct a group of 𝑔𝑔𝜁𝜁∗𝑐𝑐- homeomorphisms which contains the group of all homeomorphisms as a subgroup. 
 
Keywords:𝑔𝑔𝜁𝜁∗-closed set, 𝑔𝑔𝜁𝜁∗-continuous function, 𝑔𝑔𝜁𝜁∗-irresolute and 𝑔𝑔𝜁𝜁∗-homeomorphism. 
 
 
1. INTRODUCTION 
Levine [1, 2] introduced the concept of generalized closed sets and semi-closed sets in topological spaces. Maki et al., 
introduced generalized 𝛼𝛼-closed sets (brieflyg𝛼𝛼-closed sets) [3] and   𝛼𝛼-generalized closed sets (briefly 𝛼𝛼g-closed sets) 
[4] respectively. In section 3 and 4 of this paper, we introduce the concept of 𝑔𝑔𝜁𝜁∗-closed set and obtain some properties 
of this set.  In section 5 and 6, we introduce the concept of 𝑔𝑔𝜁𝜁∗-continuous functions and 𝑔𝑔𝜁𝜁∗-irresolute functions. For a 
topological space(𝑋𝑋, 𝜏𝜏), we define groups 𝑔𝑔𝜁𝜁∗h(𝑋𝑋, 𝜏𝜏), 𝑔𝑔𝜁𝜁∗𝑐𝑐h(𝑋𝑋, 𝜏𝜏) and they contain the group h(𝑋𝑋, 𝜏𝜏) whose elements 
are all homeomorphisms from (𝑋𝑋, 𝜏𝜏) into itself. 
 
Throughout this paper(𝑋𝑋, 𝜏𝜏), (𝑌𝑌,𝜎𝜎) and (𝑍𝑍, 𝜂𝜂) represent non-empty topological spaces on which no separation axioms 
are assumed unless or otherwise mentioned. For a subset 𝐴𝐴 of a space(𝑋𝑋, 𝜏𝜏),𝑐𝑐𝑐𝑐 (𝐴𝐴) and int(𝐴𝐴) denote the closure of 𝐴𝐴 
and interior of 𝐴𝐴. 
 
2. PRELIMINARIES 
In this section we recall some of the basic definitions. 
 
Definition 2.1: A subset 𝐴𝐴 of space (𝑋𝑋, 𝜏𝜏) is called  
(i) Semi-open set [1] if 𝐴𝐴⊆ 𝑐𝑐𝑐𝑐 (𝑖𝑖𝑖𝑖𝑖𝑖 (𝐴𝐴)). 
(ii) Pre-open set [5]  if 𝐴𝐴⊆ 𝑖𝑖𝑖𝑖𝑖𝑖 (𝑐𝑐𝑐𝑐 (𝐴𝐴)). 
(iii) 𝛼𝛼-open set [6] if 𝐴𝐴⊆ 𝑖𝑖𝑖𝑖𝑖𝑖 (𝑐𝑐𝑐𝑐 (𝑖𝑖𝑖𝑖𝑖𝑖 (𝐴𝐴))). 
The complement of a semi-open (resp.pre-open, 𝛼𝛼-open) set is called semi-closed (resp.pre-closed, 𝛼𝛼-closed). 
 
Definition 2.2: A subset 𝐴𝐴 of (𝑋𝑋, 𝜏𝜏) is called 
(i) generalized closed (briefly 𝑔𝑔-closed)set[2] if𝑐𝑐𝑐𝑐 (𝐴𝐴)⊆𝑈𝑈 whenever 𝐴𝐴⊆𝑈𝑈 and 𝑈𝑈 is open set in (𝑋𝑋, 𝜏𝜏).  
(ii) generalized semi-closed (briefly 𝑔𝑔𝑔𝑔-closed) set [7] if 𝑔𝑔𝑐𝑐𝑐𝑐 (𝐴𝐴) ⊆𝑈𝑈 whenever 𝐴𝐴⊆𝑈𝑈 and 𝑈𝑈 is open set in(𝑋𝑋, 𝜏𝜏). 
(iii) 𝛼𝛼-generalized closed (briefly 𝛼𝛼𝑔𝑔-closed) set [4] if 𝛼𝛼𝑐𝑐𝑐𝑐 (𝐴𝐴) ⊆𝑈𝑈 whenever 𝐴𝐴⊆𝑈𝑈 and 𝑈𝑈 is open set in (X, τ). 
(iv) generalized α-closed (briefly 𝑔𝑔𝛼𝛼-closed) set [3] if 𝛼𝛼𝑐𝑐𝑐𝑐 (𝐴𝐴) ⊆𝑈𝑈 whenever 𝐴𝐴⊆𝑈𝑈 and 𝑈𝑈 is 𝛼𝛼-open set in(𝑋𝑋, 𝜏𝜏). 
(v) generalized pre-closed set (briefly 𝑔𝑔𝑔𝑔-closed) set [8] if 𝑔𝑔𝑐𝑐𝑐𝑐 (𝐴𝐴) ⊆𝑈𝑈 whenever 𝐴𝐴⊆𝑈𝑈 and 𝑈𝑈is open set in(𝑋𝑋, 𝜏𝜏). 
(vi) a generalized #α-closed set (briefly g#α-closed) [16] if 𝛼𝛼𝑐𝑐𝑐𝑐(𝐴𝐴) ⊆ 𝑈𝑈 whenever 𝐴𝐴 ⊆ 𝑈𝑈 and 𝑈𝑈 is g-open in (𝑋𝑋, 𝜏𝜏). 
(vii) a #generalized α-closed set (briefly #gα-closed) [17]  if 𝛼𝛼𝑐𝑐𝑐𝑐(𝐴𝐴) ⊆ 𝑈𝑈  whenever 𝐴𝐴 ⊆ 𝑈𝑈  and 𝑈𝑈  is a g#α-open in 

(𝑋𝑋, 𝜏𝜏). 
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The complements of the above sets are called their respective open sets. 
 
Definition2.3: A function𝑓𝑓: (𝑋𝑋, 𝜏𝜏)  →  (𝑌𝑌,𝜎𝜎) is called 
(i) 𝛼𝛼-continuous [9] if 𝑓𝑓−1(𝑉𝑉) is 𝛼𝛼-closed in (𝑋𝑋, 𝜏𝜏) for every closed set 𝑉𝑉 of (𝑌𝑌,𝜎𝜎). 
(ii) 𝑔𝑔-continuous [10] if 𝑓𝑓−1(𝑉𝑉) is g-closed in (𝑋𝑋, 𝜏𝜏) for every closed set 𝑉𝑉 of (𝑌𝑌,𝜎𝜎). 
(iii) 𝑔𝑔𝑔𝑔-continuous [11] if 𝑓𝑓−1(𝑉𝑉) is 𝑔𝑔𝑔𝑔-closed in (𝑋𝑋, 𝜏𝜏)for every closed set 𝑉𝑉 of (𝑌𝑌,𝜎𝜎). 
(iv) 𝑔𝑔𝛼𝛼-continuous [3] if 𝑓𝑓−1(𝑉𝑉)is 𝑔𝑔𝛼𝛼-closed in (𝑋𝑋, 𝜏𝜏)for every closed set 𝑉𝑉 of (𝑌𝑌,𝜎𝜎). 
(v) 𝛼𝛼𝑔𝑔-continuous [4] if 𝑓𝑓−1(𝑉𝑉)is 𝛼𝛼𝑔𝑔-closed in (𝑋𝑋, 𝜏𝜏)for every closed set 𝑉𝑉 of (𝑌𝑌,𝜎𝜎). 
(vi) 𝑔𝑔′′ -continuous [12] if 𝑓𝑓−1(𝑉𝑉)  is 𝑔𝑔′′ -closed in (𝑋𝑋, 𝜏𝜏) for every closed set 𝑉𝑉 of (𝑌𝑌,𝜎𝜎). 
(vii) 𝑔𝑔𝑔𝑔-continuous [8] if 𝑓𝑓−1(𝑉𝑉)is 𝑔𝑔𝑔𝑔-closed in (𝑋𝑋, 𝜏𝜏)for every closed set 𝑉𝑉 of (𝑌𝑌,𝜎𝜎).  
(viii) 𝑔𝑔#α-continuous [16] if 𝑓𝑓−1(𝑉𝑉) is 𝑔𝑔#α-closed in (𝑋𝑋, 𝜏𝜏) for every closed set V of (𝑌𝑌,𝜎𝜎). 
(ix) #𝑔𝑔α-continuous [17] if 𝑓𝑓−1(𝑉𝑉) is #𝑔𝑔α-closed in (𝑋𝑋, 𝜏𝜏) for every closed set V of (𝑌𝑌,𝜎𝜎). 
 
3. 𝒈𝒈𝜻𝜻∗-CLOSED SETS IN TOPOLOGICAL SPACES 
 
We introduce the following definition. 
 
Definition 3.1: [13] A subset 𝐴𝐴 of a space (𝑋𝑋, 𝜏𝜏) is called 𝑔𝑔𝜁𝜁∗-closed if 𝛼𝛼𝑐𝑐𝑐𝑐 (𝐴𝐴) ⊆𝑈𝑈 whenever 𝐴𝐴⊆𝑈𝑈 and 𝑈𝑈 is#𝑔𝑔𝛼𝛼-
open set in (𝑋𝑋, 𝜏𝜏) 
 
Proposition 3.2:  Every closed set is 𝑔𝑔𝜁𝜁∗-closed set but not conversely. 
 
Proof: Let 𝐴𝐴 be a closed set and 𝑈𝑈 be a #𝑔𝑔𝛼𝛼-open set containing A.  Since 𝐴𝐴 is closed, we have 𝛼𝛼𝑐𝑐𝑐𝑐(𝐴𝐴) ⊆ 𝑐𝑐𝑐𝑐(𝐴𝐴) = 𝐴𝐴 ⊆
𝑈𝑈.Therefore 𝛼𝛼𝑐𝑐𝑐𝑐(𝐴𝐴) ⊆ 𝑈𝑈  and hence𝐴𝐴 is 𝑔𝑔𝜁𝜁∗-closed set. 
 
Remark 3.3: The converse of the above theorem is not true as shown in the following example. 
 
Example 3.4: Let 𝑋𝑋 = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐} and 𝜏𝜏 = �∅,𝑋𝑋, {𝑎𝑎, 𝑏𝑏}�.  The set {𝑎𝑎, 𝑐𝑐} is 𝑔𝑔𝜁𝜁∗-closed set but not closed set. 
 
Proposition 3.5: Every 𝛼𝛼-closed set is 𝑔𝑔𝜁𝜁∗-closed set but not conversely. 
 
Proof: Let A be an 𝛼𝛼-closed set and U be a #𝑔𝑔𝛼𝛼-open set containing 𝐴𝐴.  Since 𝐴𝐴 is 𝛼𝛼-closed, we have 𝛼𝛼𝑐𝑐𝑐𝑐(𝐴𝐴) = 𝐴𝐴 ⊆ 𝑈𝑈. 
Therefore 𝛼𝛼𝑐𝑐𝑐𝑐(𝐴𝐴) ⊆ 𝑈𝑈  and hence𝐴𝐴 is 𝑔𝑔𝜁𝜁∗-closed set. 
 
Example 3.6: Let 𝑋𝑋 = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐} and 𝜏𝜏 = �∅,𝑋𝑋, {𝑎𝑎, 𝑏𝑏}�. The set {𝑏𝑏, 𝑐𝑐} is 𝑔𝑔𝜁𝜁∗-closed set but not 𝛼𝛼-closed set. 
 
Proposition 3.7: Every 𝑔𝑔𝜁𝜁∗-closed set is 𝛼𝛼𝑔𝑔-closed set is but not conversely. 
 
Proof: Let 𝐴𝐴 be a 𝑔𝑔𝜁𝜁∗-closed set and 𝑈𝑈 be any open set containing𝐴𝐴.  Since every open set is 𝛼𝛼-open and every 𝛼𝛼-open 
set is #𝑔𝑔𝛼𝛼–open.  Therefore every open set is #𝑔𝑔𝛼𝛼–open [14]. We have 𝛼𝛼𝑐𝑐𝑐𝑐(𝐴𝐴) ⊆ 𝑈𝑈. Hence 𝐴𝐴 is 𝛼𝛼𝑔𝑔-closed set. 
 
Example 3.8: Let 𝑋𝑋 = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐} and 𝜏𝜏 = �∅,𝑋𝑋, {𝑎𝑎}, {𝑏𝑏, 𝑐𝑐}�. The set {𝑏𝑏} is 𝛼𝛼𝑔𝑔-closed but not 𝑔𝑔𝜁𝜁∗-closed set. 
 
Proposition 3.9: Every 𝑔𝑔𝜁𝜁∗-closed set is  𝑔𝑔𝛼𝛼-closed set is but not conversely. 
 
Proof: Let 𝐴𝐴 be a 𝑔𝑔𝜁𝜁∗-closed set and 𝑈𝑈 be every 𝛼𝛼-open set containing𝐴𝐴. Since every 𝛼𝛼-open set is #𝑔𝑔𝛼𝛼–open. We have 
𝛼𝛼𝑐𝑐𝑐𝑐(𝐴𝐴) ⊆ 𝑈𝑈. Hence 𝐴𝐴 is 𝑔𝑔𝛼𝛼-closed set. 
 
Example 3.10: Let𝑋𝑋 = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐} and 𝜏𝜏 = �∅,𝑋𝑋, {𝑎𝑎}, {𝑏𝑏, 𝑐𝑐}�. The set {𝑎𝑎, 𝑏𝑏} is 𝑔𝑔𝛼𝛼-closed but not 𝑔𝑔𝜁𝜁∗-closed set. 
 
Proposition 3.11: Every 𝑔𝑔𝜁𝜁*-closed set is 𝑔𝑔𝑔𝑔-closed set is but not conversely. 
 
Proof: Let 𝐴𝐴 be a 𝑔𝑔𝜁𝜁*-closed set and 𝑈𝑈 be an open set containing𝐴𝐴.  Since every open set is#𝑔𝑔𝛼𝛼–open, we have 
𝑔𝑔𝑐𝑐𝑐𝑐(𝐴𝐴) ⊆ 𝛼𝛼𝑐𝑐𝑐𝑐(𝐴𝐴) ⊆ 𝑈𝑈.Therefore 𝑔𝑔𝑐𝑐𝑐𝑐(𝐴𝐴) ⊆ 𝑈𝑈.Hence𝐴𝐴 is 𝑔𝑔𝑔𝑔-closed set. 
 
Example 3.12: Let𝑋𝑋 = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐} and 𝜏𝜏 = �∅,𝑋𝑋, {𝑎𝑎}, {𝑎𝑎, 𝑏𝑏}�. The set {𝑎𝑎, 𝑐𝑐} is 𝑔𝑔𝑔𝑔-closed but not g𝜁𝜁*-closed set. 
 
Proposition 3.13: Every 𝑔𝑔𝜁𝜁∗-closed set is 𝑔𝑔𝑔𝑔-closed set is but not conversely. 
 
Proof: Let 𝐴𝐴 be a g𝜁𝜁*-closed set and U be an open set containing𝐴𝐴.  Since every open set is #𝑔𝑔𝛼𝛼–open, we have 
𝑔𝑔𝑐𝑐𝑐𝑐(𝐴𝐴) ⊆ 𝛼𝛼𝑐𝑐𝑐𝑐(𝐴𝐴) ⊆ 𝑈𝑈[15]. Therefore 𝑔𝑔𝑐𝑐𝑐𝑐(𝐴𝐴) ⊆ 𝑈𝑈.Hence𝐴𝐴 is 𝑔𝑔𝑔𝑔-closed set. 
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Example 3.14: Let𝑋𝑋 = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐} and 𝜏𝜏 = {∅,𝑋𝑋, {𝑎𝑎, 𝑏𝑏}}. The set {𝑏𝑏} is 𝑔𝑔𝑔𝑔-closed but not𝑔𝑔𝜁𝜁*-closed set. 
 
Remark 3.15: The following examples show that 𝑔𝑔𝜁𝜁∗-closeness is independent on g-closeness. 
 
Example 3.16: Let𝑋𝑋 = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐}and𝜏𝜏 = {∅,𝑋𝑋, {𝑎𝑎}, {𝑎𝑎, 𝑏𝑏}}, The set {b} is 𝑔𝑔𝜁𝜁∗-closed but not𝑔𝑔-closed. 
 

     
     𝒈𝒈-closed            𝒈𝒈𝒈𝒈-closed 

     

      

  closed   𝒈𝒈𝜻𝜻∗-closed             𝜶𝜶𝒈𝒈-closed 

  

   

  𝜶𝜶-closed               𝒈𝒈𝜶𝜶-closed 

      

               𝒈𝒈𝒈𝒈-closed  

Remark 3.17: The following diagram shows that the relationships of 𝑔𝑔𝜁𝜁∗-closed sets with other known existing sets. 
𝐴𝐴 → 𝐵𝐵 represents 𝐴𝐴 𝑖𝑖𝑖𝑖𝑔𝑔𝑐𝑐𝑖𝑖𝑖𝑖𝑔𝑔 𝐵𝐵 but not conversely. 
 
4. BASIC PROPERTIES OF 𝒈𝒈𝜻𝜻∗ CLOSED SETS 
 
Theorem 4.1: If 𝐴𝐴 and 𝐵𝐵 are 𝑔𝑔𝜁𝜁∗-closed in 𝑋𝑋 then, 𝐴𝐴 ∪ 𝐵𝐵 is 𝑔𝑔𝜁𝜁∗ closed in 𝑋𝑋. 
 
Proof: Let 𝐴𝐴 and 𝐵𝐵 be any two 𝑔𝑔𝜁𝜁∗-closed in 𝑋𝑋 and 𝑈𝑈 be any #𝑔𝑔𝛼𝛼 –open set containing 𝐴𝐴 and 𝐵𝐵.  we have 𝛼𝛼𝑐𝑐𝑐𝑐(𝐴𝐴) ⊆ 𝑈𝑈 
and 𝛼𝛼𝑐𝑐𝑐𝑐(𝐵𝐵) ⊆ 𝑈𝑈.Thus𝛼𝛼𝑐𝑐𝑐𝑐(𝐴𝐴) ∪ 𝛼𝛼𝑐𝑐𝑐𝑐(𝐵𝐵) ⊆ 𝑈𝑈.  Hence 𝐴𝐴 ∪ 𝐵𝐵 is 𝑔𝑔𝜁𝜁∗-closed in 𝑋𝑋. 
 
Theorem 4.2: Ifa set 𝐴𝐴 is 𝑔𝑔𝜁𝜁∗-closed, then 𝛼𝛼𝑐𝑐𝑐𝑐(𝐴𝐴) − 𝐴𝐴 contains no non-empty #𝑔𝑔𝛼𝛼 –closed set. 
 
Proof: Suppose that 𝐴𝐴 is 𝑔𝑔𝜁𝜁∗-closed set. Let 𝑈𝑈 be a #𝑔𝑔𝛼𝛼 –closed set contained in 𝛼𝛼𝑐𝑐𝑐𝑐(𝐴𝐴) − 𝐴𝐴.  Now 𝑈𝑈𝑐𝑐  is #𝑔𝑔𝛼𝛼 –open 
set of (𝑋𝑋, 𝜏𝜏) such that𝐴𝐴 ⊆ 𝑈𝑈𝑐𝑐 .  Since 𝐴𝐴 is 𝑔𝑔𝜁𝜁∗ closed set of(𝑋𝑋, 𝜏𝜏), then𝛼𝛼𝑐𝑐𝑐𝑐(𝐴𝐴) ⊆ 𝑈𝑈𝑐𝑐 . Thus𝑈𝑈 ⊆ (𝛼𝛼𝑐𝑐𝑐𝑐(𝐴𝐴))𝑐𝑐 .  Also𝑈𝑈 ⊆
𝛼𝛼𝑐𝑐𝑐𝑐(𝐴𝐴) − 𝐴𝐴. Therefore𝑈𝑈 ⊆ �𝛼𝛼𝑐𝑐𝑐𝑐(𝐴𝐴)�𝑐𝑐 ∩ �𝛼𝛼𝑐𝑐𝑐𝑐(𝐴𝐴)� = ∅ and hence𝑈𝑈 = ∅. 
 
Theorem 4.3: If 𝐴𝐴 is #𝑔𝑔𝛼𝛼 –open and 𝑔𝑔𝜁𝜁∗-closed subset of (𝑋𝑋, 𝜏𝜏) then 𝐴𝐴 is an 𝛼𝛼-closed subset of 𝑋𝑋. 
 
Proof: Since 𝐴𝐴 is #𝑔𝑔𝛼𝛼 –open and 𝑔𝑔𝜁𝜁∗-closed,𝛼𝛼𝑐𝑐𝑐𝑐(𝐴𝐴) ⊆ 𝐴𝐴.Then 𝐴𝐴 is 𝛼𝛼-closed. 
 
Theorem 4.4: Let𝐴𝐴 be a 𝑔𝑔𝜁𝜁∗-closed subset of 𝑋𝑋.  If𝐴𝐴 ⊆ 𝐵𝐵 ⊆ 𝛼𝛼𝑐𝑐𝑐𝑐(𝐴𝐴), then 𝐵𝐵 is also an 𝑔𝑔𝜁𝜁∗-closed subset of 𝑋𝑋. 
 
Proof: Let𝑈𝑈 be a #𝑔𝑔𝛼𝛼 –open set of 𝑋𝑋 such that𝐵𝐵 ⊆ 𝑈𝑈.  Then𝐴𝐴 ⊆ 𝑈𝑈.  Since 𝐴𝐴 is an 𝑔𝑔𝜁𝜁∗-closed set 𝛼𝛼𝑐𝑐𝑐𝑐(𝐴𝐴) ⊆ 𝑈𝑈.  Also 
𝐵𝐵 ⊆ 𝛼𝛼𝑐𝑐𝑐𝑐(𝐴𝐴), 𝛼𝛼𝑐𝑐𝑐𝑐(𝐵𝐵) ⊆  𝛼𝛼𝑐𝑐𝑐𝑐(𝐴𝐴) ⊆ 𝑈𝑈.  Hence 𝐵𝐵 is also an 𝑔𝑔𝜁𝜁∗-closed subset of 𝑋𝑋. 
 
Theorem 4.5: Let 𝐴𝐴 be an 𝑔𝑔𝜁𝜁∗-closed set in 𝑋𝑋.Then 𝐴𝐴 is 𝛼𝛼-closed iff 𝛼𝛼𝑐𝑐𝑐𝑐(𝐴𝐴) − 𝐴𝐴 is closed. 
 
Proof: Necessity: Let 𝐴𝐴 be an 𝑔𝑔𝜁𝜁∗-closed subset of 𝑋𝑋.  Then 𝛼𝛼𝑐𝑐𝑐𝑐(𝐴𝐴) = 𝐴𝐴 and so 𝛼𝛼𝑐𝑐𝑐𝑐(𝐴𝐴)-𝐴𝐴 = ∅ 
which is closed. 
 
Sufficiency: Since 𝐴𝐴 is 𝑔𝑔𝜁𝜁∗-closed, by theorem 4.2, 𝛼𝛼𝑐𝑐𝑐𝑐(𝐴𝐴) − 𝐴𝐴 contains no non-empty #𝑔𝑔𝛼𝛼-closed set.  But 𝛼𝛼𝑐𝑐𝑐𝑐(𝐴𝐴) −
𝐴𝐴 is closed.  This implies𝛼𝛼𝑐𝑐𝑐𝑐(𝐴𝐴) − 𝐴𝐴 = ∅.  That is𝛼𝛼𝑐𝑐𝑐𝑐(𝐴𝐴) = 𝐴𝐴.  Hence 𝐴𝐴 is 𝛼𝛼-closed. 
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5. GENERALIZED 𝜁𝜁∗-CONTINUOUS MAP  
 
Definition 5.1: A function𝑓𝑓: (𝑋𝑋, 𝜏𝜏)  →  (𝑌𝑌,𝜎𝜎) is called𝑔𝑔𝜁𝜁∗-continuous if 𝑓𝑓−1(𝑉𝑉)is a 𝑔𝑔𝜁𝜁∗-closed set of  (𝑋𝑋, 𝜏𝜏) for every 
closed set 𝑉𝑉 of (𝑌𝑌,𝜎𝜎). 
 
Theorem 5.2: Every 𝛼𝛼-continuous map is 𝑔𝑔𝜁𝜁∗-continuous. 
 
Proof: Let 𝑉𝑉 be a closed set of (𝑌𝑌,𝜎𝜎). Since 𝑓𝑓 is a 𝛼𝛼-continuous map, 𝑓𝑓−1(𝑉𝑉) is 𝛼𝛼-closed in (𝑋𝑋, 𝜏𝜏). 
 
Every 𝛼𝛼-closed set is𝑔𝑔𝜁𝜁∗-closed set.  Therefore𝑓𝑓−1(𝑉𝑉)is a𝑔𝑔𝜁𝜁∗-closed set of (𝑋𝑋, 𝜏𝜏). 
 
Hence 𝑓𝑓 is a 𝑔𝑔𝜁𝜁∗-continuous map. 
 
The converse of the above theorem need not be true by the following example. 
 
Example 5.3: Let 𝑋𝑋 = 𝑌𝑌 = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑}, 𝜏𝜏 = {𝑋𝑋,𝜙𝜙, {𝑎𝑎}, {𝑏𝑏 , 𝑐𝑐}, {𝑎𝑎, 𝑏𝑏, 𝑐𝑐}} and 𝜎𝜎 = {𝑌𝑌,𝜙𝜙, {𝑎𝑎, 𝑐𝑐}}. 
 
Let 𝑓𝑓: (𝑋𝑋, 𝜏𝜏)  →  (𝑌𝑌,𝜎𝜎) be defined by 𝑓𝑓(𝑎𝑎) = 𝑎𝑎,𝑓𝑓(𝑏𝑏) = 𝑏𝑏, 𝑓𝑓(𝑐𝑐) = 𝑐𝑐 and 𝑓𝑓(𝑑𝑑)  =  𝑑𝑑. 
 
Therefore 𝑓𝑓 is not 𝛼𝛼-continuous.  However 𝑓𝑓 is 𝑔𝑔𝜁𝜁∗-continuous. 
 
Theorem 5.4:  
(i) Every 𝑔𝑔′′ -continuous map is 𝑔𝑔𝜁𝜁∗-continuous. 
(ii) Every 𝑔𝑔𝜁𝜁∗-continuous map is 𝑔𝑔𝛼𝛼-continuous, 𝑔𝑔𝑔𝑔-continuous, 𝑔𝑔𝑔𝑔-continuous, 𝛼𝛼𝑔𝑔-continuous. 
 
Proof: It is obvious. 
 
The converses of the above theorems need not be true by the following example. 
 
Example 5.5: (i) Let 𝑋𝑋 =  𝑌𝑌 = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐}, 𝜏𝜏 = {𝑋𝑋,𝜙𝜙, {𝑏𝑏}}  and 𝜎𝜎 = {𝑌𝑌,𝜙𝜙, {𝑎𝑎}}.  Let 𝑓𝑓: (𝑋𝑋, 𝜏𝜏) → (𝑌𝑌,𝜎𝜎)  be defined by 
𝑓𝑓(𝑎𝑎) = 𝑏𝑏, 𝑓𝑓(𝑏𝑏) = 𝑎𝑎, and𝑓𝑓(𝑐𝑐) = 𝑐𝑐. Therefore 𝑓𝑓 is not 𝑔𝑔′′ -continuous. 
 
However 𝑓𝑓 is 𝑔𝑔𝜁𝜁∗-continuous. 
 
(ii) Let 𝑋𝑋 = 𝑌𝑌 = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐}, 𝜏𝜏 = {𝑋𝑋,𝜙𝜙, {𝑎𝑎}} and 𝜎𝜎 = {𝑌𝑌,𝜙𝜙, {𝑏𝑏}}. Let 𝑓𝑓: (𝑋𝑋, 𝜏𝜏) → (𝑌𝑌,𝜎𝜎) be defined by 𝑓𝑓(𝑎𝑎) = 𝑎𝑎, 𝑓𝑓(𝑏𝑏) = 𝑏𝑏 
and 𝑓𝑓(𝑐𝑐) = 𝑐𝑐 . Therefore 𝑓𝑓 is not 𝑔𝑔𝜁𝜁∗-continuous. 
 
However 𝑓𝑓 is 𝑔𝑔𝑔𝑔-continuous, 𝑔𝑔𝑔𝑔-continuous and 𝛼𝛼𝑔𝑔-continuous.  
 
6. GENERALIZED 𝜁𝜁∗-IRRESOLUTE MAP  
 
Definition 6.1: A function𝑓𝑓: (𝑋𝑋, 𝜏𝜏)  →  (𝑌𝑌,𝜎𝜎) is called 𝑔𝑔𝜁𝜁∗-irresoluteif 𝑓𝑓−1(𝑉𝑉) is a 𝑔𝑔𝜁𝜁∗-closed set of (𝑋𝑋, 𝜏𝜏) for every 
𝑔𝑔𝜁𝜁∗-closed set 𝑉𝑉 of (𝑌𝑌,𝜎𝜎). 
 
Theorem 6.2: Every 𝑔𝑔𝜁𝜁∗-irresolute map is 𝑔𝑔𝜁𝜁∗-continuous. 
 
Proof: Let 𝑉𝑉 be a closed set of (𝑌𝑌,𝜎𝜎) and hence it is 𝑔𝑔𝜁𝜁∗-closed set.Since 𝑓𝑓 is 𝑔𝑔𝜁𝜁∗-irresolute,       𝑓𝑓−1(𝑉𝑉)  is a𝑔𝑔𝜁𝜁∗-
closed set of (X, τ). 
 
Hence 𝑓𝑓 is a 𝑔𝑔𝜁𝜁∗-continuous map. 
 
The converse of the above theorem need not be true by the following example. 
 
Example 6.3: Let 𝑋𝑋 =  𝑌𝑌 =  {𝑎𝑎, 𝑏𝑏, 𝑐𝑐}, 𝜏𝜏 =  {𝑋𝑋,𝜙𝜙, {𝑏𝑏 , 𝑐𝑐}}  and  𝜎𝜎 = {𝑌𝑌,𝜙𝜙, {𝑎𝑎}} . Let 𝑓𝑓: (𝑋𝑋, 𝜏𝜏) → (𝑌𝑌,𝜎𝜎)  be defined by 
𝑓𝑓(𝑎𝑎)   =  𝑏𝑏, 𝑓𝑓(𝑏𝑏)  =  𝑎𝑎 and 𝑓𝑓(𝑐𝑐)  =  𝑐𝑐. Then 𝑓𝑓 is not 𝑔𝑔𝜁𝜁∗-irresolute,since{𝑐𝑐} is a 𝑔𝑔𝜁𝜁∗-closed set of (𝑌𝑌,𝜎𝜎), but 
𝑓𝑓−1({𝑐𝑐}) is not a 𝑔𝑔𝜁𝜁∗-closed setof(𝑋𝑋, 𝜏𝜏). 
 
However 𝑓𝑓 is 𝑔𝑔𝜁𝜁∗-continuous. 
 
Theorem 6.4: If 𝑓𝑓: (𝑋𝑋, 𝜏𝜏)  →  (𝑌𝑌,𝜎𝜎)  and 𝑔𝑔: (𝑌𝑌,𝜎𝜎)  →  (𝑍𝑍, 𝜂𝜂) are 𝑔𝑔𝜁𝜁∗-irresolute, then the composition 𝑔𝑔 ∘ 𝑓𝑓:  (𝑋𝑋, 𝜏𝜏) →
 (𝑍𝑍, 𝜂𝜂) is 𝑔𝑔𝜁𝜁∗-irresolute. 
 
Proof: It is obvious. 
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7. GENERALIZED𝜁𝜁∗𝑐𝑐-HOMEOMORPHISM AND THEIR GROUP STRUCTURE 
 
Definition 7.1: A function 𝑓𝑓: (𝑋𝑋, 𝜏𝜏) → (𝑌𝑌,𝜎𝜎) is said to be 
(𝑖𝑖) 𝑔𝑔𝜁𝜁∗-open if the image 𝑓𝑓(𝑈𝑈) is 𝑔𝑔𝜁𝜁∗-open in (𝑌𝑌,𝜎𝜎) for every open set 𝑈𝑈 of (𝑋𝑋, 𝜏𝜏). 
(𝑖𝑖𝑖𝑖)𝑔𝑔𝜁𝜁∗-closed if the image 𝑓𝑓(𝑈𝑈) is 𝑔𝑔𝜁𝜁∗-closed in (𝑌𝑌,𝜎𝜎) for every open set 𝑈𝑈 of (𝑋𝑋, 𝜏𝜏). 
(𝑖𝑖𝑖𝑖𝑖𝑖) 𝑔𝑔𝜁𝜁∗𝑐𝑐-homeomorphism if 𝑓𝑓 is bijective and 𝑓𝑓 and 𝑓𝑓−1 are 𝑔𝑔𝜁𝜁∗-irresolute. 
(𝑖𝑖𝑖𝑖)𝑔𝑔𝜁𝜁∗-homeomorphism if 𝑓𝑓 is bijective and 𝑓𝑓 and 𝑓𝑓−1are 𝑔𝑔𝜁𝜁∗-continuous. 
 
Theorem 7.2: 
(i) Suppose that f is a bijection, then the following conditions are equivalent. 

(a) 𝑓𝑓is a 𝑔𝑔𝜁𝜁∗-homeomorphism. 
(b) 𝑓𝑓is a 𝑔𝑔𝜁𝜁∗-open and 𝑔𝑔𝜁𝜁∗-continuous. 
(c) 𝑓𝑓is a 𝑔𝑔𝜁𝜁∗-closed and 𝑔𝑔𝜁𝜁∗-continuous. 

(ii) If 𝑓𝑓 is a homeomorphism, then 𝑓𝑓and 𝑓𝑓−1are 𝑔𝑔𝜁𝜁∗-irresolute. 
(iii) Every 𝑔𝑔𝜁𝜁∗𝑐𝑐-homeomorphism is a 𝑔𝑔𝜁𝜁∗-homeomorphism. 

 
Proof:  
(i) It is obvious. 
(ii) First we prove that 𝑓𝑓−1is 𝑔𝑔𝜁𝜁∗-irresolute. Let 𝐴𝐴 be a 𝑔𝑔𝜁𝜁∗-closed set of (𝑋𝑋, 𝜏𝜏). To show (𝑓𝑓−1)-1(𝐴𝐴)= 𝑓𝑓(𝐴𝐴) is 𝑔𝑔𝜁𝜁∗-
closed set in (𝑌𝑌,𝜎𝜎). Let 𝑈𝑈 be a 𝑔𝑔𝜁𝜁∗-open set such that 𝑓𝑓(𝐴𝐴)  ⊆  𝑈𝑈. 

 
Then 𝐴𝐴 =  (𝑓𝑓−1(𝑓𝑓(𝐴𝐴)))  ⊆ 𝑓𝑓−1(𝑈𝑈) and 𝑓𝑓−1(𝑈𝑈) is #𝑔𝑔𝛼𝛼 −open. Since 𝐴𝐴 is 𝑔𝑔𝜁𝜁∗-closed,       𝛼𝛼𝑐𝑐𝑐𝑐(𝐴𝐴)  ⊆ 𝑓𝑓−1(𝑈𝑈), we have 
 𝛼𝛼𝑐𝑐𝑐𝑐(𝑓𝑓(𝐴𝐴))  =  𝑓𝑓( 𝛼𝛼𝑐𝑐𝑐𝑐(𝐴𝐴))  ⊆  𝑓𝑓(𝑓𝑓−1(𝑈𝑈))  ⊆  𝑈𝑈 and so 𝑓𝑓(𝐴𝐴)is       𝑔𝑔𝜁𝜁∗-closed. Thus 𝑓𝑓−1is 𝑔𝑔𝜁𝜁∗-irresolute. Since 𝑓𝑓−1is 
also a homeomorphism(𝑓𝑓−1)-1= 𝑓𝑓 is  𝑔𝑔𝜁𝜁∗-irresolute. 
(iii) It is proved by Theorem6.2.  

 
Theorem 7.3: For a topological space (𝑋𝑋, 𝜏𝜏) we define the following three collections of functions. 
(i) 𝑔𝑔𝜁𝜁∗𝑐𝑐ℎ (𝑋𝑋, 𝜏𝜏)  =  {𝑓𝑓/𝑓𝑓: (𝑋𝑋, 𝜏𝜏)  → (𝑋𝑋, 𝜏𝜏) is a 𝑔𝑔𝜁𝜁∗𝑐𝑐-homeomorphism}. 
(ii) 𝑔𝑔𝜁𝜁∗ℎ (𝑋𝑋, 𝜏𝜏)  =  {𝑓𝑓/𝑓𝑓: (𝑋𝑋, 𝜏𝜏)  → (𝑋𝑋, 𝜏𝜏)is a 𝑔𝑔𝜁𝜁∗-homeomorphism}. 
(iii) ℎ (𝑋𝑋, 𝜏𝜏)  =  {𝑓𝑓/𝑓𝑓: (𝑋𝑋, 𝜏𝜏)  → (𝑋𝑋, 𝜏𝜏)is a homeomorphism}. 

 
Theorem 7.4: For a topological space (𝑋𝑋, 𝜏𝜏) the following properties hold. 
(i) ℎ (𝑋𝑋, 𝜏𝜏) 𝑔𝑔𝜁𝜁∗𝑐𝑐ℎ (𝑋𝑋, 𝜏𝜏) 𝑔𝑔𝜁𝜁∗ℎ (𝑋𝑋, 𝜏𝜏). 
(ii) The set 𝑔𝑔𝜁𝜁∗𝑐𝑐ℎ (𝑋𝑋, 𝜏𝜏)   forms a group under composition of functions. 
(iii) The group ℎ (𝑋𝑋, 𝜏𝜏)  is  subgroup of 𝑔𝑔𝜁𝜁∗𝑐𝑐ℎ (𝑋𝑋, 𝜏𝜏). 
(iv) If f: (X, τ)  → (Y, σ) is a 𝑔𝑔𝜁𝜁∗𝑐𝑐-homeomorphism then it induces an isomorphism 𝑓𝑓∗: 𝑔𝑔𝜁𝜁∗𝑐𝑐ℎ (𝑋𝑋, 𝜏𝜏) → 𝑔𝑔𝜁𝜁∗𝑐𝑐ℎ(𝑌𝑌,𝜎𝜎). 

 
Proof:  
(i) It is proved by using Theorem 5.2, Theorem 6.2 and a fact that every continuous map is 𝛼𝛼-continuous. 
 
(ii) It is proved by using Theorem6.4; for any element, 𝑎𝑎, 𝑏𝑏 ∈ 𝑔𝑔𝜁𝜁∗𝑐𝑐ℎ (𝑋𝑋, 𝜏𝜏), the following binary operation                 
𝑤𝑤:𝑔𝑔𝜁𝜁∗𝑐𝑐ℎ (𝑋𝑋, 𝜏𝜏)× 𝑔𝑔𝜁𝜁∗𝑐𝑐ℎ (𝑋𝑋, 𝜏𝜏) → 𝑔𝑔𝜁𝜁∗𝑐𝑐ℎ (𝑋𝑋, 𝜏𝜏) is well defined 𝑤𝑤(𝑎𝑎, 𝑏𝑏) = 𝑏𝑏 o 𝑎𝑎. 
 
(iii) By (i), ℎ (𝑋𝑋, 𝜏𝜏) ⊆ 𝑔𝑔𝜁𝜁∗𝑐𝑐ℎ (𝑋𝑋, 𝜏𝜏) and ℎ (𝑋𝑋, 𝜏𝜏)   ≠ ∅. For any elements 𝑎𝑎, 𝑏𝑏 ∈  ℎ (𝑋𝑋, 𝜏𝜏) and the binary operation 𝑤𝑤 in  
 
(ii), it is shown that 𝑤𝑤(𝑎𝑎, 𝑏𝑏−1) = 𝑏𝑏−1𝑎𝑎 ∈ ℎ (𝑋𝑋, 𝜏𝜏). 
 
(iv)We define𝑓𝑓: 𝑔𝑔𝜁𝜁∗𝑐𝑐ℎ (𝑋𝑋, 𝜏𝜏) → 𝑔𝑔𝜁𝜁∗𝑐𝑐ℎ (𝑌𝑌,𝜎𝜎)by𝑓𝑓 ∗ (ℎ)  =  𝑓𝑓𝑓𝑓ℎ𝑓𝑓𝑓𝑓−1. Then using Theorem6.4, we have that (ℎ)  ∈
𝑔𝑔𝜁𝜁∗𝑐𝑐ℎ (𝑋𝑋, 𝜏𝜏). It is shown that 𝑓𝑓 ∗ is a required group isomorphism. 
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