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ABSTRACT 
The conjugate gradient method is a very useful technique for solving minimization problems and has wide 
applications in many fields. In this paper we develop a new class of conjugate gradient methods for unconstrained 
optimization; conjugate gradient methods are widely used for large scale unconstrained optimization problems. In 
addition to ,The performance of a modified Wolf line search rules related to CG-method type method with the results 
from  standard Wolf line search rules are compared. 
 
Keywords: Unconstrained optimizations, line search, Wolfe conditions, conjugate gradient method modified secant 
condition. 
 
 
1. INTRODUCTION 
 
In this study we consider the unconstrained minimization problem    
min ( )f x                                                                                                                                                                  (1.1) 
and the conjugate gradient method of the form:  

1k k k kx x dα+ = +                                                                                                                                                     (1.2)  

𝑑𝑑𝑘𝑘+1 =   � −𝑔𝑔𝑘𝑘                      𝑓𝑓𝑓𝑓𝑓𝑓 𝑘𝑘 = 0     

−𝑔𝑔𝑘𝑘+1 + 𝛽𝛽𝑘𝑘𝑑𝑑𝑘𝑘
             𝑓𝑓𝑓𝑓𝑓𝑓  𝑘𝑘 ≥ 1              

                                    �                                                                         (1.3) 

 

where  xk ∈ Rn   is the current  iterative, dk  is a decent  direction of   f(x) at  xk  , gk = ∇f(xk),αk  is step size 
obtained by a line search and  βk  is a scalar. The scalar so chosen that the method  (1.2) ,(1.3) reduces to the linear 
conjugate gradient method when f  is a strictly convex quadratic and when αk is the exact one – dimensional 
minimizer. Various conjugate gradient methods have been proposed ,and they are mainly differ in the choice of the 
parameter  βk  . Some well-known formulas for  βk   are called the Fletcher-Reeves (FR), Polak-Ribiere-polyak 
(PRP),and Hestenes-Stiefel (HS) ( [6], [11], [12], and [7] respectively), are given below: 
 
βk

FR = ‖gk‖2 ‖gk−1‖2⁄                                                                                                                                               (1.4)   
 
βk

PRP = gk
T(gk − gk−1) ‖gk−1‖2⁄                                                                                                                               (1.5) 

 
βk

HS = gk
T(gk − gk−1) dk

T⁄ (gk − gk−1)                                                                                                                     (1.6) 
 
where  ‖. ‖ denotes the Euclidean norm. The Conjugate gradient method is a very efficient line search method for 
solving large unconstrained problems, due to its lower storage and simple computation. The conjugate gradient 
method is still the best choice for solving (1.1). 
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In practical computations, it is generally believed that the conjugate gradient method is preferred to the relatively 
exact line searches. As a result, in the already-existing convergence analyses and implementations of the conjugate 
gradient method, the strong Wolfe conditions, namely, 
 
f(xk + αkdk) − f(xk) ≤ δαkgk

Tdk                                                                                                                              (1.7) 
 
|g(xk + αkdk)Tdk| ≤ −σgk

Tdk                                                                                                                                   (1.8) 
 
where 0 <δ<σ< 1, are often imposed on the line search. However, recent studies show that one can analyze the 
conjugate gradient method under several practical line searches other than the strong Wolfe line search, and good 
numerical results can be obtained. For example, the nonlinear conjugate gradient method in [5] converges globally 
provided that the step size satisfies the standard Wolfe conditions, namely, (1.7) and 
 
 g(xk + αkdk)Tdk ≤ σgk

Tdk                                                                                                                                       (1.9) 
 
2. DERIATION OF THE MODIFIED COJUGATE GRIDIENT AlGORITHM 
 
Considervx = xk+1 − xk ,yx = gk+1 − gk , when  gk = ∇f(xk) and the unconstrained nonlinear problem is 
minmizef(x) , x ∈ Rn  . Conjugate directionswhich introduce in (1.3) have the property: 
 
dk+1

T Gkdk  =0     for  k ≥ 1                                                                                                                                         (2.1) 
 
Where Gk  is the Hessian of   f(xk),from (2.1)  , we have 
 
dk+1

T Gkdk = 1
αk

dk+1
T Gk(xk+1 − xk) 

                  = 1
αk

dk+1
T Gk(xk+1 − xk) 

                = 1
αk

dk+1
T (gk+1 − xgk ) = 1

αk
dk+1

T yk                                                                                                            (2.2) 
 
From Quasi-Newton, the search direction can be calculated in the form    
 
dk+1=−Hk+1gk+1                                                                                                                                                      (2.3) 
 
By Hk+1yk = vk   and equation (2.3) , we get       
                                                           
dk+1

T yk = −(Hk+1gk+1)Tyk = −gk+1
T (Hk+1yk) = −gk+1

T vk                                                                                              (2.4) 
 
Perry replaced the conjugacy condition dk+1

T yk=0 by   condition  dk+1
T yk = −gk+1

T vk  . 
 
Recently Dai and Liao proposed the condition  dk+1

T yk = −τgk+1
T vk   where τ ≥ 0 is scalar. 

 

In new modified taken   τ = 1
αk

     where   αk = dk
T yk

‖dk‖2> 0.  
 
So, the conjugacy condition  dk+1

T yk = −τgk+1
T vk   become      

 
dk+1

T yk = − 1
αk

gk+1
T vk                                                                                                                                                (2.5) 

Now, multiply the conjugate gradient direction in (1.3) by  yx  , we  get 
 
dk+1

T yk =  −gk+1
T yk + βk dk

Tyk                                                                                                                                                                                                                (2.6) 
 
Therefore,  
 

βk = dk +1
T yk +gk +1

T yk
dk

T yk
                                                                                                                                                                       (2.7)    
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Now, taking the conjugate condition in (2.5) and putting in (2.7), we obtain 
 

βk =
− 1
αk

gk +1
T vk +gk +1

T yk

dk
T yk

                                                                          

 
Implies  

βk =
gk +1

T ( 1
−αk

vk +yk )

dk
T yk

                                                                                                                                                             (2.8) 

 
By this way, we get a modified formula of the conjugate gradient direction, and it is possesses the property of a 
decent direction and it is proved in theorem1. 
 
ALGORITHM OF THE MODIFIED COJUGATE GRIDIENT 
 
Step 0: choose an initial pointx0 ∈ Rn  , ε ∈ (0,1), and set d0 = −g0 = ∇f(x0), k = 0 
 
Step 1: If ‖gk‖ ≤ ε then stop; otherwise go to the next step. 
 
Step 2: Compute step size  αk  by some line search rules. 
 
Step 3: Letxk+1 = xk + αkdk   if ‖gk+1‖ ≤ ε   then stop. 
 
Step 4:  Calculate the search direction  
 
           dk+1 =  −gk+1 + βkdk                                                                                                                                    (2.9) 
 

 where   βk =
gk +1

T (− 1
αk

vk +yk )

dk
T yk

 

 
Step5: Set k=k+1 and go to step 2                
 
Theorem 1: Assume that the sequence {xk} is generated by the algorithm (1), then the modified of CG-method in 
(2.9) is satisfied the sufficient descent condition in to two cases: exact and inexact line search. 
 
Proof: we will get this theorem by mathematical induction: 
 
It is clear when k= 0, then  d0 = −g0  implies d0

Tg0 ≤ −‖g0‖2    
 
suppose that the current search direction  is descent  direction  at the iteration (k) , k > 0 that is mean this  inequity   
dk

Tgk ≤ c‖gk‖2  is satisfy . 
 
Now, we prove the current search direction is descent direction at the iteration (k+1), we have 
 

dk+1 =  −gk+1 + βkdk,  where  βk =
gk +1

T (−1
αk

vk +yk )

dk
T yk

  , then   

 

dk+1 =  −gk+1 +
gk +1

T (−1
αk

vk +yk )

dk
T yk

  dk                                                                                                                          (2.10) 

 
multiplying (2.10)  by gk+1  , and get  
 

dk+1
T gk+1 =  −‖gk+1‖2 +

gk +1
T (−1

αk
vk +yk )

dk
T yk

  dk
Tgk+1                                                                                                   (2.11)  

 
It is easy to show that the produce a descent search direction if the step-length αk    is chosen by an exact line search 
which requires    dk

Tgk+1 = 0. 
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Now, if the step-length αk  is chosen by an inexact line search which requires dk

Tgk+1 ≠ 0. Dividing both sides of 
(2.11) by‖gk+1‖2 , and obtain  
 
dk +1

T gk +1
‖gk +1‖2 + 1 =  

gk +1
T (−1

αk
vk +yk )

dk
T yk

 dk
T gk +1

‖gk +1‖2                                                                                                                      (2.12) 

 
From Wolf condition  g(xk + αkdk)Tdk ≤ σgk

Tdk , we get the following inequality     
 
            

 dk +1
T gk +1
‖gk +1‖2 + 1 ≤ (σgk

T dk +gk +1
T yk

dk
T yk

)  dk
T gk +1

‖gk +1‖2                                                                                                                   (2.13) 

     
We should note that the Wolf condition guarantees dk

Tyk > 0 and that      
       
dk

Tyk = dk
Tgk+1−dk

Tgk > dk
Tgk+1                                                                                                                            (2.14) 

 
By using (2.14) in (2.12), we get  
 
dk +1

T gk +1
‖gk +1‖2 + 1 ≤ (−gk +1

T dk +gk +1
T yk

dk
T gk +1

) dk
T gk +1

‖gk +1‖2                                                                                                                 (2.15) 

   

Implies, dk +1
T gk +1
‖gk +1‖2 + 1 ≤ (−gk +1

T dk +gk +1
T yk

‖gk +1‖2 )                                                                                                               (2.16) 
 
From descent direction  dk = −gk , (2.16) become  
 

 dk +1
T gk +1
‖gk +1‖2 + 1 ≤ (gk +1

T gk +‖gk +1‖2−gk +1
T gk

‖gk +1‖2  )                                                                                                                 (2.17)  
 
implies dk+1

T gk+1 ≤-‖gk+1‖2 ≤0                                                                                                                            (2.18)  
                                                                                                                               
Therefore descent direction is satisfied when inexact line search. 
          
3. LINE SEARCH METHODS WITH MODIFIED WOLF CONDITION 
 
The line search method proceed as follows ,each iteration computes a search direction dk , the iterations given by  
(1.2), most line search algorithms require dk to be a descent direction, i.e.,dk

Tgk < 0, A popular inexact line search 
condition stipulates that  αk  should  first of all give sufficient decrease in the objective function f, as measured by 
the inequality  in (1.7). The sufficient decrease condition (1.7) is not enough to ensure convergence since as we have 
just seen, this condition is satisfied for all small enough αk . To rule out unacceptably small steps the second 
requirement called a curvature condition is introduced in (1.8). 
 
3.1 MODIFIED WOLF CONDITIONS: 
 
The two modified Wolf conditions become as follows: 
 
f(xk + αkdk) − f(xk) ≤ δαk μ                                                                                                                                             (3.1) 
 
|g(xk + αkdk)Tdk| ≤ −σgk

Tdk                                                                                                                                           (3.2)     
             
where  δ = c1 + 3.5. c1(1 − c1) , c1 ∈ (0,1) 
 
           μ = μ + μ(1 − μ)   and μ = gk

Tdk  
 
3.2 ALGORITHM LINE SEARCH TECHNIQUE WITH MODIFIED WOLF CONDITIONS: 
 
Step 0: set an initial iterate xkby educated guess, set k =0. 
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Step 1: Until xk  has converged. 
 
Step 2: Calculate a search direction dkfromxk , ensuring that the decent direction (dk

Tgk < 0) is satisfied,dk  is 
defined in (2.9) 
 
Step 3: Calculate a suitable size step αk  so that the (3.1) and (3.2) are satisfies. 
 
Step 4: set xk+1 = xk + αkdk . 
 
Step 5: set k=k+1. 
 
Theorem 2.Consider any iteration of the form  xk+1 = xk + αkdk , where dk  is a descent direction in (2.9), and αk  
satisfies the Wolfe conditions (3.1), (3,2). Suppose f(x) is bounded from below in Rn  and f(x) is continuously 
differentiable in an open set D containing the sublevel set 
 
SL = {x ∈ Rn: f(x) ≤ f(x1)} 
 
where  x1 is the starting point of the iteration, assume that  ∇f(x) = g(x) is Lipschitz-continuous in D, that is mean, 
there exist constant L>0 such that  
 
‖g(x) − g(y)‖ ≤ L‖x − y‖,   x , y ∈ D                                                                                                                      (3.3) 
 
Then    
     
∑ cosθk‖gk‖k≥1 < ∞                                                                                                                                                (3.4) 
 
where  θk  is angle between the search direction dk   and the steepest descent direction−gk  and defined by 
 

cosθk = −gk
T dk

‖dk‖‖gk‖
                                                                                                                                                        (3.5) 

 
Proof: Subtractingdk

Tgk from (5.2) and taking into account that xk+1 = xk + αkdk  we get  
 
(gk+1−gk)Tdk ≤ (σ − 1)μ                                                                                                                                       (3.6) 
 
while the Lipschitz continuity implies that 
 
(gk+1−gk)Tdk ≤ ‖gk+1−gk‖‖dk‖ ≤ αkL‖dk‖2                                                                                                     (3.7)    
 
Combining these two relations we obtain 
 
αk ≥ (σ−1

L
) gk

T dk
‖dk‖2                                                                                                                                                         (3.8) 

 
By substituting (5.8) in (5.1) we get 
 

 fk+1 ≤ fk + σ �σ−1
L
� (gk

T dk )2

‖dk‖2                                                                                                                                      (3.9) 
 
Now we use (5.5) to write as  
 
 fk+1 ≤ fk + σ �σ−1

L
� cos2θ‖gk‖2                                                                                                                            (3.10) 

 
By summing this expression and recalling that is bounded from below, then we get  
 
� cosθk‖gk‖
k≥1

< ∞ 
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4. NUMRICAL RESULTS 
 
This section is devoted to test the implementation of the new methods. We compare the modified method with 
standard the cubic line search ,the comparative tests involve well-known nonlinear problems (standard test function) 
with different dimension 4 ≤  n ≤ 3000, all programs are written in FORTRAN95 language and for all cases the 
stopping condition is 5

1 10−
∞+ ≤kg The results are given in table (1) and table (2) is specifically  quote the 

number of functions  NOF and the number of iteration NOI experimental  results in table (1) confirm that the new 
CG method is superior to standard CG method with respect to the NOI and NOF  .And the table(2)  illustrate effect 
of modified of Wolf conditions on standard CG method compared with the standard Wolf conditions. 

 
Table: 1 

Comparative performance of two algorithms (standard CG method and new CG new method) 
Test    problem N CG(H\S) 

NOI(NOF) 
NEW CG 

NOI(NOF) 
Powell 4 

100 
500 

1000 

38(68) 
40(122) 
41(124) 
41(124) 

28(74) 
33(86) 

36(102) 
40(119) 

Wood 4 
100 
500 

1000 

30(68) 
30(68) 
30(68) 
30(68) 

28(64) 
28(64) 
29(66) 
29(66) 

Rosen 4 
100 
500 

1000 

29(74) 
30(76) 
30(76) 
30(76) 

29(74) 
30(76) 
30(76) 
30(76) 

Cubic  4 
100 
500 

1000 

16(44) 
16(44) 
16(44) 
16(44) 

14(39) 
15(43) 
15(43) 
15(43) 

Milele 4 
100 
500 

1000 

31(96) 
34(110) 
40(138) 
74(172) 

31(94) 
36(114) 
37(126) 
43(148) 

Generalized PSC1 4 
100 
500 

1000 

37(86) 
37(86) 
36(86) 
36(86) 

26(72) 
28(74)           
28(74)  
28(74 

Extended  PSC1 4 
100 
500 

1000 

30(76) 
30(76) 
32(76) 
32(76) 

24(68)                                                                                          
26(72)                                                                        
26(72)                                                                                           
28(74) 

Full Hessian FH1 4 
100 
500 

1000 

31(98) 
32(98) 
32(98) 
32(98) 

28(64)                                               
26(62)                                                           
26(62)                                                                                        
26(62) 

Extended Maratos 4 
100 
500 

1000 

16(44)        
              16(44) 

16(44)                                                            
16(44) 

15(44) 
15(45) 
15(45) 
15(45) 

FLETCHCR function 
(CUTE): 

4 
100 
500 

1000 

16(44) 
16(46)                                                                  
16(46)                                                                 
16(46) 

14(38) 
14(36) 
14(36) 
14(36) 

FLETCBV3 function 
(CUTE): 

4 
100 
500 

1000 

16(46)                                                                                         
16(44)                                                                 
16(46)                                                                 
16(45) 

15(45)                                                                         
14(44) 
14(45)                                                                            
14(45) 
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Table: 2 

Comparative performance of two algorithms (standard CG method under (standard and modified Wolf conditions) 
Test    problem N CG(H\S)( standard 

Wolf conditions  ) 
NOI(NOF)  

CG (H\S)(modified 
Wolf conditions)   

NOI(NOF) 
Powell 4 

100 
500 

1000 
3000 

38(68) 
40(122) 
41(124) 
41(124) 
41(124) 

32(83) 
35(98) 
35(98) 
35(98) 
35(98) 

Wood 4 
100 
500 

1000 
3000 

30(68) 
30(68) 
30(68) 
30(68) 
30(68) 

25(59) 
27(63) 
27(63) 
27(63) 
27(63) 

Rosen 4 
100 
500 

1000 
3000 

29(74) 
30(76) 
30(76) 
30(76) 
30(76) 

28(72) 
29(74) 
30(76) 
30(76) 
30(76) 

Cubic  4 
100 
500 

1000 
3000 

16(44) 
16(44) 
16(44) 
16(44) 
16(44) 

12(35) 
12(35) 
12(35) 
14(41) 
14(41) 

Generalized PSC1 4 
100 
500 

1000 
3000 

37(86) 
37(86) 
36(86) 
36(86) 
36(86) 

30(74) 
30(78) 
29(74)  
29(74 
29(74) 

Extended  PSC1 4 
100 
500 

1000 
3000 

30(76) 
30(76) 
32(76) 
32(76) 
32(76) 

30(75)                                                                                          
30(75)                                                                        
30(75)                                                                                           
30(74) 
30(74) 

Full Hessian FH1 4 
100 
500 

1000 
3000 

31(98) 
32(98) 
32(98) 
32(98) 
32(98) 

26(62)                                               
28(64)                                                           
28(64)                                                                                        
28(64) 
28(64) 

Extended Maratos 4 
100 
500 

1000 
3000 

16(44)                                                            
16(44) 
16(44)                                                            
16(44) 
16(44) 

14(42) 
14(42) 
14(42) 
15(44) 
16(44) 

FLETCHCR function 
(CUTE): 

4 
100 
500 

1000 
3000 

16(44) 
16(46)                                                                  
16(46)                                                                 
16(46) 
16(46) 

16(42) 
14(36) 
16(42) 
15(38) 
16(42) 

FLETCBV3 function 
(CUTE): 

4 
100 
500 

1000 
3000 

16(46)                                                                                         
16(44)                                                                 
16(46)                                                                 
16(45) 
16(45) 

15(44)                                                                         
14(44) 
14(44)                                                                            
14(44) 
14(44) 
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5. CONCLUSION 
 
This paper gives a modified conjugate gradient method for solving unconstrained optimization in formula (2.7) and 
present new technique for modified Wolf conditions. The numerical results show that the given   two modified 
methods are competitive to the Hestenes-Stiefel (HS) conjugate gradient method for the test problems, and it is 
shown that the search direction satisfied the descent condition. 
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