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ABSTRACT 
A SIR (Susceptible-Infected-Removed) model that monitors the temporal dynamics of a childhood disease in the 
presence of preventive vaccine is discussed. The aim of epidemic modeling is to understand and if possible control the 
spread of disease. To do this, it tries to relate disease dynamics at the population level to basic properties of the host 
and pathogen populations and of the infection process. Epidemic models thus express scientific hypotheses. In this 
paper, a powerful analytical method, called Homotopy analysis method (HAM) is used to solve the system of nonlinear 
differential equations. Furthermore, in this work the numerical simulation of the problem is also reported using 
Scilab/Matlab program. Our analytical results are compared with simulation results. A good agreement between 
analytical and numerical results is noted.   
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1. INTRODUCTION 
Important control problems nowadays related to life sciences are the control of ecological models like, for instance, 
those of population via the online adjustment of the species environment carrying capacity, that of the population 
growth or that of the regulated harvesting quota as well as the disease propagation via vaccination control. In a set of 
papers, several variants and generalizations of the Beverton-Holt model (standard time–invariant, time-varying 
parameterized, generalized model or modified generalized model) have been investigated at the levels of stability, 
cycle- oscillatory behavior, permanence and control through the manipulation of the carrying capacity [1-5]. The sets of 
models include the most basic ones, as follows: (i) SI- models where not removed- by – immunity group is assumed. In 
other word, only susceptible and infected groups are assumed;(ii) SIR models, which include susceptible plus infected 
plus removed- by –immunity groups; (iii) SEIR models where the infected group is split into two ones. Those models 
have also two major variants, namely, the so-called “pseudo-mass action models”, where the total population is not 
taken into account as a relevant disease contagious factor and the so-called “true-mass action models”, where the total 
population is more realistically considered as an inverse factor of the disease transmission rates [6].  
 
In particular, the SIR model is a standard compartmental model that has been used to describe many epidemiological 
diseases [7-10]. In this model the population divided into three groups: the susceptible (S), infective (I), and the 
recovered (R). The susceptible groups are those who are not infected and not immune, the infective groups are those 
who are infected and can transmit the disease, and the recovered are those who have been infected and are immune 
(recovered or dead). This model assumes that the efficacy of the vaccine is 100% and the natural death rates µ in the 
classes remain unequal to births, so that the population size N is realistically not constant [11].   
 
Makinde has derived an approximation to the solution of the non-linear system of differential equations governing the 
problem using Adomian decomposition method. In this paper we have derived an analytical expression for the 
concentrations of susceptible group (S), infected group (I), and removed group (R) for all values of parameters using 
Homotopy analysis method.   
 
2. MATHEMATICAL FORMULATION AND ANALYSIS OF THE PROBLEM  
 
2.1 Mathematical formulation 
The differential equations for the SIR model are [11] 

,)1( S
N
SINP

dt
dS µβπ −−−=

                                     
(1) 
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dR µγπ −+=

                                                                                                                                                  
(3) 

 

.)( N
dt
dN µπ −=

                                                                                                                                                           (4) 
 
We also have the relationship N=S+I+R and assume µ, π, β, γ, µ are constant parameters. A summary of the process is 
drawn in a flow chart in Fig.1. 
 
2.2 Normalized form 

By introducing the following set of non-dimensional variables, 
N
Rr

N
Ii

N
Ss === ,,  

 
where  N=S+I+R. We obtain 

the following system of non- linear equations 
 

ssiP
dt
ds πβπ −−−= )1(

                                                                                                                                            
(5) 

 

isi
dt
di )( πγβ +−=

                                                                                                                                                      
(6)  

 

riP
dt
dr πγπ −+=

                                                                                                                                                        
(7) 

 
where s-normalized susceptible group, i-normalized infected group, r-normalized removed group.  
 
The transformed boundary conditions are 
 
s=a, i=b, r=c when t=0                                                                                                                                                    (8) 
 
where a, b and c are the normalized parameters.      
 
3. HOMOTOPY ANALYSIS METHOD APPROACH TO A SIR EPIDEMIC MODEL WITH CONSTANT 
VACCINATION STRATEGY   
 
3.1. Homotopy analysis method 
Homotopy analysis method (HAM) [12-13]  is a general analytic method to get series solutions of various types of non-
linear equations, including ordinary differential equations, partial differential equations and coupled nonlinear 
equations. Unlike perturbation methods, the HAM is independent of small/large physical parameters. More importantly, 
different from all perturbation and traditional non-perturbation methods, the HAM provides us a simple way to ensure 
the convergence of solution series. Besides, different from all perturbation and previous non-perturbation methods, the 
HAM provides us with great freedom to choose proper base functions to approximate a nonlinear problem [14, 15]. 
Now, more and more researchers have been successfully applying this method to various nonlinear problems in science 
and engineering. In this paper we employ HAM to solve the nonlinear differential equations (Eqs. (5) – (7)). The basic 
concept of Homotopy analysis method is given in Appendix A. 
 
3.2. Solution of boundary value problem using the Homotopy analysis method 
Using HAM method (Appendix B), we obtained the analytical expression corresponding to the concentrations of 
susceptible group, infectious group and removed groups as follows: 
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(11)   

3.3. Previous work of Mankinde [11] 
Mankinde has derived the analytical expressions of concentrations of s(t), i(t) and r(t) by using the following cases  
Case 1: 
( )
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4. RESULTS AND DISCUSSION

  
4.1. Numerical simulation 
In order to investigate the effect of vaccination control strategy, the system of differential equations (Eqs. (5) - (7)) are 
also solved by numerical methods. The function ode45 in Scilab/Matlab software which is a function of solving ODE is 
used to solve these nonlinear equations. The Scilab/Matlab program is also given in Appendix C. Its numerical solution 
is compared with the solution obtained by using Homotopy analysis method and gives a satisfactory result .To show the 
efficiency of the vaccination control strategy, our results are compared with the numerical solution (Scilab/Matlab 
program) in  Fig. (2) 
and Fig. (3). 
 
4.2. Effect of vaccination strategy 
Eqs. (5) - (7) are the simple analytical expressions of normalized susceptible group s(t), normalized infected group i(t) 
and normalized  removed group r(t) using Homotopy analysis technique for the boundary conditions (8). Fig.2 shows 
the power of high vaccination coverage on the disease free initial population groups. The susceptible group decreases 
when the time increases. and the removed group gradually increases due to inclusion of vaccinated susceptible group. 
Fig.3 illustrates the impact of high vaccination coverage on the initial population groups with low level of infective 
group. The population of the susceptible and infective groups decreases with time.  The removed group increases when 
the time increases.  
 
5. CONCLUSIONS 
In this paper, SIR epidemic model with constant vaccination strategy are solved analytically using the HAM. This 
method is powerful tool which enables to find analytical solution in case of linear and non-linear systems of differential 
equations. we conclude when the high vaccination coverage on the concentrations of susceptible group (S), infected 
group (I), and removed group (R) are derived. It gives the good agreement with simulation and limiting case results.     
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Appendix A: 
 
Basic idea of Liao’s Homotopy analysis method 
 
Consider the following differential equation [16]: 
 

0)]([ =tuN                                    (A.1) 
 
where, Ν is a nonlinear operator, t denotes an independent variable, u(t) is an unknown function. For simplicity, we 
ignore all boundary or initial conditions, which can be treated in the similar way. By means of generalizing the 
conventional Homotopy method, Liao constructed the so-called zero-order deformation equation as: 
 

)];([)()]();([)1( 0 ptNtphHtuptLp ϕϕ =−−                                (A.2) 
 
where p∈  [0,1] is the embedding parameter, h ≠ 0 is a nonzero auxiliary parameter,    H(t) ≠ 0 is an auxiliary function, 
L is an auxiliary linear operator, 0u  (t) is an initial guess of u(t) and ):( ptϕ  is an unknown function. It is important, 

that one has great freedom to choose auxiliary unknowns in HAM. Obviously, when 0=p  and 1=p , it holds: 

)()0;( 0 tut =ϕ and )()1;( tut =ϕ                                              (A.3) 
 
respectively. Thus, as p increases from 0 to 1, the solution );( ptϕ varies from the initial guess )(0 tu  to the solution 

u(t). Expanding );( ptϕ  in Taylor series with respect to p, we have: 
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If the auxiliary linear operator, the initial guess, the auxiliary parameter h, and the auxiliary function are so properly 
chosen, the series (A.4) converges at p =1 then we have: 
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                                  (A.7) 
 
Differentiating Eq. (A.2) form times with respect to the embedding parameter p, and then setting   p = 0 and finally 
dividing them by m!, we will have the so-called mth-order deformation equation as: 
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Applying 1−L  on both side of Eq. (A.8), we get 
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In this way, it is easily to obtain mu  for ,1≥m  at thM  order, we have 

∑
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M
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0
)()(                                                                                                                                                              (A.12)               

 
When +∞→M , we get an accurate approximation of the original Eq. (A.1). For the convergence of the above 
method we refer the reader to Liao [12]. If Eq. (A.1) admits unique solution, then this method will produce the unique 
solution. If Eq. (A.1) does not possess unique solution, the HAM will give a solution among many other (possible) 
solutions. 
 
Appendix B: 
 
Analytical solution of non-linear equations (5) to (7) 
 
In order to solve equations (5) to (7) by means of the HAM, we first construct the equations as follows: 
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The approximate solutions of Eqs. (B.1) - (B.3) are as follows 
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Substituting (B.4) in Eq. (B.1), (B.5) in Eq.(B.2) and (B.6)in Eq.(B.3)  equating the like powers of p  we get 
 

0sP1
dt

ds
p 0

00 =+−− ππ)(:                                               (B.7) 

 

0shihsP1h
dt

ds
hsP1

dt
ds

s
dt
dsp 000

0
0

0
1

11 =−−−+−−−+−+ πβππππ )()(:                                     (B.8) 

 

0i
dt
di

p 0
00 =++ )(: πγ                                  (B.9) 

 

0ihish
dt
di

hi
dt
di

i
dt
dip 000

0
0

0
1

11 =+−+−+−−++ )()()(: πγβπγπγ                          (B.10)  

 

0Pri
dt
dr

p 00
00 =−+− ππγ:                                (B.11) 

 

0rhih
dt
dr

hri
dt
dr

ir
dt
drp 00

0
00

0
11

11 =−+−−+−−+ πγπγγπ:              (B.12) 

 



V. Meena#, K. Indira#, M. Prabha Devi#, L. Rajendran*#/Theoretical analysis of a SIR epidemic model with constant vaccination 
strategy/ IJMA- 4(6), June-2013. 

© 2013, IJMA. All Rights Reserved                                                                                                                                                                      248   

 
The boundary conditions Eq. (8) becomes 
 

btiats == )(,)( 00 and ctr =)(0 when t=0                                                                                  (B.13) 
 

0)(,0)( 11 == tits and 0)(1 =tr  when t=0                             (B.14) 
 
From Eqs. (B.7), (B.9) and (B.11) and from the boundary conditions (B.13) we get,  
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Substituting the values of 000 and, ris in Eq. (B.8), Eq. (B.10) and Eq. (B.12) and solving the equations using the 

boundary conditions (B.14) we obtain the following results: 
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Adding Eqs. (B.15) and (B.18), we get Eq. (9) in the text. Similarly we get Eqs. (10) and (11)  in the text. 
 
Appendix C: 
 
Scilab/Matlab program to find the numerical solution of nonlinear Eqs. (5)-(7): 
function main  
options= odeset('RelTol',1e-6,'Stats','on');  
%initial conditions  
x0 = [1;0;0];   
tspan = [0 10];   
tic 
[t,x] = ode45 (@TestFunction, tspan,x0,options);  
toc 
figure 
hold on  
plot(t, x(:,1))  
plot(t, x(:,2))  
plot(t, x(:,3))  
legend('x1','x2')  
ylabel('x')  
xlabel('t')   
return 
function [dx_dt]= TestFunction(t,x)  
P=0.9;d=0.4;e=0.8;f=0.03;  
dx_dt(1)=(1-P)*d-e*x(1)*x(2)-d*x(1);  
dx_dt(2) =e*x(1)*x(2)-(f+d)*x(2);  
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dx_dt(3) =P*d+f*x(2)-d*x(3);   
dx_dt = dx_dt';    
return 
 
Appendix D 

Nomenclature 

Symbols: 

S  Susceptible group 

I  Infected group 

R  Removed group 

N  Population size 

µ  Natural death rates 

π  Constant birth rate 

P  Population fraction 

β  Rate change of susceptible group to infective group 

γ  Rate change of infective group to removed group 

s  Normalized susceptible group 

i  Normalized infected group 

r  Normalized removed group     

a, b, c                   Saturation parameter 

t                           Time     
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Fig. 1: Flow chart for the SIR model. 

 
 
Fig.2: The effect of population fraction versus time for the various values of parameters. The key to the graph: ( ) 
represents the analytical solution of the Eqs. (5)-(7). (…)  represents the normalized susceptible group s; (***) 
represents the numerical result for normalized infected group i; and (+++) represents the numerical result for 
normalized removed group r.    
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Fig.3: The effect of population fraction versus time for the various values of parameters. The key to the graph:( ) 
represents the analytical solution of the Eqs. (5)- (7). (…)  represents the normalized susceptible group s; (***) 
represents the numerical result for normalized infected group i; and (+++) represents the numerical result for 
normalized removed group r.   
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