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ABSTRACT

A mathematical model of reactive gas absorption is restudied in this paper. Here He’s Homotopy perturbation method
is implemented to find the analytical solutions of system of steady-state non-linear reaction diffusion equations
containing a non-linear term related to reactive gas absorption. Analytical expressions for concentrations of the gas
and liquid reactants have been derived for small values of Hatta number M and all values of parameters rq, ag, @, S
and Q. Analytical expression of reaction (enhancement) factor for non-volatile and volatile liquid reactant also
derived. The Homotopy perturbation method which produces the solutions in terms of convergent series requires no
linearization. These analytical results are compared with numerical results and are found to be in good agreement.

Keywords: Reactive gas absorption, Reaction/diffusion equation, Mathematical modeling, Homotopy perturbation
method, Non-linear boundary value problem.

INTRODUCTION

Absorption of gases in liquid solutions accompanied by chemical reactions is an important industrial operation for the
production of basic chemicals. Gas — liquid reactors depend on fundamental understanding of the interactions between
transport and chemical reaction phenomena. Mathematical models are developed to describe the effect of chemical
reaction on the rate of gas absorption at the microscopic level and are customarily accomplished by invoking inter
phase transport models to describe the mechanism of the physical contact between the gas and liquid phases. The most
widely used models are film model [1] and surface renewal model [2].

The mathematical formulation of film model gives rise to a boundary value problem which is non linear in most cases
of practical importance. Considerable efforts have been directed at the development and application of rigorous and
approximate solutions of the local and global boundary value problem models in reactive gas absorption.

Shaikh et al. [13] have derived an expression for the reaction factor using a set of algebraic equations. However, to the
best of our knowledge, till date there were no analytical results corresponding to the reaction factor for all values of the
parameters were reported. The purpose of this communication is to derive an analytical solution for the boundary value
problem in reactive gas absorption when the liquid reactant is non volatile and volatile.

MATHEMATICAL FORMULATION OF THE BOUNDARY VALUE PROBLEM FOR NON-VOLATILE
LIQUID REACTANT

The mass transfer of a gaseous reactant A through a spherical gas bubble and into a liquid phase which contains a non
volatile liquid reactant B is addressed. This reaction scheme is represented in Fig-1. The absorption of A occurs with a
non volatile liquid reactant B with an irreversible second order reaction according to the following stoichiometry:

A+vB — products @

A general film model is framed using the relationship between the mass transfer co-efficient and thickness of a
boundary layer film. If the size of the gas bubble is independent of reaction, then the film model equations for a gas

bubble of radius R, surrounded by a film or boundary layer of thickness ¢ are given by [13]:
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d°Cpa 2dCp
D +— —kCaCpg =0 2
A2 drl ACB @
D _dzﬁJrde_B _ykCaCRr =0 )
B drr2 r'odr’ A~B =

with the following boundary conditions

Ca =CAaj ,dg:—r'?:Owhenr’:R (4a)

—[4n7z(R+5)2}DAd;:—r"A‘= kCACB{VL —{A'HT”(R+5)3 - R3}+ FL(CA-Cag).

Cg =CpgLWwhenr'=R+48 (4b)

where C, and Cg are the concentrations of the gas reactant and the liquid reactant , D, and Dg are the corresponding
diffusion coefficients, k is the second order reaction rate constant, v is the stoichiometric coefficient, r’,R, 5 are the

distance inside the liquid side film, radius of gas bubble and thickness of liquid side film respectively. n, V_and F_ are
the total number of gas bubbles in reactor, volume of liquid phase and volumetric flow rate of phase L respectively.

To cast equations (2) to (4) in dimensionless form, an expression relating the physical mass transfer co-efficient to the
thickness of the boundary layer film is needed. Equation (2) can be integrated when the reaction term is dropped to
obtain the specific rate of physical absorption. Using the definition of the mass transfer coefficient (rate of gas

absorption divided by the driving force) the relationship kL0 =%(1+éj where Q =§ is obtained. Introducing the

following dimensionless variables,

1
il 0
(OaCBL)2 ,_CA ,_C8 ,_ D8 ,_ CoL , VLKL . F )
k. © Cai CaL vDA Cai a'Da ak?

and utilizing the above relationship, the film model equations (2) and (3)can be normalized as follows:

2 2
BJrL%:(HiJ M 2ab (6)
dx2  x+Qdx Q

dX2 X+Q&_

d2b 2 db [ 1)2M2
=11+
Q

——ab ©)
rq

with boundary conditions

At x=0, a=1, ﬁzo (8a)
dx
da 2 Q 1 1 Q
At x=1 —-——=M —|1+—+——||a- a-up) b=1 8b
dx (1+Qja ( +Q+3QZ j] (1+Q]'B( 0) (8b)

where a and b are dimensionless concentrations of the gas and liquid reactants respectively and x is the dimensionless
distance inside the liquid film. The other dimensionless parameters are the Hatta number M, the concentration ratio rq
and uo, o, 5, Q. The equations (6) and (7) are the system of non linear differential equations. This non linear boundary
value problem does not have a general analytic solution. Shaikh and coworkers [13] have solved these equations using
Van Krevelen- Hoftijzer approach [14] which is given in the next section.

PREVIOUS WORK

As per Van Krevelen- Hoftijzer approach, the concentration of the liquid reactant within the film is equal to its
concentration at the interface (i.e.) b(x) =b, for xe(0,1). This uncouples equation (6) from (7) and using the boundary
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condition equation (8) can be solved to obtain a(x). This function can be used to obtain an expression for the reaction
factor which is defined as the ratio of the actual rate of absorption to the maximum possible rate of physical absorption
given by

cr_[badcardly g o [da} ©

kLOCAI 1+Q| dx x=0

Shaikh et al [13] obtained the expression for EA* using the following set of simultaneous algebraic equations.

QM11+9Q)-1]+ @1+ Q)ZM\/EtanhH1+éjM \/E}
Q[M1(1+Q)—l]tanhﬁl jM\/_} +(1+Q) M\/_ l+Q

Q1+ Q)pag

_Q[M1(1+Q) 1]smhK1+ jM\/_} +1+Q) M\/_coshKu )M\/_}

Ea =M,/bj.

(10)
b_:(1+rq)—EA*—aL
rq (11)
Q1+ QMo + Q% ug sinhKl+g12jM \/E}
ap = = (12)
Q[M1(1+Q)—l]sinh{[1+slle\/E +(l+Q)2M\/EcoshK1+g1)jM \/H}
w2l @ ], e LT 2
M1=M {|:1+Qj|a {1+Q+392}+ 1+Q}ﬁ Ml +ng (13)
where
.:aQ_[HLL) . (1)
1+Q Q 302 1+Q

ADVANTAGES OF HOMOTOPY PERTURBATION METHOD

Recently, many authors have applied the HPM to various problems and demonstrated the efficiency of the HPM for
handling non-linear structures and solving various physics and engineering problems [3-6]. Homotopy perturbation
method is a series expansion method used in the solution of non linear partial differential equations. This method
employs a homotopy transform to generate a convergent series solution of differential equations. This method has been
used by many authors to obtain solutions of a large class of linear and non- linear equations. The HPM was introduced
by Ji-Huan He. The basic concept of HPM [7-10] is given in Appendix-A. In this paper HPM [11-12] is employed to
solve the system of non-linear differential equations (6) and (7).

ANALYTICAL EXPRESSIONS OF THE CONCENTRATIONS OF GAS AND LIQUID REACTANTS FOR
NON-VOLATILE LIQUID REACTANT USING HOMOTOPY PERTURBATION METHOD

The dimensionless concentration of gas and liquid reactants can be obtained by solving the non — linear equation (6)
and (7) using HPM (see Appendix B)

((Q(l— M1 (1+Q))+npug (i + Q)Z)xj+Q(Q+ M1 (L+Q))

(x+Q)Q+ M1+ Q)

a(x) =

L1 M 21— M1(1+Q))+nﬁuo(1+Q) )x3 M 20x2
X+Q 6n (Q+ My (1+ Q) 2n?

© 2013, IIMA. All Rights Reserved 230



P. Felicia Shirlyl, S. Narmatha® and L. Rajendranz*/Analytical solution of boundary value problem in reactive gas absorption /
IUMA- 4(6), June-2013.

. M2 zg+nﬁ(1+Q)[(1+Q)[(M1(1+Q)+3Q+2)uo+29[M1+M2|ﬂ+29(39+1)} (15)

X+Q| 6n2(Q+ Mq(1+Q))2

+ 1+ Q)M 201+ Q) + 602 + 2M 21 Q(3Q +1)

((1+ Q)[— npug (L+Q)2 + QL+ QM1 —QDx3 +

M2 (-30@+Q)M11+Q)+ Q)2 +

6(x+ Q)n2rg(Q+ M1 L+ Q) 1+Q) ((1+Q)[nﬁu0(1+Q)+ 20M1]+Q (3(2+1)jx+ (16)

b(x) =1—

((1+ Q)[n/;uog(lJr Q)+ ZQle} +02(30 +1)j

From equation (15) the reaction factor can be obtained as follows:

E” __L[d_a}
A A+Q)Ldx

0L-M1+Q)+npugl+Qf 1

QQ+M1(1+Q)) Q

T+ 0) M2 2Q+nﬁ(l+Q)((1+Q)((Ml(1+Q)+3Q+2)uo +ZQ(M1+M2ID+ZQ(SQ+l)j

6(9n2(9+ 'V'1(1+Q))2) + 1+ Q{ZM 41201+ Q)+ 602 + 2M 2|Q(3Q+1))

A7)
DISCUSSION
Equations (15) and (16) represent the new analytical expressions of concentration of gas reactant and liquid reactant
for small values of parameters. Equation (17) represents the new simple closed form of an analytical expression of
reaction factor. Tables 1-4 show the comparison between analytical and numerical values of reaction factor in non
volatile liquid reactant model for small values of Hatta number M. From the tables it is evident that as the value of
Hatta number increases, the value of reaction factor also increases. Further, when the value ofQ increases the value of
reaction factor decreases.

MATHEMATICAL FORMULATION OF THE BOUNDARY VALUE PROBLEM FOR VOLATILE LIQUID
REACTANT

The absorption of gaseous species A accompanied by simultaneous reaction with volatile liquid species B according to
irreversible second-order kinetics is described. A linear approximation for the concentration profile of species B is
applied in a film model to obtain an analytical expression for the reaction factor which can be applied to all reaction
regimes. On the basis of the film model and a plane interface, the absorption of species A accompanied by irreversible
second order reaction with volatile species B is mathematically described as follows [9]:

d2c

Dp——A _KkCACR =0 (18)
dz2
2

pg 3°CB _kcacq =0 (19)
dz2

The boundary conditions are

Ca =Caj at z =0 (20a)
dcC 0

DBd—ZB:kGBKB(CB—CB(;) at z=0 (20b)
' dCa '

_aDAT:kCACB(VL_aZ)"' FL(CA—CAo)at =1, (21a)

Cg=CpgLatz=12 (21b)
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To cast equations (18) to (21) in dimensionless form, an expression relating the physical mass transfer co-efficient to
the thickness of the boundary layer film is used. Using the definition of the mass transfer coefficient the relationship

k|_0 = Dalz, is obtained. Introducing the following dimensionless variables,

1
- 0
(k0ACBL)? . _CA ,_CB ,_ Ds g=CBL , VLKL FL 22)
k ° Cai CL  vDa Cai aDa a’ky

and utilizing the above relationship, the film model equations can be normalized as follows:
2
d“a

_2 =M 2ab (23)
dx

2 2
H = M_ ab (24)
dx2 19

with boundary conditions

At x=0, a=1, %:y(l—be)b (25)
Atx =1, —%:Mz(a—l)a—ﬂ(a—uo), b=1 (26)

where y is the volatility of the liquid reactant and bG is the dimensionless concentration. The equations (23) and (24)

are the system of non linear differential equations. This non linear boundary value problem does not have a general
analytic solution. While no general method of solving these non-linear problems has been proposed, homotopy
perturbation method has been applied here to solve these non linear differential equations.

ANALYTICAL EXPRESSIONS OF THE CONCENTRATIONS OF GAS AND LIQUID REACTANTS FOR
VOLATILE LIQUID REACTANT USING HOMOTOPY PERTURBATION METHOD

Using HPM (see Appendix C), the analytical expression of concentrations of gas and liquid reactants are obtained as
follows:

a (x)=cqrgcosh Mx +corgsinh Mx +C3X+Cyq 27
Jra Jra

b(x) =c1 cosh[%] +C2 sinh{%} (28)

where the constants €1 to C4 and M, are defined in the equations (C6), (C7), (C10) and (C11).

NUMERICAL SIMULATION

To show the efficiency of the present method , the analytical solutions (27) and (28) is compared with numerical
solution. The SCILAB/MATLAB program is also given in Appendix D. The dimensionless concentrations of gas and
liquid reactants which are derived from HPM are compared with simulation results in Figs 2 and 3.

Limiting case

When bg =1,a =1, a=ug, the boundary conditions (25) and (26) become as follows:
db

At x=0, a=1 —=0 (29)
dx
da
At x=1 —=0, b=1 (30)
dx
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In this case, the dimensionless concentrations of the gas and liquid reactants can be obtained using Homotopy
perturbation method as follows:
2,2 4( 4 2 3 4
M 2, M7 x (l+rg) x°  rgx M (1+rq)x
2 2rq 3rq (31)

a(x)=1+
) 12 2 3

b(x) =1+

MZXZ_MZJr M4 £x4(1+rq) ﬁ_rqx3}rM4(5+3rq)
12 2 3

2rq 2rq 2r2q2 24r2q2 (32)

The dimensionless concentrations of gas and liquid reactants (eqns 31 and 32) which are derived from HPM are
compared with simulation results in Figs 4 and 5. The SCILAB/MATLAB program is also given in appendix E.

CONCLUSION

Approximate solution of two non linear boundary value problems in reactive gas absorption are obtained using
Homotopy perturbation method. Simple and closed form of an analytical expression of the enhancement factor is
reported for both volatile and non volatile reactants. This theoretical result is very much useful to analyze the spherical-
effect of gas — liquid reactions.

APPENDIX A: Basic concepts of the Homotopy perturbation method
Homotopy perturbation method has overcome the limitations of traditional perturbation methods. It can take full
advantage of the traditional perturbation techniques, so a considerable deal of research has been conducted to apply the

homotopy technique to solve various strong non-linear equations. To explain this method, let us consider the following
function:

Do(u)—f(r)=0, reQ (A1)

with the boundary conditions of
ou
Bo(u,%) =O, rel’ (A2)

where Dg is a general differential operator, By is a boundary operator, f(r) isa known analytical function and T is
the boundary of the domain Q. In general, the operator Dy can be divided into a linear part L and a non-linear
part N . Eq. (A1) can therefore be written as

L(u)+N(@u)-f(r)=0 (A3)

By the homotopy technique, we construct a homotopy v(r, p): Qx[0,]] —» R that satisfies
H(v, p) = @— p)[L(v) - L(ug)]+ p[Dg (V) - £ (r)] = 0. (A4)

H (v, p) = L(v) - L(up) + pL(ug) + P[N (v) - f(r)] = 0. (A5)

where p € [0, 1] is an embedding parameter, and U, is an initial approximation of Eq. (Al) that satisfies the boundary
conditions. From Eq. (A4) and Eq. (A5), we have

H (v,0) = L(v) - L(ug) =0 (AB)
H(v,1) = Do(v)— f(r)=0 (A7)

When p=0, Eq. (A4) and Eq. (A5) become linear equations. When p =1, they become non-linear equations. The process
of changing p from zero to unity is that of L(v)—L(ug)=0 to Dg(v)— f(r)=0. We first use the embedding

parameter P as a “small parameter” and assume that the solutions of Eq. (A4) and Eq. (A5) can be written as a power
seriesin P :
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V=V, + pv, + PPV, +.. (A8)
Setting p =1 results in the approximate solution of Eq. (Al):
u=limv=v,+v, +v, +... (A9)

p—1
This is the basic idea of the HPM.
APPENDIX B
Solution of equations (6) and (7) using Homotopy perturbation method

The Homotopy for the equations (6) and (7) can be constructed as follows:
2 2 2
d a+ 2 da}+ [d a 2 da M abJ:0 (B1)

aL-p)

dx2 X+Q dx dx2 i n2
2 2 2

(1= p) d b+ 2 db + d b+ 2 db M*ab -0 (B2)
dx2  X+Qdx dx2 x+Qdx n2rq

The boundary conditions (8a) and (8b) can be written as follows:

At x=0, a=1, @:0 (B3a)
dx
da 2
At x=1, e Mel+ng |a-nfug=Ma-npguy, b=1 (B3b)
X

where | and n are given by (14). The approximate solutions of (B1) and (B2) are

a(x)=a, +a,p+a,p’+... (B4)

b(x) =by +b, p+b, p?+... (B5)

Substituting equations (B4),(B5) in equations (B1),(B2) and comparing the coefficients of like powers of p, the
following equations are obtained.

o, d%a, 2 day _ (B6)
dx? x+Q dx
42 2
pl' d a . 2 dag M aobo:o B7)
dx2  X+Q dx n2
2
p°: % 2 db (B8)
dx? Xx+Q dx
42 2
pl d b1+ 2 m_M aObO =0 (Bg)
dx2 x+Q dx n2rq
The boundary conditions become
dbg
At x=0, ap=1 —=0 B10
0 dx (B10)
234
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dby
a1=0 %L o B11
1 dx (B11)
At x=1, —‘tﬂzmlao—nﬂuo,b():l (B12)
X
- Myay, by =0 (B13)
X

Solving equations (B6) to (B9) using the boundary conditions (B10) to (B13), we obtain the following results:

((9(1— M1+ Q) +nfug L+ Q)2)x+Q(Q+ M1(1+Q)j
a,(X)= (B14)
(x+Q)(Q+M1(1+Q))
a,(x) = 19{'\/' 2@ (1—M12(1+Q))+nﬂu0(l+(2)2) x3 M Z%XZJ
6n“(Q+M1(1+Q)) 2n
X M 2 20 + nﬂ(1+Q)((1+Q){(Ml(1+Q)+3Q+2)u0 +ZQ(M1+M2I)}+ZQ(3Q+1)j
e 6(”2(Q+ Ml(“Q))z) L+ (eMA200+0)+602 +2M 2 Q@EQ +1)
(B15)
bo (x) =1 (B16)

(@+0) -npu, 1+ Q) + @+ Q)M, -] )x
M? +(-83Q(1+Q)(M, (1+Q) +Q))x*
6(x+Q)n’rq(Q+M, (1+Q))(1+Q) +((1+Q)[nBu, (1+Q)+20M, ]+ Q (3Q+1))x

+(1+Q)[nBuQ(1+Q)+20°M, |+ 0 (32+1)) | BL7)

by (x) =—

According to HPM, we conclude that

a(x)= It (ao +a,pt+a,p’+... ); a, +a, (B18)
p—1

b (x) = Itl(b0+b1p+b2p2+... )= by +b, (B19)
P

From the above equations we can obtain the equations (15) and (16) in the text.
APPENDIX C
Solution of equations (23) and (24) using Homotopy perturbation method

Consider the equations

2
d%a 2. (C1)
dx2

d%b  M2ab )
dx? rq
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with the following boundary conditions,

At x=0, a=1, %zy(l—be)b (C3a)

At x=1 —%:Mz(a—l)mﬂ(a—uo):Mla—ﬁuo . b=1 (C3b)

where My = M?(¢-1)+ § . Substituting the boundary condition & =1 when X = Qin (C2), we get,

d%0 M2

(C4)
dx? rq

The complementary function for the above equation is

M . M
b=c, cosh| —— x |+ ¢, sinh| ——x (C5)
(\/rq } {Jﬁ J

Using the boundary condition at x=0, % = ;/(1— bg )b and at x=1, b=1, the following constants are obtained.
X

1

cosh[ M ]+y(1_be)‘/asinh{ M J
Jra M Jra

(C6)

Clz

1

M cosh{ M ]+sinh(MJ
7(1_b<3 )\/ﬁ \/ﬁ \/ﬁ

Substituting this value of b and a=1 in (C1), we get

2
d_?=|v|2 ¢, cosh lx +¢,sinh lx (C8)
dx Jrq A

Using the boundary condition that at x=0, a=1 and at x=1, _ji =Mya- fug, We get
X

C, = (C7)

a(x)=cqrgcosh Mx +corgsinh Mx +C3X+Cq (C9)
Jra Jra
where
1 M M . M c,M
€y =————| rgcosh| —= | ¢, —— + M, ¢, |+ rgsinh| — | 2=+ M,c, [+M ¢, —
3 M1+1[q {\/ﬁ}[ zﬁ 11} q {ﬁ]{ﬁ 1 ZJ 1C4 ﬂuo}
(C10)
c, =1-¢rq (C11)

and the constants ¢q and c are given in the equation (C6) and (C7).

APPENDIX D

Scilab/matlab program to find the numerical solution of Eqns.23 and 24.
function pdex4

m = 0;

x = linspace(0,1);

t = linspace(0,100000);

sol = pdepe(m,@pdex4pde, @pdexdic,@pdex4bc,x,t);

ul =sol(:,:,1);

u2 =sol(:,:,2);

figure
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plot(x,ul(end,:))
title('ul(x, t)")
xlabel('Distance x')
ylabel('u1(x,2)")
%
figure
plot(x,u2(end,:))
title('u2(x,t)")
xlabel('Distance x')
ylabel('u2(x,2)")
%
function [c,f,s] = pdex4pde(x,t,u,DuDx)
c=[1;1];
f=1[1; 1] .* DuDx;
M =0.5;
r=75;
q=1
F = -M"2*u(1)*u(2);
F1 =-(M"2)*u(1)*u(2)/(r*a);
s=[F; F1];
%
function u0 = pdex4ic(x);
uo = [1; 1];
%
function [pl, gl, pr, gr] = pdexdbc(xI, ul, xr, ur, t)
M =0.5;
r=75;
q=1
g=0.2;
h=0.1;
j=50;
k =0.01;
u0 =0;
pl = [ul(1)-1; -g*(1-h)*ul(2)];
ql =[0; 1];
pr = [MA2*(j-1)*ur(1)+k*(ur(1)-u0); ur(2)-1];
ar=[1; 0J;

APPENDIX E

Scilab/matlab program to find the numerical solution of Egns.in the limiting case.

function pdex4

m=0;

x = linspace(0,1);

t = linspace(0,100000);

sol = pdepe(m,@pdex4pde, @pdex4dic, @pdexdbc,x,t);
ul =sol(:,:,1);

u2 =sol(:,:,2);

figure

plot(x,ul(end,:))

title('ul(x,t)")

xlabel('Distance x')

ylabel('ul(x,2)")

%
figure
plot(x,u2(end,:))
title('u2(x,t)")
xlabel('Distance x')
ylabel('u2(x,2)")

%
function [c,f,s] = pdex4pde(x,t,u,DuDx)
c=1[1;1];

f=[1; 1] .* DuDx;

M =0.5;

r =100;
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q=1;
F =-M"2*u(1)*u(2);
F1 = -(M~2)*u(1)*u(2)/(r*q);

s=[F; F1];

%

function u0 = pdex4ic(x);

uo =[1; 1];

%

function [pl,ql,pr,qr] = pdex4bc(xl,ul,xr,ur,t)

M =0.5;

r =100;

q=1

pl = [ul(1)-1; Of;

al =[0; 1J;

pr = [0; ur(2)-1];

ar=[1;0F;

NOMENCLATURE

a dimensionless concentration of gas reactant, Ca/Ca;
a' interfacial area

b dimensionless concentration of liquid reactant, Cg/Cg_
bg dimensionless concentration, defined as Cgg/CgL

Dj diffusion coefficient of species j,j=A,B

Ea reaction factor

Fo volumetric flow rate of phase p, p=L,G

k second order reaction rate constant

kgB gas — side mass transfer coefficient for species B
kf liquid — side mass transfer coefficient

kp equilibrium constant for species B
1
M Hatta number, defined as (KD,Cy, )2 /K.

M, dimensionless parameter
n total number of gas bubbles in reactor
dimensionless ratio of concentrations, Cg /Cy,

dimensionless ratio of diffusion coefficients Dg /v Dy

r distance inside liquid - side film

R radius of gas bubble

\A volume of liquid phase

X dimensionless distance inside liquid side film
z distance inside liquid side film

7L thickness of liquid side film

Greek letters
ratio of total liquid volume to film volume, V, kf /a'Dy

Yij dimensionless parameter, F./a' kf_)

1) thickness of liquid side film

4 dimensionless voltality parameter DKz - kgB/DB kf
7' dimensionless parameter, (1-bg) ¥

v stoichiometric coefficient

Q dimensionless ration of bubble radius to film thickness
Subscripts

G bulk gas phase

| gas — liquid interphase
L bulk liquid phase
0 liquid food
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Table 1: Comparison between analytical (Eg. (17)) and numerical values of reaction factor
when ug = 0, rq=5, 0=200, p=5

Numerical value | Analytical value of . o
Q| M of EA* [13] EA*(Eqn.(17) % deviation
0.01 0.834 0.834 0
0.05 0.847 0.847 0
0.08 0.865 0.865 0
50 |01 0.879 0.879 0
0.2 0.943 0.943 0
0.3 0.990 0.990 0
0.4 1.029 1.029 0
0.5 1.066 1.068 0.18
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Table 2: Comparison between analytical (Eq. (17)) and numerical values of reaction factor

UUMA- 4(6),

June-2013.

when ug = 0, rq=5, 0=200 and p=5

Numerical value | Analytical value of . o
Q| M of EA* [13] EA* Eqn.(17) % deviation
0.01 0.834 0.834 0
0.05 0.849 0.849 0
0.08 0.871 0.871 0
05 01 0.888 0.888 0
~ 102 0.977 0.977 0
0.3 1.060 1.060 0
0.4 1.135 1.147 1.05
0.5 1.203 1.246 3.57

Table 3: Comparison between analytical (Eg. (17)) and numerical values of reaction factor

when up = 0, rqg=50, a=200, =5

Numerical value | Analytical value of d
o ! 0 .

Q1M ot g e | B Egnayy | deviation

0.01 0.834 0.834 0

0.05 0.847 0.847 0

0.08 0.865 0.865 0
50| 0.1 0.879 0.879 0

0.2 0.943 0.943 0

0.3 0.990 0.990 0

0.4 1.029 1.029 0

Table 4: Comparison between analytical (Eg. (17)) and numerical values of reaction factor

when up = 0, rg=50, a=200, =5

I

Bulk gas

-

AOL—

b= = s s =

Numerical value | Analytical value of g
Q M * * % iati
of Ep” [13] E, Eqn(y) | %V
0.01 0.834 0.834 0
0.05 0.849 0.849 0
0.08 0.871 0.871 0
05 0.1 0.888 0.888 0
’ 0.2 0.977 0.977 0
0.3 1.060 1.060 0
0.4 1.135 1.147 1.05
0.5 1.209 1.246 3.06
/.- Gas-liguid interface
|
| Gas PR i
P Ligquid
Jim flm |
1
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Fig. 1: General reaction scheme
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dimensionless concentration of gas reactant (a)

U 1 1 1
0 0.2 0.4 0.6 0.8 1
dimensionless distance (x)

Fig. 2: Dimensionless concentration of gas reactant a(x) versus dimensional distance x for various values of M and
some fixed values of other parameters (a,=0, rq=100, & =50, # =0.01 ). Solid lines represent analytical result (eqn

(27)) and dotted lines represent numerical results.
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0.84F,

dimensionless concentration of liquid reactant(b)

0 01 02 03 04 05 06 07 08 09 1
dimensionless distance (x)

0.82 1 .

Fig. 3: Dimensionless concentration of liquid reactant b(x) versus dimensional distance x for various values of M and
some fixed values of other parameters (a,=0, rq=100, « =50, =0.01 ). Solid lines represent analytical result (egn
(28)) and dotted lines represent numerical results.
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Fig. 4: Dimensionless concentration of gas reactant a(x) vesus dimensional distance x for various values of M and for

fixed value of rg=100. Solid lines represent analytical result (eqn (31)) and dotted lines represent numerical results.
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Fig. 5: Dimensionless concentration of liquid reactant b(x) versus dimensional distance x for various values of M and
for fixed value of rq=100. Solid lines represent analytical result (eqn. (32)) and dotted lines represent numerical
results.
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