
International Journal of Mathematical Archive-4(5), 2013, 311-323 
 Available online through www.ijma.info ISSN 2229 – 5046 

International Journal of Mathematical Archive- 4(5), May – 2013                                                                                                               311 

 
ONSET OF SURFACE TENSION DRIVEN CONVECTION IN A FLUID LAYER WITH A 
BOUNDARY SLAB OF FINITE CONDUCTIVITY AND DEFORMABLE FREE SURFACE 

 
*Gangadharaiah,Y. H. 

 
Department of Mathematics, New Horizon College of Engineering, Bangalore-560 103, India 

 
(Received on: 26-03-13; Revised & Accepted on: 16-04-13) 

 
 

ABSTRACT 
In the present study, the effect of a non-uniform basic temperature gradient on the linear stability of the Marangoni 
convection in a horizontal fluid layer. The upper surface of a fluid layer is deformably free and lower boundary is a 
considered to be a thin slab of finite conductivity instead of a regular rigid surface. At the contact surface between the 
thin slab and the fluid layer the thermal boundary conditions are used.  The depth ratio, thermal conductivity ratio of 
solid plate play a decisive role on the stability characteristics of the system. In addition, the influence of the Biot 
number Bi , the Bond number 0B  and   Crispation number Cr  arising due to of upper deformable free surface is also 
emphasized on the stability of the system.  
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1. INTRODUCTION 
The onset of convection in a fluid layer is a problem of great importance to many industrial applications and has 
attracted scientific attention for many decades since Benard earliest experiments in 1900. His name was given to 
Benard cells, the hexagonal roll cells produced in heated molten spermaceti with a free surface. Convective instabilities 
claimed to be driven by either buoyancy (Benard) or thermocapillary (Marangoni) effects have been the subject of a 
great deal of theoretical and experimental investigation since the pioneering theoretical works of Rayleigh (1916) and 
Pearson (1958). 
 
Rayleigh (1916) developed the theoretical foundations to account for the results of Benard's experiments. He theorized 
that the convection observed in Benard experiments is driven by buoyancy. However, an experimental study conducted 
by Block (1956) led him (Block) to theorize that the Benard cells are driven by surface tension instead of buoyancy. 
Pearson (1958) then proposed a theoretical model in which surface tension was actually causing the observed 
convective cells. This convection mechanism is usually named Marangoni convection in recognition of his previous 
work in 1871. The first theoretical study of Benard–Marangoni convection in a planar horizontal fluid layer with a non-
deformable free surface was performed by Nield (1964) who showed that for steady convection the two destabilizing 
mechanisms are both necessary and reinforce one another. 

 
The onset of Marangoni convection in a layer of fluid with free upper surface and heated from below has been 
investigated by several authors because of its relevance and importance in material science processing during sustained 
space flight, aircraft structures and automobile industries, geophysics, bio convection, nuclear reactors, solid-matrix 
heat exchangers, crystal growth, directional solidification of alloys, aerosol production and electronics cooling to 
mention a few (Pearson 1958, Nield 1964,Scriven and Sterling 1964, Nield 1968,Vidal et al.1981, Idris et al. 2009  
Takashima 2009, Rudraiah et al. 1985,Char and Chen(1997,1999), Ching2005, Rudraiah and  Siddheshwar 2000, 
Awang and Hashim 2008). 

 
However, the convective instabilities in much more realistic and complicated dynamical systems, instead of single fluid 
layer is of challenging one due to rapid development of modern techniques. Many authors have studied theoretically 
and experimentally by considering multilayer of fluid or a fluid layer separated at the middle or bounded from the 
above or below by a slab. Scriven and Sternling (1965) have considered a two layer fluid model in which each layer has 
infinite depth and examined the local behaviour of the system near the interface. Even though single layer systems and 
double layers systems heated from below have received a great deal of attention in the past, there have been very few 
studies related to the thermal instability and heat transfer phenomena in a system with fluid layer bounded by finite 
thickness slab. 
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Yang (1992) considered the lower boundary to be a solid plate where it is a perfect insulating boundary condition for 
thermal disturbances, which is difficult compared to conducting boundary condition. It is found that the solid plate with 
a higher thermal conductivity tends to stabilize the system. The role of the plate thickness is minor in most of the 
Benard-Marangoni experiments, while the conductivity of the plate has a significant impact on the stability of the 
system. Char and Chen (1999) focused on Benard-Marangoni instability with a boundary slab of finite conductivity. 
They solved the problem numerically and later compared to the asymptotic of the long wavelength. It is shown that the 
critical Rayleigh number, cR  increases with thickness of solid layer to the thickness of fluid and thermal conductivity 

of solid layer to the thermal conductivity of fluid increases but decrease with M RΓ = provided the viscosity 
parameter, B is large. The effect of viscosity variation to the thermal conductivity and thickness of the boundary slab is 
also discussed in detail. When the viscosity parameter, B is small, it will raise the critical Rayleigh number, cR  

provided the Biot number, Bi  is small but behave oppositely when the viscosity parameter, B is large. 
 

Most of the previous studies were concerned with a uniform vertical temperature gradient in the fluid layer, and as well 
it is of interest to know the influence of a non-uniform basic temperature gradient on the onset of convective instability. 
The problem of the effect of a non-uniform temperature gradient on the onset of Marangoni convection has also 
received considerable attention in the recent past (Nield 1975, Friedrich and Rudraiah 1984, Chen and Char 2003, 
Ching 2005). Friedrich and Rudraiah (1984) used the Galerkin technique to investigate the effects of rotation and non-
uniform basic temperature gradient on the onset of steady Marangoni convection with different types of thermal 
boundary conditions in the absence of magnetic field. Rudraiah et al. (1985) have further studied the combined effect 
of magnetic field and non-uniform basic temperature gradient on steady Marangoni convection in the absence of 
rotation. The Marangoni stability in a temperature dependent viscosity fluid layer with a deformable free surface is 
investigated by Awang and Hashim (2008) and they have shown that the destabilizing effect of exponential viscosity 
variation can be effectively suppressed through small controlled perturbation in the thermal boundary data. 

 
The present analysis aims to study the onset of Marangoni convective instability in a horizontal layer with the solid 
plate at the bottom surface and deformable upper free surface, subject to a non-uniform temperature gradient. The 
linear stability theory and the normal mode analysis are applied and the resulting eigen value problem is solved 
analytically. Of interest are the effects of the depth ratio and conductivity ratio, a free surface deformation, Bond 
number and the Biot number on the onset of Marangoni instability. Three different types of non-uniform temperature 
gradients are considered and their influences on the onset of Marangoni convection are also discussed in detail.  
 
2. MATHEMATICAL FORMULATION 
We consider an incompressible horizontal fluid layer of depth ,d  overlying a slab of thickness .sd  The lower hot 

rigid boundary sz d= −  is kept at constant temperature 0T  and while the upper surface has a deflection  ( ), ,x y tΩ   

from mean (see Fig.5.1). The upper surface z d= is free to the atmosphere of constant temperature lT .  A Cartesian 
co-ordinate system (x, y, z) is chosen with origin above the slab of finite thickness and z-axis vertically upward. The 
surface tension 𝜎𝜎 is assumed to vary linearly with temperature in the form  
 

0 0( )T T Tσ σ σ= − −                                                                                                                                                  (1) 
 
where Tσ is the rate of change of surface tension with temperature and 0σ   is a constant reference value.   

 
Fig. 1: Physical configuration 
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The governing equations for the fluid and the solid layers are: 
 
Fluid layer: 
 

0q∇⋅ =


                                                                                                                                                               (2) 

( ) 2
0 0

V V V p V g
t

ρ µ ρ
 ∂

+ ⋅∇ = −∇ + ∇ + ∂ 



  

                                                                                                     (3) 

 

( ) 2T V T T
t

κ∂
+ ⋅∇ = ∇

∂



                                                                                                                                  
(4) 

 
Solid layer: 
 

2 .s
s s

T D T
t

∂
= ∇

∂
                                                                                                                                                                (5)

  

Here  V


 is the velocity vector, p is the pressure, T is the temperature, κ  is the thermal diffusivity, while sT is the 

temperature in the solid layer, µ is the fluid viscosity and 0ρ  is the fluid density and sD  is the thermal diffusivity of 
the solid plate. 
 
The upper free surface of fluid layer is free of deformities with its position being ( ), , .z d x y t= +Ω The boundary 
conditions of velocity, heat flux and tangential and normal stresses at the free upper surface are  
 

ˆ, . 0tu v w k T n HT
t x y

∂Ω ∂Ω ∂Ω
+ + = ∇ + =

∂ ∂ ∂                                                                                                                 
(6)

 
 

ˆ ˆ2 . , 2 .nt a nnD T t p p D n
T
σµ µ σ∂

= ∇ − + = ∇
∂                                                                                                                 

(7)

 
 

where andk H  are the thermal conductivity and heat transfer coefficient of the fluid layer respectively. { }ijD is the 

rate of strain in the fluid, and ˆ ˆandt n  are  the  tangential and  outward normal unit vectors, respectively, at the free 
upper surface.   
 
The governing equations admit a steady-state solution  
 

0, ( )b
b

dTdV f z
T dz

= − =
∆                                                                                                                                                 

(8) 

 
where ( )f z is the non-uniform basic temperature gradient due to the existence of the internal heat generation, which 
satisfies the condition 
 
1

0

( ) 1f z dz=∫
                                                                                                                                                               

(9) 

 
To investigate the effect of the non-uniform temperature gradient on the convective instability, the following three 
different basic temperature profiles are considered 
 

i. 
( ) 1f z = represents a linear temperature  profile;

 
ii. ( )( ) 2 1f z z= −  represents an inverted parabolic temperature profile; 

iii. ( ) 2f z z= represents a parabolic  temperature  profile. 
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In order to investigate the stability of the basic solution, infinitesimal disturbances are introduced in the form 
 

( )' , , ( )b bV V T T z T p p z p′ ′= = + = +
 

                                                                                                   (10)      
            
where the primed quantities denotes the perturbed quantities over their equilibrium counterparts. Substituting ( )10 into 

( ) ( )2 5−  and linearizing the equations in the usual manner, eliminating the pressure from the momentum equations 
by operating curl twice and  only the vertical component is retained. The variables are then nondimensionalized using 

2, / , /d d dκ κ   and T∆  as the units of length, time, velocity, and temperature, the non-dimensional disturbance 
equations are now given by 
 

2 21 0
Pr

w
t
∂ −∇ ∇ = ∂                                                                                                                                                 

(11) 

 

( )2 T f z w
t
∂ −∇ = ∂   

                                                                                                                                              (12) 

 

2s s
s

f

D
t D
θ θ∂

= ∇
∂

                                                                                                                                               
(13) 

 
The boundary conditions are: 
 

( ), 0 at 1Tw Bi T z
t z

∂Ω ∂
= + −Ω = =

∂ ∂                                                                                                    
(14) 

 

( )
2

2 2
2 at 1h hw M T z

z
 ∂

−∇ = ∇ −Ω = ∂                                                                                                     
(15) 

 

( )
2

2 2 2
02

1 3 0 at 1
Pr h h h

wCr B z
t z z

  ∂ ∂ ∂
+ + ∇ + −∇ ∇ Ω = =  ∂ ∂ ∂                                                                          

(16) 

 
Here, TM T dσ µκ= ∆  is the Marangoni number, 2

0 0 TB g dρ σ=   is the Bond number, which is measure of 

the flattening of the upper free surface by gravity and forming meniscus by the surface tension, tBi Hd k=  is the 

Biot number representing the heat flux through upper free surface and TCr dµκ σ= is the Crispation number which 
show the idea of the rigidity of upper free surface of the fluid layer. 
 
At the interface  0:z =  
 

0,w = 0Dw =                                                                                                                                                (17) 
 

,sT θ= r sDT k Dθ=                                                                                                                                 (18) 
 
and   at   :sz d= −  
 

0.sDθ =                                                                                                                                                              (19) 
 
Here, r s fk k k=  is the ratio of the thermal conductivity of the solid plate to that of the fluid layer, and  

r sd d d= is the ratio of the solid plate thickness to the liquid layer thickness. The operator D d dz= denotes 
differentiation with respect to z. Since the principle of exchange instability holds for surface tension driven convection  
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in fluid layer (see Pearson 1958 and Vidal 1981), it is reasonable to assume that it holds good even for the present 
configuration as well.  Hence, the time derivatives are dropped conveniently from Eqs. ( ) ( )11 13 .− Then performing 
a normal mode expansion of the dependent variables in fluid layer as 
 

( ) ( ) ( ) ( ) ( ), , , , exps f sw T W z z z i lx myθ    = Θ Θ +                                                                                        
(20) 

 
and substituting this in Eqs. ( ) ( )11 13−  (with 0t∂ ∂ = ), we obtain the following ordinary differential equations:  
 

( )22 2 0D a W− =
                                                                                                                                               

(21) 

 

( )2 2 ( )fD a f z W− Θ = −
                                                                                                                                

(22) 

 

( )2 2 0.sD a− Θ =
                                                                                                                                               

(23) 

 
The boundary conditions are 
 
at 1:z =  
 

0,W = ( ) 0f fD Bi ZΘ + Θ − =
                                                                  

                                              (24) 
 

( ) ( )2 2 2 0fD a W Ma Z+ + Θ − =
                                                                                                                  

(25) 

 

( ) ( )2 2 2 2
03 0Cr D a DW B a a Z− − + + =                                                                                                    (26) 

 
at 0:z =  
 

0,W = 0DW =                                                                                                                                                (27) 
 

,f sΘ = Θ f r sD k DΘ = Θ
                                                                                                                                

(28) 

 

and at :sz d= −  
 

0.sDΘ =                                                                                                                                                              (29) 
 
The perturbation equations ( ) ( )21 23 ,−  subject to the boundary conditions ( ) ( )24 29 ,−  constitute an eigen value 

system of eighth order. Solving the perturbation equation ( )23  for the solid layer, together with the boundary 

conditions ( ) ( )28 and 29 , the thermal boundary condition at the solid-fluid interface, at 0z = becomes 
 

( )tanh .f r r fD k a a dΘ = Θ
                 

                                                                                                              (30) 
 
3. METHOD OF SOLUTION 
 
It is possible to solve Eqs. (5.21) directly, we get the general solution in the form  
 

( ) ( ) ( ) ( )cosh sinh cosh sinhW A az B az C z az D z az= + + +
 
(31) 

where , ,A B C and D  are constants determined using the boundary conditions given by Eqs. ( ) ( )24 and 27 to 

obtain W as   
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( ) ( ) ( ) ( )sinh cosh coth 1 sinh .W B az a z az a a z az = − + −                                                                         
(32) 

 
Equation ( )22 is solved using boundary conditions ( ) ( )24 ,(25) and 30 , evaluated for various temperature profiles 

and expression for Marangoni number M   are given in the following cases. 
 
3.1 Linear Temperature Profile ( ) 1f z =  
The expression for the Marangoni number M  is given by 
 

( )
2

5 4
2

1 6

.aM
a
λ λ

λ
+

=
∆ −

                                                                                                                                                              

(33) 

 
From the above expression we note that in the absence of surface deflection and as 0 and 0,r rk d→ →

48. This is the known exact value cM → (Pearson [76]). 
 
Here 

( ) ( )2
1 1 22 2

0

3Cr L a L
a B a

∆ = −
+

 

( )( ) ( )( )4 2 3
1 3 coth 1 sinh coth 3 coshL a a a a a a a a a= − + + − + −  

( )2 2
2 coth 1 sinh ( coth )coshL a a a a a a a a= − − + −  

( )22 3 2

1 2

coth 1 cothsinh cosh
4 4 2 4 4

a a aa a a a aa aλ λ
 −  

= + + − + +         

( ) ( )2 12

coth 11 1sinh coth 2 cosh
4 44

a a
a a a a

aa
λ

  −  = − − + − + ∆            

( )
( ) ( )( )

3
1

3 2 3 3

3 sinh cosh 4 tanh

4 sinh cosh sinh cosh tanh
r r

r r

a a Bi a k a d

a a a Bi a k a a Bi a a d

λ
λ

+ +
=

+ + +
 

( )
2

3
4 2

4 3
4 tanhr r

a
a k a d

λλ −
=  

( ) ( )3 2 2 3
5 coth 2 sinh 2 coth 2 cosha a a a a a a a aλ = − + − −  

( ) ( )2
2 2

6 3 4

coth 1 coth 13sinh cosh
4 4 4 4

a a a a aa aa a a aλ λ λ
   − −

= + + + − +      
     

 

3.2 Inverted Parabolic Temperature Profile ( )( ) 2 1f z z= −  

The expression for the Marangoni number M  is given by 
 

( )
2

11 9
2

1 10

a
M

a
λ λ

λ
+

=
∆ −

                                                                                                                                                              

(34) 

where 

( )( ) ( )( )3 3 2 4
7 6 3 coth 1 sinh 3 3 coth 1 cosha a a a a a a a a a aλ = + + − + − + −  

( ) ( )( )2 3
8 1

1coth 1 3 2 3 coth 3
4

a a a a a a aλ = − − + − − + ∆  

( )( )
7 8

9 4

2 6 cosh
12 sinh cosh tanhr r

a
a a k a a d

λ λλ +
=

+
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( )( )22
2 2

10 7 8

3 coth 1
1 sinh cosh

6 2 4

a a aa aa a a aλ λ λ
 − −   = + − + − +        

( )( )
( ) ( )

4
8 7

11 3

2 tanh

sinh cosh sinh cosh tanh
r r

r r

k a a d

a Bi a k a a Bi a a d

λ λ
λ

−
=

+ + +
 

 
3.3. Parabolic Temperature Profile ( ) 2f z z=  
The expression for the Marangoni number M  is given by 
 

( )
2

14 15
2

1 16

a
M

a
λ λ

λ
+

=
∆ −

                                                                                                                                                              

(35) 

 
where 

( )( ) ( )( )2 4
12 1coth 1 3 sinh 3 3 2 coth 1 cosha a a a a a a a aλ = − − + − + − + ∆  

( )( )( ) ( )( )( )
( ) ( )

3 2 2

13 3

6 2 3 coth 1 sinh 2 3 3 coth 1 cosh

cosh sinh cosh tanhr r

a a a a a a a a a a a

Bi a k a a Bi a ad
λ

− + − − + + + −
=

+ +
 

( )
( )( )

12
14 4

3 coth 1 cosh
12 sinh cosh tanhr r

a a a
a a k a a d
λ

λ
− −

=
+

 

4 2
12

15 4

6 sinh cosh 1
26 cosh

a a a a
aa a

λ
λ

 −
= + − 

   

( )( )
4

3 312
16 4

6 sinh
6 3 coth 1 sinh

6 cosh
a a

a a a a a a
a a

λ
λ

−
= + + + −

 
 
The expression for Marangoni number is  evaluated for different values of various physical parameters and the results 
are discussed in detail in the next section. 
 
4. RESULT AND DISCUSSIONS 
Effect of non-uniform basic temperature gradients on Marangoni convection with a boundary slab of finite conductivity 
is investigated theoretically. The resulting eigen value problem is solved exactly; the marginal curves in the plane 

( ),M a are obtained by using the expression given by Eqs. ( ) ( )33 , 34 and ( )35 ,  where M is a function of the 

parameters 0, , , , ra Cr Bi B d and rk .  For a given set of parameters, the critical Marangoni number for the onset of 

convection is defined as the minimum of the global minima of marginal curve. We denote this critical value by cM  

and the corresponding critical wave number by .ca  
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Fig. 2: Marginal stability curves M  versus a  for different values of  rk  and forrd 0 0.1,B =

510 , 0Cr Bi−= = with different   temperature profile. 
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Fig. 3: Critical Marangoni number versus rd  for different values of  rk for 0 0.1,B = 510Cr −= with different 
temperature profile. 
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Fig. 4: Critical Marangoni number versus rk  for different values of  rd for 0 0.1,B = 510Cr −= with different   
temperature profile. 

 

Numerically calculated values of M  and the corresponding values of  a  are shown in Fig.2 for a range values of rk  

and rd respectively with different temperature profiles for 5
00, 0.1 and 10 .Bi B Cr −= = =  From the Fig.2  it is 

seen that (i) the  Marangoni number M reaches a maximum with the larger depth ratio rd  and thermal conductivity 

ratio rk  (ii) with the larger depth ratio dr  and thermal conductivity ratio rk , the global minimum occurs at short 

wavelength ( )0a ≠ , and (iii) in comparison to the linear temperature profile, the inverted parabolic temperature 
profile shows higher Marangoni number, while the parabolic temperature profile lower ones. 

 
Figure 3 shows the variation of cM  as a function of depth ratio rd for different values of rk   with different 

temperature profile for 5
00, 0.1 and 10 .Bi B Cr −= = = It is noted that cM increases with increase of ,rk the 

larger depth ratio rd is stabilizing, since the fluid-solid interface tends to be isothermal instead, the critical Marangoni 

number cM increases with .rd  In comparison to the linear temperature profile, the inverted parabolic temperature 
profile shows higher  critical Marangoni number, while the parabolic temperature profile lower ones. Hence the 
inverted parabolic temperature profile is the most stabilizing basic temperature distribution, while the parabolic profile 
is the most destabilizing one among these three types of non-uniform basic temperature gradients.  

 
Figure 4 shows the variation of cM  as a function of conductivity ratio rk for different values of rd with different 

temperature profiles for 5
00, 0.1 and 10 .Bi B Cr −= = = It is noted that cM increases initially  but the variation is 

negligible for further increase in  the values  of  .rk An increase in the thermal conductivity ratio rk results in a 
stabilizing state, since thermal disturbances are easily dissipated deep in to the solid layer, and critical Marangoni 
number cM increases.    
 
In Fig.5 the critical Marangoni number cM is plotted against the Crispation number Cr for different non-uniform basic 

temperature gradients for values of 0 and 1 .r r r rk d k d= = = = It is observed that the critical Marangoni number 

cM decreases with an increase of the Crispation number and thus making system more unstable. The reason being that  
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an increase in Cr  is to increase the deflection of the upper free surface, which in turn, promotes instability much 
faster. It is also evident from the figure that cM  decreases with increase of the and .r rk d  

 
The effect of the Bond number 0B  on the Marangoni number M  in the case of linear temperature profile for 

0.001,Cr = 0iB = and 1r rd k= =  is shown in Fig.6.  It is observed that increase in the value of 0B   makes the 
system more stable. The reason for this may be attributed to the fact that an increase in the gravity effect, which keep 
the free surface flat against the effect of surface tension, which forms a meniscus on the free surface, and hence an 
increase in 0B   makes the system more stable. 
 
Figure 7shows the plot of critical Marangoni number cM  as a function of depth ratio rd  for different values of 

thermal conductivity ratio  rk  and Biot number Bi, in the case of linear temperature profile with 510 andCr −=

0 0.1.B = It is seen that increasing Bi is to increase the critical Marangoni number and hence its effect is to delay the 
onset of Marangoni convection. This may be due to the fact that with increasing Bi, the thermal disturbances easily 
dissipate into the ambient surrounding due to a better convective heat transfer coefficient at the top free surface and 
hence makes the system more stable. Figure 8 shows the plot of critical Marangoni number cM  as a function of depth 

ratio  rd   for different values thermal conductivity ratio  rk   and   Biot number Bi, in the case of linear temperature 

profile with 510 ,Cr −= 0 0.1B =   and the results are qualitatively similar to results of Fig. 7. 
 

 
 

Fig. 5: Critical Marangoni number versus Cr  for different values of andr rd k for 0 0.1B = with different  
temperature profile. 
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Fig. 6: Marangoni number versus a   for different values of 0B   with 0.001Cr = , 1 ,r rd k= = for linear 
temperature profile. 
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Fig.7: Critical Marangoni number versus rk   for different values of  rd  with 0 0.1B = and  510Cr −= for linear 
temperature profile. 
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Fig. 8: Critical Marangoni number versus rd   for different values of  rk  with 0 0.1B = and 510Cr −= for linear 
temperature profile. 
 
5. CONCLUSIONS 
The problem of Marangoni convection in an horizontal fluid layer with deformable to upper free surface and lower 
boundary is considered to be a thin slab of finite conductivity has been studied theoretically. Of interest are the 
influences of non-uniform basic temperature gradients, depth ratio, thermal conductivity ratio, the Crispation number, 
Bond number and the Biot number on the onset of Marangoni instability. The following conclusions may be made from 
this study. 

1. In comparison to the linear temperature profile, the inverted parabolic temperature profile shows higher values of 
critical Marangoni numbers, while the parabolic temperature profile shows lower ones. Hence the inverted 
parabolic temperature profile is the most stabilizing basic temperature distribution, while the parabolic profile is the 
most destabilizing one among these three types of non-uniform basic temperature gradients.  
 

2. Critical Marangoni number increases with the increase of depth ratio and thermal conductivity ratio for all 
temperature profiles.  
 

3. The effects of the Bond number and the Biot number on the onset of Marangoni convections are more pronounced. 
The system  become more stable as the Biot number and the bond number increases. 
 

4. The critical Marangoni number increase as the Crispation number decreases. Hence system  become more unstable 
as Crispation number increases. 
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