International Journal of Mathematical Archive-4(6), 2013, 151-154 MA Available online through www.ijma.info | ISSN 2229 - 5046

GENERALIZED PRE-SEMI CLOSED SETS IN TOPOLOGICAL SPACES

*T. Sampoornam, *Gnanambal Ilango and **N. Selvanayaki

*Department of Mathematics, Government Arts College, Coimbatore, (T.N.), India

**Department of Mathematics, Akshaya College of Engineering and Technology, Coimbatore, (T.N.), India

(Received on: 24-04-13; Revised & Accepted on: 24-05-13)

ABSTRACT

In this paper we introduce a new class of sets called generalized pre-semi closed sets (briefly gps-closed) in a topological space and discuss some of the basic properties of generalized pre-semi-closed sets.

Mathematics Subject Classification: 54A05.

Keywords: semi-open, gps-closed.

1. INTRODUCTION

Levine [6] introduced the concept of semi-open sets and semi-continuity in topological spaces in 1963. In 1970 Levine [5] introduced the notion of generalized closed (briefly g-closed) set. Sundaram and Shiek John [10] introduced the concepts of weakly-closed set and Maki et al[7] introduced the notion of generalized pre-closed sets and investigated some of their basic properties. In 1995 Dontchev introduced the concept of generalized semi pre-open sets in topological spaces. Gnanambal [4] introduced the concept of gpr-closed sets and studied its properties in topological spaces in 1997.

In this paper we define and study the properties of generalized pre semi-closed sets (gps-closed) in a topological space, which is properly placed between pre-closed sets and generalized pre-closed sets.

2. PRELIMINARIES

Definition 2.1: A subset A of a topological space (X,τ) is called

- i) a semi-open set[6] if $A \subseteq cl(int(A))$ and a semi-closed. if $int(cl(A)) \subseteq A$,
- ii) a regular open set[11] if A = int(cl(A)) and a regular closed set. if A = cl(int(A)),
- iii) a pre-open set [8] if $A \subseteq int(cl(A))$ and a pre-closed set if $cl(int(A)) \subseteq A$,

Definition 2.2: A subset A of a topological space (X, τ) is called regular semi-open [2] if there is a regular open set U such that $U \subseteq A \subseteq cl(U)$. The family of all regular semi-open sets of X is denoted by RSO(X).

Definition 2.3: A subset A of a topological space (X,τ) is called

- i) a generalized closed set (briefly g-closed)[5] if $cl(A) \subset U$ whenever $A \subset U$ and U is open,
- ii) a weakly closed set (briefly ω -closed)[10] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open,
- iii) a generalized preclosed set(briefly gp-closed)[7] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open,
- iv) a generalized semi- preclosed set(briefly gsp-closed)[3] if $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open,
- v) a generalized pre regular weakly closed set (briefly gprw-closed)[9] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular semi-open,
- vi) a strongly generalized closed set (briefly g^* -closed)[12] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open,
- vii) *g-closed set[12] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is ω -open,
- viii) a generalized pre regular closed set (briefly gpr-closed) [4] if $pcl(A) \subset U$ whenever $A \subset U$ and U is regular open,
- ix) a regular weakly closed set (briefly rw-closed)[1] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular semi-open.

Corresponding author: **N. Selvanayaki

**Department of Mathematics, Akshaya College of Engineering and Technology, Coimbatore, (T.N.), India

*T. Sampoornam, *Gnanambal Ilango and **N. Selvanayaki/Generalized pre-semi closed sets in Topological Spaces / IJMA- 4(6),

The semi-closure (pre-closure, semi-pre-closure and α -closure respectively) of a subset of a space (X,τ) is the intersection of all semi-closed (pre-closed, semi-pre-closed and α -closed respectively) sets that contain A and is denoted by scl(A) (pcl(A), spcl(A) and $\alpha cl(A)$ respectively).

3. GENERALIZED PRE-SEMI CLOSED SETS

Definition 3.1: A subset A of a topological space (X,τ) is called generalized pre-semi closed (briefly gps-closed) if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open.

Theorem 3.2: Every closed set is gps-closed.

Proof: Since every closed set is pre-closed and pcl(A)=A, the result follows from the definitions.

The following example shows that the above theorem need not be true.

Example 3.3: Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$. Then $\{c\}$ is gps-closed but not closed.

Theorem 3.4: Every gps-closed set is gpr-closed

Proof: Let A be gps-closed and $A \subseteq U$ where U is regular open. Since every regular open set is semi-open and A is gps-closed we have $pcl(A) \subseteq U$. Hence A is gpr-closed.

The following example shows that the above theorem need not be true.

Example 3.5: Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$. Then $\{a, b\}$ is gpr-closed but not gps-closed in (X, τ) .

Theorem 3.6: Every gps-closed set is gp-closed.

Proof: Let A be gps-closed and $A \subseteq U$ where U is open. Since every open is semi-open, $pcl(A) \subseteq U$. Hence A is gp-closed.

The following example shows that the above theorem need not be true.

Example 3.7: Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{c\}, \{a, c\}, X\}$. Then $\{b, c\}$ is gp-closed but not gps-closed in (X, τ) .

Theorem 3.8: Every ω -closed set is gps-closed.

Proof: Let A be ω -closed and A \subseteq U where U is semi-open. Since every closed is pre-closed set, pcl(A) \subseteq cl(A), so pcl(A) \subseteq U. Hence A is gps-closed.

The following example shows that the above theorem need not be true.

Example 3.9: Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{b\}, X\}$. Then $\{a\}$ is gps-closed but not ω -closed.

Theorem 3.10: Every gps-closed set is gprw-closed:

Proof: Let A be a gps-closed set and $A \subseteq U$ where U is regular semi-open. Every regular semi-open set is semi-open. Hence $pcl(A) \subseteq U$. Thus A is gprw-closed.

The following example shows that the above theorem need not be true.

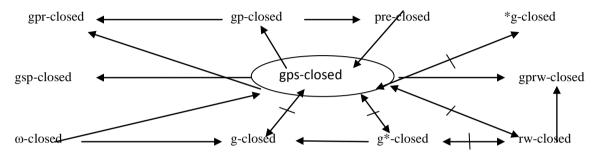
Example 3.11: Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{b\}, X\}$. Then $\{a, b\}$ is gprw-closed but not gps-closed.

Theorem 3.12: Every gps-closed is gsp-closed.

Proof: Let A be gps-closed and $A \subseteq U$ where U is open. Since every open is semi-open and $spcl(A) \subseteq pcl(A)$, $pcl(A) \subseteq U$, we have $spcl(A) \subseteq U$ where U is semi-open. Hence A is gsp-closed.

The following examples show that the above theorem need not be true.

Example 3.13: Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{c\}, \{a, c\}, X\}$. Here $\{a\}$ is gsp-closed but not gps-closed.


*T. Sampoornam, *Gnanambal Ilango and **N. Selvanayaki/Generalized pre-semi closed sets in Topological Spaces / IJMA- 4(6),

Remark 3.14: The following example shows that gps-closed is independent of g-closed, g*-closed, rw-closed and *g-closed.

Example 3.15: Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, X\}$. Then the collection of

- i) closed sets in (X, τ) is $\{\phi, \{d\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}, X\}$.
- ii) gps-closed sets in (X, τ) is $\{\phi, \{c\}, \{d\}, \{c, d\}, \{b, c, d\}, \{a, c, d\}, X\}$
- iii) g-closed sets in (X, τ) is $\{\phi, \{d\}, \{c, d\}, \{a, d\}, \{b, d\}, \{b, c, d\}, \{a, b, d\}, \{a, c, d\}, X\}$
- iv) g^* -closed sets in (X, τ) is $\{\phi, \{d\}, \{c, d\}, \{a, d\}, \{b, d\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, X\}$
- v) rw-closed sets in (X, τ) is $\{\phi, \{d\}, \{a, b\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, X\}$
- vi) *g-closed sets in (X, τ) is $\{\phi, \{d\}, \{a, d\}, \{b, d\}, \{c, d\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, X\}$.

From the above discussion and known results we have the following implications.

Remark 3.16: Union of two gps-closed sets need not be gps-closed.

Example 3.17: Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{b\}, \{c\}, \{b, c\}, \{a, c\}, X\}$. Then $A = \{a\}$ and $B = \{b\}$ are gps-closed but their union $A \cup B = \{a, b\}$ is need not gps-closed.

Theorem 3.18: Intersection of two gps-closed sets is gps-closed.

Proof: Let A and B be two gps-closed sets. Let $A \cap B \subseteq U$, where U is semi-open. We have pcl $(A) \subseteq U$ and pcl $(B) \subseteq U$. Thus pcl $(A \cap B) \subseteq pcl(A) \cap pcl(B) \subseteq U$. Hence $A \cap B$ is gps-closed.

Theorem 3.19: Let A be a gps-closed in (X, τ) then pcl(A)-A does not contain any non empty semi-closed.

Proof: Let F be a semi-closed set such that $F \subseteq pcl(A) - A$. Then $F \subseteq X-A$ implies $A \subseteq X-F$. Since A is gps-closed and X-F is semi open. Therefore $pcl(A) \subseteq X-F$. That is $F \subseteq X-pcl(A)$. Hence $F \subseteq pcl(A) \cap (X-pcl(A)) = \emptyset$. This shows $F = \emptyset$.

Theorem 3.20: Let A be gps-closed in (X, τ) . Then A is pre-closed if and only if pcl(A) - A is semi-closed.

Proof: (Necessity) Let A be gps-closed. Assume that A is pre-closed. Then pcl(A) = A and so $pcl(A) - A = \phi$. Hence pcl(A) - A is semi-closed (Sufficiency): Assume that pcl(A) - A is semi-closed. Then $pcl(A) - A = \phi$ since A is gps-closed. That is pcl(A) = A. Hence A is pre-closed.

Theorem 3.21: If A is semi-open and gps-closed, then A is pre-closed.

Proof: Since A is semi-open and $A \subseteq A$. we have $pcl(A) \subseteq A$, since A is gps-closed. Therefore pcl(A) = A, which means that A is pre-closed.

Theorem 3.22: If A is gps-closed then $scl(\{x\}) \cap A \neq \emptyset$, for each $x \in pcl(A)$.

Proof: Let $x \in pcl(A)$. If $scl(\{x\}) \cap A = \phi$, then $A \subseteq scl(\{x\})^c$. So $pcl(A) \subseteq scl(\{x\})^c$. Since $x \in pcl(A)$, which implies $x \in scl(\{x\})^c$ which is a contradiction. Hence $scl(\{x\}) \cap A \neq \phi$.

Theorem 3.23: Let A be a subset of X. If $scl(\{x\}) \cap A \neq \phi$, for each $x \in scl(A)$ then scl(A) - A contains no non empty semi closed set.

*T. Sampoornam, *Gnanambal Ilango and **N. Selvanayaki/Generalized pre-semi closed sets in Topological Spaces / IJMA- 4(6),

June-2013.

Proof: Let F be a semi-closed set such that $F \subseteq scl(A) - A$. If there exists a $x \in F$, then $\phi \neq scl(\{x\}) \cap A \subseteq F \cap A \subseteq scl(A) - A$, a contradiction. Hence $F = \phi$.

Theorem 3.24: If A is a gps-closed subset of X such that $A \subseteq B \subseteq pcl(A)$ then B is a gps-closed set in X.

Proof: Let A be gps-closed set of X such that $A \subseteq B \subseteq pcl(A)$. Let U be a semi-open set of X such that $B \subseteq U$. Then A $\subseteq U$. Since A is gps-closed, we have $pcl(A) \subseteq U$. Now $pcl(B) \subseteq pcl(pcl(A)) = pcl(A) \subseteq U$. Therefore B is gps-closed set in X.

Theorem 3.25: For every point x of a space $X, X - \{x\}$ is gps-closed or semi-open.

Proof: Suppose $X - \{x\}$ is not semi-open. Then X is the only semi-open set containing $X - \{x\}$. This implies $pcl(X - \{x\}) \subseteq X$. Hence $X - \{x\}$ is gps-closed set in X.

Theorem 3.26: If A is semi-open and gps-closed, then A is pre-closed.

Proof: Suppose A is semi-open and gps-closed. As $A \subseteq A$, we have $pcl(A) \subseteq A$. This implies A is pre-closed.

REFERENCES

- 1. Benchalli.S.S and Wali.R.S, On RW-closed sets in topological spaces, Bull. Malaysian. Math. Sci. Soc., 30(2007), 99-110.
- 2. Cameron. D. E, Properties of S-closed spaces, Proc. Amer. Math. Soc. 72(1978), 581-586.
- 3. Dontchev.J, On generalizing semi-preopen sets, Mem. Fac. Sci. Kochi Univ. Ser. A. Math. 16(1995), 35-48.
- 4. Gnanmbal. Y, On generalized preregular closed sets in toplogical spaces, Indian J. Pure. Appl. Math., 38 28(3)(1997), 351-360.
- 5. Levine.N, Generalized closed sets in topology, Rend. Circ. Mat. Palermo 19(2) (1970), 89-96.
- 6. Levine.N, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly. 70(1963), 36-41.
- 7. Maki.H, Umehara. J and Noiri. T, Every topological space is pre-T_{1/2} space, Mem. Fac. Sci. Kochi Univ. Ser. A. Math. 17(1996), 33-42.
- 8. Mashhour.A.S., Abd El-Monsef.M.E. and El-Deeb.S.N. On pre-continuous and weak pre-continuous mappings, Proc. Math. and Phys. Soc. Eqypt, 53(1982), 47-53.
- 9. Sanjay Mishra, Varun Joshi and Nitin Bhardwaj, On generalized pre regular weakly (gprw)-closed sets in topological spaces, International Mathematical Forum, 40(2012), 1981-1992.
- 10. Sheik John.M and Sundaram, On ω-closed sets in topology, Acta Ciencia Indica, 4(2000), 389-392.
- 11. Stone. M, Application of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc. 41(1937), 374-381.
- 12. Veerakumar.M.K.R.S, g*-Closed sets in topological spaces, Mem. Fac. Sci. Kochi Univ. Math, 21(2000), 1-19.

Source of support: Nil, Conflict of interest: None Declared