International Journal of Mathematical Archive-4(5), 2013, 274-279

GENERALIZED ζ^* -CLOSED SETS IN TOPOLOGICAL SPACES

¹V. Kokilavani, ²M. Myvizhi* and ³M. Vivek Prabu

¹Assistant Professor, Dept. of Mathematics, Kongunadu Arts and Science College, Coimbatore, Tamilnadu, India

²Assistant Professor, Dept. of Mathematics, Tejaa Shakthi Institute of Technology for Women Coimbatore, Tamilnadu, India

³Research Scholar, Kongunadu Arts and Science College – Coimbatore, Tamilnadu, India

(Received on: 29-03-13; Revised & Accepted on: 30-04-13)

ABSTRACT

In this paper, we introduce the notion of $g\zeta^*$ -closed sets in topological spaces and investigate some of their properties and we construct a group of $g\zeta^*c$ - homeomorphisms which contains the group of all homeomorphisms as a subgroup.

Keywords: $g\zeta^*$ *-closed set,* $g\zeta^*$ *-continuous function,* $g\zeta^*$ *-irresolute and* $g\zeta^*$ *-homeomorphism.*

1. INTRODUCTION

Levine [1, 2] introduced the concept of generalized closed sets and semi-closed sets in topological spaces. Maki *et al.*, introduced generalized α -closed sets (brieflyg α -closed sets) [3] and α -generalized closed sets (briefly α g-closed sets) [4] respectively. In section 3 and 4 of this paper, we introduce the concept of $g\zeta^*$ -closed set and obtain some properties of this set. In section 5 and 6, we introduce the concept of $g\zeta^*$ -continuous functions and $g\zeta^*$ -irresolute functions. For a topological space(X, τ), we define groups $g\zeta^*h(X, \tau), g\zeta^*ch(X, \tau)$ and they contain the group $h(X, \tau)$ whose elements are all homeomorphisms from (X, τ) into itself.

Throughout this paper(X, τ), (Y, σ) and (Z, η) represent non-empty topological spaces on which no separation axioms are assumed unless or otherwise mentioned. For a subset A of a space(X, τ), cl (A) and int(A) denote the closure of A and interior of A.

2. PRELIMINARIES

In this section we recall some of the basic definitions.

Definition 2.1: A subset *A* of space (X, τ) is called

- (i) Semi-open set [1] if $A \subseteq cl$ (*int* (A)).
- (ii) Pre-open set [5] if $A \subseteq int (cl(A))$.
- (iii) α -open set [6] if $A \subseteq int (cl (int (A)))$.

The complement of a semi-open (resp.pre-open, α -open) set is called semi-closed (resp.pre-closed, α -closed).

Definition 2.2: A subset A of (X, τ) is called

- (i) generalized closed (briefly *g*-closed)set[2] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open set in (X, τ) .
- (ii) generalized semi-closed (briefly *gs*-closed) set [7] if *scl* (*A*) $\subseteq U$ whenever $A \subseteq U$ and *U* is open set in(*X*, τ).
- (iii) α -generalized closed (briefly αg -closed) set [4] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open set in (X, τ) .
- (iv) generalized α -closed (briefly $g\alpha$ -closed) set [3] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is α -open set in(X, τ).
- (v) generalized pre-closed set (briefly *gp*-closed) set [8] if *pcl* (A) $\subseteq U$ whenever $A \subseteq U$ and U is open set in(X, τ).
- (vi) a generalized [#] α -closed set (briefly g[#] α -closed) [16] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in (X, τ) .
- (vii) a [#]generalized α -closed set (briefly [#]g α -closed) [17] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is a g[#] α -open in (X, τ) .

Corresponding author:²M. Myvizhi*

²Assistant Professor, Dept. of Mathematics, Tejaa Shakthi Institute of Technology for Women, Coimbatore, Tamilnadu, India

¹V. Kokilavani, ²M. Myvizhi* and ³M. Vivek Prabu/Generalizedζ*-Closed Sets in Topological spaces/ IJMA- 4(5), May-2013.

The complements of the above sets are called their respective open sets.

Definition2.3: A function $f: (X, \tau) \to (Y, \sigma)$ is called (i) α -continuous [9] if $f^{-1}(V)$ is α -closed in (X, τ) for every closed set V of (Y, σ) . (ii) g-continuous [10] if $f^{-1}(V)$ is g-closed in (X, τ) for every closed set V of (Y, σ) . (iii) gs-continuous [11] if $f^{-1}(V)$ is gs-closed in (X, τ) for every closed set V of (Y, σ) . (iv) $g\alpha$ -continuous [3] if $f^{-1}(V)$ is $g\alpha$ -closed in (X, τ) for every closed set V of (Y, σ) . (v) αg -continuous [4] if $f^{-1}(V)$ is αg -closed in (X, τ) for every closed set V of (Y, σ) . (vi) g''-continuous [12] if $f^{-1}(V)$ is g''-closed in (X, τ) for every closed set V of (Y, σ) . (vii) gp-continuous [8] if $f^{-1}(V)$ is $g^{\#}\alpha$ -closed in (X, τ) for every closed set V of (Y, σ) . (viii) $g^{\#}\alpha$ -continuous [16] if $f^{-1}(V)$ is $g^{\#}\alpha$ -closed in (X, τ) for every closed set V of (Y, σ) . (ix) ${}^{\#}g\alpha$ -continuous [17] if $f^{-1}(V)$ is ${}^{\#}g\alpha$ -closed in (X, τ) for every closed set V of (Y, σ) .

3. $g\zeta^*$ -CLOSED SETS IN TOPOLOGICAL SPACES

We introduce the following definition.

Definition 3.1: [13] A subset A of a space (X, τ) is called $g\zeta^*$ -closed if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is[#] $g\alpha$ open set in (X, τ)

Proposition 3.2: Every closed set is $g\zeta^*$ -closed set but not conversely.

Proof: Let *A* be a closed set and *U* be a ${}^{\#}g\alpha$ -open set containing A. Since *A* is closed, we have $\alpha cl(A) \subseteq cl(A) = A \subseteq U$. Therefore $\alpha cl(A) \subseteq U$ and hence *A* is $g\zeta^*$ -closed set.

Remark 3.3: The converse of the above theorem is not true as shown in the following example.

Example 3.4: Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a, b\}\}$. The set $\{a, c\}$ is $g\zeta^*$ -closed set but not closed set.

Proposition 3.5: Every α -closed set is $g\zeta^*$ -closed set but not conversely.

Proof: Let A be an α -closed set and U be a [#] $g\alpha$ -open set containing A. Since A is α -closed, we have $\alpha cl(A) = A \subseteq U$. Therefore $\alpha cl(A) \subseteq U$ and hence A is $g\zeta^*$ -closed set.

Example 3.6: Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a, b\}\}$. The set $\{b, c\}$ is $g\zeta^*$ -closed set but not α -closed set.

Proposition 3.7: Every $g\zeta^*$ -closed set is αg -closed set is but not conversely.

Proof: Let *A* be a $g\zeta^*$ -closed set and *U* be any open set containing *A*. Since every open set is α -open and every α -open set is ${}^{\#}g\alpha$ -open. Therefore every open set is ${}^{\#}g\alpha$ -open [14]. We have $\alpha cl(A) \subseteq U$. Hence *A* is αg -closed set.

Example 3.8: Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}, \{b, c\}\}$. The set $\{b\}$ is αg -closed but not $g\zeta^*$ -closed set.

Proposition 3.9: Every $g\zeta^*$ -closed set is $g\alpha$ -closed set is but not conversely.

Proof: Let *A* be a $g\zeta^*$ -closed set and *U* be every α -open set containing *A*. Since every α -open set is ${}^{\#}g\alpha$ -open. We have $\alpha cl(A) \subseteq U$. Hence *A* is $g\alpha$ -closed set.

Example 3.10: Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}, \{b, c\}\}$. The set $\{a, b\}$ is $g\alpha$ -closed but not $g\zeta^*$ -closed set.

Proposition 3.11: Every $g\zeta^*$ -closed set is *gs*-closed set is but not conversely.

Proof: Let *A* be a $g\zeta^*$ -closed set and *U* be an open set containing *A*. Since every open set is ${}^{\#}g\alpha$ -open, we have $scl(A) \subseteq \alpha cl(A) \subseteq U$. Therefore $scl(A) \subseteq U$. Hence *A* is gs-closed set.

Example 3.12: Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}, \{a, b\}\}$. The set $\{a, c\}$ is *gs*-closed but not $g\zeta^*$ -closed set.

Proposition 3.13: Every $g\zeta^*$ -closed set is gp-closed set is but not conversely.

Proof: Let A be a $g\zeta^*$ -closed set and U be an open set containing A. Since every open set is ${}^{\#}g\alpha$ -open, we have $pcl(A) \subseteq \alpha cl(A) \subseteq U[15]$. Therefore $pcl(A) \subseteq U$.Hence A is gp-closed set.

¹V. Kokilavani, ²M. Myvizhi* and ³M. Vivek Prabu/Generalized ζ^* -Closed Sets in Topological spaces/ IJMA- 4(5), May-2013.

Example 3.14: Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a, b\}\}$. The set $\{b\}$ is *gp*-closed but not $g\zeta^*$ -closed set.

Remark 3.15: The following examples show that $g\zeta^*$ -closeness is independent on g-closeness.

Example 3.16: Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}, \{a, b\}\}$, The set $\{b\}$ is $g\zeta^*$ -closed but not g-closed.

Remark 3.17: The following diagram shows that the relationships of $g\zeta^*$ -closed sets with other known existing sets. $A \rightarrow B$ represents *A implies B* but not conversely.

4. BASIC PROPERTIES OF $g\zeta^*$ CLOSED SETS

Theorem 4.1: If *A* and *B* are $g\zeta^*$ -closed in *X* then, $A \cup B$ is $g\zeta^*$ closed in *X*.

Proof: Let *A* and *B* be any two $g\zeta^*$ -closed in *X* and *U* be any ${}^{\#}g\alpha$ –open set containing *A* and *B*. we have $\alpha cl(A) \subseteq U$ and $\alpha cl(B) \subseteq U$. Thus $\alpha cl(A) \cup \alpha cl(B) \subseteq U$. Hence $A \cup B$ is $g\zeta^*$ -closed in *X*.

Theorem 4.2: If a set A is $g\zeta^*$ -closed, then $\alpha cl(A) - A$ contains no non-empty ${}^{\#}g\alpha$ –closed set.

Proof: Suppose that *A* is $g\zeta^*$ -closed set. Let *U* be a ${}^{\#}g\alpha$ –closed set contained in $\alpha cl(A) - A$. Now U^c is ${}^{\#}g\alpha$ –open set of (X, τ) such that $A \subseteq U^c$. Since *A* is $g\zeta^*$ closed set of (X, τ) , then $\alpha cl(A) \subseteq U^c$. Thus $U \subseteq (\alpha cl(A))^c$. Also $U \subseteq \alpha cl(A) - A$. Therefore $U \subseteq (\alpha cl(A))^c \cap (\alpha cl(A)) = \emptyset$ and hence $U = \emptyset$.

Theorem 4.3: If A is ${}^{\#}g\alpha$ –open and $g\zeta^*$ -closed subset of (X, τ) then A is an α -closed subset of X.

Proof: Since *A* is ${}^{\#}g\alpha$ –open and $g\zeta^*$ -closed, $\alpha cl(A) \subseteq A$. Then *A* is α -closed.

Theorem 4.4: Let *A* be a $g\zeta^*$ -closed subset of *X*. If $A \subseteq B \subseteq \alpha cl(A)$, then *B* is also an $g\zeta^*$ -closed subset of *X*.

Proof: Let *U* be a ${}^{\#}g\alpha$ –open set of *X* such that $B \subseteq U$. Then $A \subseteq U$. Since *A* is an $g\zeta^*$ -closed set $\alpha cl(A) \subseteq U$. Also $B \subseteq \alpha cl(A), \alpha cl(B) \subseteq \alpha cl(A) \subseteq U$. Hence *B* is also an $g\zeta^*$ -closed subset of *X*.

Theorem 4.5: Let A be an $g\zeta^*$ -closed set in X.Then A is α -closed iff $\alpha cl(A) - A$ is closed.

Proof: Necessity: Let *A* be an $g\zeta^*$ -closed subset of *X*. Then $\alpha cl(A) = A$ and so $\alpha cl(A) - A = \emptyset$ which is closed.

Sufficiency: Since A is $g\zeta^*$ -closed, by theorem 4.2, $\alpha cl(A) - A$ contains no non-empty ${}^{\#}g\alpha$ -closed set. But $\alpha cl(A) - A$ is closed. This implies $\alpha cl(A) - A = \emptyset$. That is $\alpha cl(A) = A$. Hence A is α -closed.

5. GENERALIZED ζ^* -CONTINUOUS MAP

Definition 5.1: A function $f: (X, \tau) \to (Y, \sigma)$ is called $g\zeta^*$ -continuous if $f^{-1}(V)$ is a $g\zeta^*$ -closed set of (X, τ) for every closed set V of (Y, σ) .

Theorem 5.2: Every α -continuous map is $g\zeta^*$ -continuous.

Proof: Let *V* be a closed set of (Y, σ) . Since *f* is a α -continuous map, $f^{-1}(V)$ is α -closed in (X, τ) .

Every α -closed set is $g\zeta^*$ -closed set. Therefore $f^{-1}(V)$ is $ag\zeta^*$ -closed set of (X, τ) .

Hence *f* is a $g\zeta^*$ -continuous map.

The converse of the above theorem need not be true by the following example.

Example 5.3: Let $X = Y = \{a, b, c, d\}, \tau = \{X, \phi, \{a\}, \{b, c\}, \{a, b, c\}\}$ and $\sigma = \{Y, \phi, \{a, c\}\}$.

Let $f: (X, \tau) \to (Y, \sigma)$ be defined by f(a) = a, f(b) = b, f(c) = c and f(d) = d.

Therefore *f* is not α -continuous. However *f* is $g\zeta^*$ -continuous.

Theorem 5.4:

(i) Every g''-continuous map is $g\zeta^*$ -continuous.

(ii) Every $g\zeta^*$ -continuous map is $g\alpha$ -continuous, gp-continuous, gs-continuous, αg -continuous.

Proof: It is obvious.

The converses of the above theorems need not be true by the following example.

Example 5.5: (i) Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{b\}\}$ and $\sigma = \{Y, \phi, \{a\}\}$. Let $f: (X, \tau) \to (Y, \sigma)$ be defined by f(a) = b, f(b) = a, and f(c) = c. Therefore f is not g''-continuous.

However *f* is $g\zeta^*$ -continuous.

(ii) Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{a\}\}$ and $\sigma = \{Y, \phi, \{b\}\}$. Let $f: (X, \tau) \to (Y, \sigma)$ be defined by f(a) = a, f(b) = b and f(c) = c. Therefore f is not $g\zeta^*$ -continuous.

However *f* is *gp*-continuous, *gs*-continuous and αg -continuous.

6. GENERALIZED ζ^* -IRRESOLUTE MAP

Definition 6.1: A function $f: (X, \tau) \to (Y, \sigma)$ is called $g\zeta^*$ -irresolute $f^{-1}(V)$ is a $g\zeta^*$ -closed set of (X, τ) for every $g\zeta^*$ -closed set V of (Y, σ) .

Theorem 6.2: Every $g\zeta^*$ -irresolute map is $g\zeta^*$ -continuous.

Proof: Let V be a closed set of (Y, σ) and hence it is $g\zeta^*$ -closed set.Since f is $g\zeta^*$ -irresolute, $f^{-1}(V)$ is $ag\zeta^*$ -closed set of (X, τ) .

Hence *f* is a $g\zeta^*$ -continuous map.

The converse of the above theorem need not be true by the following example.

Example 6.3: Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{b, c\}\}$ and $\sigma = \{Y, \phi, \{a\}\}$. Let $f: (X, \tau) \to (Y, \sigma)$ be defined by f(a) = b, f(b) = a and f(c) = c. Then f is not $g\zeta^*$ -irresolute, since $\{c\}$ is a $g\zeta^*$ -closed set of (Y, σ) , but $f^{-1}(\{c\})$ is not a $g\zeta^*$ -closed set of (X, τ) .

However *f* is $g\zeta^*$ -continuous.

Theorem 6.4: If $f:(X,\tau) \to (Y,\sigma)$ and $g:(Y,\sigma) \to (Z,\eta)$ are $g\zeta^*$ -irresolute, then the composition $g \circ f:(X,\tau) \to (Z,\eta)$ is $g\zeta^*$ -irresolute.

Proof: It is obvious.

© 2013, IJMA. All Rights Reserved

7. GENERALIZEDZ*c-HOMEOMORPHISM AND THEIR GROUP STRUCTURE

Definition 7.1: A function $f: (X, \tau) \to (Y, \sigma)$ is said to be

(i) $q\zeta^*$ -open if the image f(U) is $q\zeta^*$ -open in (Y, σ) for every open set U of (X, τ) .

(*ii*) $g\zeta^*$ -closed if the image f(U) is $g\zeta^*$ -closed in (Y, σ) for every open set U of (X, τ) .

(*iii*) $g\zeta^*c$ -homeomorphism if f is bijective and f and f^{-1} are $g\zeta^*$ -irresolute.

 $(iv)q\zeta^*$ -homeomorphism if f is bijective and f and f^{-1} are $q\zeta^*$ -continuous.

Theorem 7.2:

(i) Suppose that f is a bijection, then the following conditions are equivalent.

- (a) f is a $g\zeta^*$ -homeomorphism.
- (b) f is a $q\zeta^*$ -open and $q\zeta^*$ -continuous.
- (c) *f* is a $q\zeta^*$ -closed and $q\zeta^*$ -continuous.
- (ii) If f is a homeomorphism, then f and f^{-1} are $q\zeta^*$ -irresolute.

(iii) Every $q\zeta^*c$ -homeomorphism is a $q\zeta^*$ -homeomorphism.

Proof:

(i) It is obvious.

(ii) First we prove that f^{-1} is $g\zeta^*$ -irresolute. Let A be a $g\zeta^*$ -closed set of (X, τ) . To show $(f^{-1})^{-1}(A) = f(A)$ is $g\zeta^*$ closed set in (Y, σ) . Let U be a $g\zeta^*$ -open set such that $f(A) \subseteq U$.

Then $A = (f^{-1}(f(A))) \subseteq f^{-1}(U)$ and $f^{-1}(U)$ is ${}^{\#}g\alpha$ -open. Since A is $g\zeta^*$ -closed, $\alpha cl(A) \subseteq f^{-1}(U)$, we have $\alpha cl(f(A)) = f(\alpha cl(A)) \subseteq f(f^{-1}(U)) \subseteq U$ and so f(A) is $g\zeta^*$ -closed. Thus f^{-1} is $g\zeta^*$ -irresolute. Since f^{-1} is also a homeomorphism $(f^{-1})^{-1} = f$ is $g\zeta^*$ -irresolute. (iii) It is proved by Theorem6.2.

Theorem 7.3: For a topological space (X, τ) we define the following three collections of functions.

- $g\zeta^*ch(X,\tau) = \{f/f: (X,\tau) \to (X,\tau) \text{ is a } g\zeta^*c\text{-homeomorphism}\}.$ (i)
- (ii) $g\zeta^*h(X,\tau) = \{f/f: (X,\tau) \to (X,\tau) \text{ is a } g\zeta^*\text{-homeomorphism}\}.$
- (iii) $h(X,\tau) = \{f/f: (X,\tau) \to (X,\tau) \text{ is a homeomorphism} \}.$

Theorem 7.4: For a topological space (X, τ) the following properties hold.

- (i) $h(X,\tau) g\zeta^* ch(X,\tau) g\zeta^* h(X,\tau)$.
- (ii) The set $g\zeta^*ch(X,\tau)$ forms a group under composition of functions.
- (iii) The group $h(X,\tau)$ is subgroup of $g\zeta^*ch(X,\tau)$.
- (iv) If f: $(X, \tau) \to (Y, \sigma)$ is a $g\zeta^*c$ -homeomorphism then it induces an isomorphism $f^*: g\zeta^*ch(X, \tau) \to g\zeta^*ch(Y, \sigma)$.

Proof:

(i) It is proved by using Theorem 5.2, Theorem 6.2 and a fact that every *continuous* map is α -*continuous*.

(ii) It is proved by using Theorem 6.4; for any element, $a, b \in g\zeta^* ch(X, \tau)$, the following binary operation $w: q\zeta^* ch(X,\tau) \times q\zeta^* ch(X,\tau) \rightarrow q\zeta^* ch(X,\tau)$ is well defined $w(a,b) = b \circ a$.

(iii) By (i), $h(X,\tau) \subseteq q\zeta^*ch(X,\tau)$ and $h(X,\tau) \neq \emptyset$. For any elements $a, b \in h(X,\tau)$ and the binary operation w in

(ii), it is shown that $w(a, b^{-1}) = b^{-1}a \in h(X, \tau)$.

(iv)We define $f: g\zeta^* ch(X, \tau) \to g\zeta^* ch(Y, \sigma) by f * (h) = fohof^{-1}$. Then using Theorem 6.4, we have that $(h) \in$ $g\zeta^*ch(X,\tau)$. It is shown that f * is a required group isomorphism.

REFERENCES

[1] N. Levine, Semi-Open Sets and Semi-Continuity in Topological Spaces, Amer. Math. Monthly, 70, (1963), 36-41.

[2] N. Levine, Generalized Closed Sets in Topology, Rend. Circ. Math. Palermo, 19, (1970), 89-96.

[3] H. Maki, R. Devi, and K. Balachandran, Generalizedα- Closed Sets in Topology, Bull. Fukuoka Univ. Ed. Part III, 42, (1993), 13-21.

[4] H. Maki, R. Devi, and K. Balachandran, Associated Topologies of Generalized α - Closed Sets and α -Generalized Closed Sets, Mem. Fac. Sci. Kochi Univ. Ser-A Math., 14, (1994), 51-63.

[5] A. S. Mashhour, M.E Abd El-Monsef and S. N. El-Debb, On precontinuous and weak precontinuous mappings, Proc. Math. and Phys. Soc. Egypt 55, (1982), 47-53.

© 2013, IJMA. All Rights Reserved

¹V. Kokilavani, ²M. Myvizhi* and ³M. Vivek Prabu/Generalizedζ*-Closed Sets in Topological spaces/ IJMA- 4(5), May-2013.

[6] O Njastad, On some classes of nearly open sets, Pacific J Math., 15(1965), 961-970.

[7] S.P Arya and T Nour, Characterizations of S-normal spaces, Indian J. Pure. Appl. Math., 21(8) (1990), 717-719.

[8] H. Maki., Umehara. J. and Noiri.T., Every topological space is pre-T_{1/2}, *Mem.Fac.Sci.Kochi.Univ. (Math)*, 17 (1996), 33-42.

[9] A. S. Mashhour, I. A. Hasanein, and S. N. El-Deeb, α -Continuous and α -Open Mappings, *Acta Math. Hung.*, 41(3-4), (1983), 213-218.

[10] K. Balachandran, P. Sundaram, and H. Maki, On Generalized Continuous Maps in Topological Spaces, *Mem. Fac. Kochi Uni. Ser. A Math.*, 12, (1991), 5-13.

[11] R. Devi, H. Maki, and K. Balachandran, Semi-Generalized Homeomorphism and Generalized Semi-Homeomorphism in Topological Spaces, *Indian J. Pure Appl. Math.*, 26(3), (1995), 271-284.

[12] Pious Missier, RAVI.O., Jeyashri.S. and Herin Wise Bell.P., g''-closed sets in topology (submitted).

[13] M. Myvizhi and V. Kokilavani, On separation axioms of $g\zeta^*$ -closed sets in topological spaces, *Indian Journal of Science and Technology*, 6, (2013), 119-120.

[14] R. Devi, H. Maki, and V. Kokilavani, The Group Structure of [#]G α -Closed Sets in Topological Spaces, *International Journal of general topology*, 2(1),(2009),21-30.

[15] S. Jafari, S. S. Benchalli, P.G. Patil and T. D. Rayanagoudar Pre-g^{*} closed sets in topological spaces, *Journal of Advanced Studies in Topology Research Article*, 3(3), (2012) 55-59.

[16] K. Nono, R. Devi, M. Devipriya, K. Muthukumaraswamy and H. Maki, On $g^{\#}\alpha$ -closed sets and the Digital plane, *Bull. Fukuoka Univ. Ed. Part III, 53, (2004), 15-24.*

[17] R. Devi, H. Maki and V. Kokilavani, The group structure of ${}^{\#}g\alpha$ -closed sets in topological spaces, *International Journal of General Topology*, 2(2009), 21-30.

Source of support: Nil, Conflict of interest: None Declared