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ABSTRACT 
An attempt has been made to study the two-dimensional MHD free convective oscillatory flow and mass transfer of an 
optically thin gray fluid with electrically conducting incompressible viscous fluid past an infinite vertical porous plate 
embedded in a porous medium, through which suction occurs with constant velocity.  A uniform magnetic field is 
assumed to be applied transversely to the direction of the free stream taking into account of induced magnetic field.   
The governing equations involved in the present analysis are solved by using the perturbation method.  The velocity, 
temperature and concentration fields are studied for different parameters such as Radiation parameter (S), Grashof 
number (Gr), modified Grashof number (Gc), Magnetic field parameter (M), Permeability parameter (k), Schmidt 
number (Sc), Prandtl number (Pr) and Eckert number (Ec) etc. 
 
Key words: Free convection, mass transfer, radiation, oscillatory flow, MHD, Porous medium etc.  
 
 
INTRODUCTION 
 
Many processes in engineering areas occur at high temperature making the knowledge of thermal radiation heat transfer 
becomes very important. Plasma physics, gas turbines, and the various propulsion devices for aircraft, missiles, 
satellites and space vehicles, flow through a porous medium in the presence of radiation and glass production are some 
examples of such engineering areas. 
 
The influence of magnetic field on viscous incompressible flow of an electrically conducting fluid has its importance in 
many applications such as extrusion of plastics in the manufacture of rayon and nylon, purification of crude oil, pulp, 
paper industry, textile industry and in different geophysical cases etc.  In many process industries, the cooling of 
threads or sheets of some polymer materials is of importance in the production line. The rate of cooling can be 
controlled effectively to achieve final products of desired characteristics by drawing threads, etc. in the presence of an 
electrically conducting fluid subject to a magnetic field.   
 
MHD plays an important role in agriculture, petroleum industries, geophysics and in astrophysics. Important 
applications are in the study of geological formations, in exploration and thermal recovery of oil, and in the assessment 
of aquifers, geothermal reservoirs and underground nuclear waste storage sites. MHD flow has application in 
metrology, solar physics and in motion of earth’s core. Also it has applications in the field of stellar and planetary 
magnetospheres, aeronautics, chemical engineering and electronics. In the field of power generation, MHD is receiving 
considerable attention due to the possibilities it offers for much higher thermal efficiencies in power plants. 
 
Jonah Philliph et al. (10) studied the effects of thermal radiation and MHD on the unsteady free convection and mass 
transform flow past an exponentially accelerated vertical plate with variable temperature.  Raptis (12) discussed the free 
convective oscillatory flow and mass transfer past a porous plate in the presence of radiation for an optically thin fluid.  
Kishore et al. (11) have analyzed the effects of thermal radiation and viscous dissipation on MHD heat and mass  
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diffusion flow past an oscillating vertical plate embedded in a porous medium with variable surface conditions.  Israel – 
Cookey et al. (9) have studied the influence of viscous dissipation and radiation on unsteady MHD free convection 
flow past an infinite heated vertical plate in a porous medium with time dependent suction.  Cookey et al. (6) have 
analyzed influence of viscous dissipation and radiation on unsteady MHD free convective flow past an infinite heated 
vertical plate in a porous medium with time dependent suction. 
 
Chamkha (4) discussed unsteady MHD convective heat and mass transfer past a semi-infinite vertical permeable 
moving plate with heat generation.  Ahmed (2) looked the effects of unsteady free convective MHD flow through a 
porous medium bounded by an infinite vertical porous plate.  Sharma and Singh (15) have discussed the unsteady 
MHD free convective flow and heat transfer along a vertical porous plate with variable suction and internal heat 
generation.  Sharma et al. (14) have analyzed the heat and mass transfer effects on unsteady MHD free convective flow 
along a vertical porous plate with internal heat generation and variable suction.  Soundalgekar (16) investigated the 
unsteady free convection flow along vertical porous plate with different boundary conditions and viscous dissipation 
effect.  Hemanth Poonia and Chaudhary (8) have analyzed the MHD free convection and mass transfer flow over an 
infinite vertical porous plate with viscous dissipation.   
 
Convection in porous medium has important applications in many areas including thermal energy storage, flow through 
filtering devices, utilization of geothermal energy, oil extraction, high performance insulation for buildings, paper 
industry etc.  Hence combined study may give some vital information which will surely be helpful in developing other 
relevant areas.  Chaudhary and Arpita Jain (5) have discussed the MHD heat and mass diffusion flow by natural 
convection past a surface embedded in a porous medium.  Seethamahalakshmi et al. (13) have examined the effects of 
the chemical reaction and radiation absorption on an unsteady MHD convective heat and mass transfer flow fast a 
semi-infinite vertical moving in a porous medium with heat source and suction.  Abdel-Nasser Osman et al. (1) have 
investigated the analytical solution of thermal radiation and chemical reaction effects on unsteady MHD convection 
through porous medium with heat source/sink. Chamkha and Khaled (3) have looked the effects of hydromagnetic 
combined heat and mass transfer by natural convection from a permeable surface embedded in fluid saturated porous 
medium.  Sudheer Babu et al. (17) have examined the radiation and chemical reaction effects on an unsteady MHD 
convection flow past a vertical moving porous plate embedded in a porous medium with viscous dissipation.  Girish 
Kumar et al. (7) have examined the mass transfer effects on MHD flows exponentially accelerated vertical plate in the 
presence of chemical reaction through porous media.   
 
The main objective of the present analysis is to study the two-dimensional MHD free convective oscillatory flow and 
mass transfer of an optically thin gray fluid with electrically conducting incompressible viscous fluid past an infinite 
vertical porous plate embedded in a porous medium, through which suction occurs with constant velocity. The 
equations of continuity, momentum, energy and diffusion which govern the flow field are solved to the best possible 
solution. 
 
Nomenclature 
C - dimensionless concentration, [-] 
𝐶𝐶′          -           concentration, [mol𝑚𝑚−3]  
𝐶𝐶𝑤𝑤′       -        species concentration at the plate, [mol𝑚𝑚−3]  
𝐶𝐶∞′       -           species concentration far away from the plate, [mol𝑚𝑚−3] 
𝑐𝑐𝑝𝑝          -           specific heat at constant pressure, [Jkg-1K-1] 
D - chemical diffusivity, [m2s-1] 
Ec - Eckert number, [-] 
𝑔𝑔𝑥𝑥′        -           acceleration due to gravity, [ms-2] 
Gc - modified Grashof number, [-] 
Gr - Grashof number, [-] 
𝐵𝐵0  -  applied magnetic field, [-] 
𝑘𝑘′   -  permeability parameter, [-] 
𝜅𝜅 - thermal conductivity, [Wm-1K-1] 
Pr - Prandtl number, [-] 
𝑝𝑝′         -       pressure, [kgm-1s-2] 
𝑞𝑞′         -     heat flux at the plate, [Wm-2] 
Sc  - Schmidt number, [-] 
T - dimensionless fluid temperature, [-] 
𝑇𝑇′       -         fluid temperature, [K] 
𝑇𝑇∞′       -          temperature of the fluid far away from the plate, [K] 
t - dimensionless time, [-] 
 𝑡𝑡′   - the time, [s] 
𝑈𝑈0        -           mean free stream velocity, [ms-1] 
u - dimensionless velocity of the fluid at the 𝑥𝑥′ - direction, [-] 
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𝑢𝑢′        -         velocity of the  fluid at the 𝑥𝑥′ - direction, [ms-1] 
𝑣𝑣′         -       velocity of the  fluid at the 𝑦𝑦′ - direction, [-] 
𝑣𝑣0       -        suction velocity, [ms-1] 
𝑥𝑥′        -        co-ordinate axis along the plate, [-] 
𝑦𝑦′        -       co-ordinate axis normal to the plate, [-] 
 
Greek symbols 
𝛼𝛼        -         absorption coefficient, [m-1] 
𝛽𝛽       -         coefficient of thermal expansion, [K-1] 
𝛽𝛽∗      -         coefficient of concentration expansion, [(molm-3)-1] 
𝑣𝑣        -         kinematic viscosity, [m2s-1] 
𝜌𝜌          -      fluid density, [kgm-3] 
𝜎𝜎∗       -      Stefan – Boltzman constant, [Wm-2K-4] 
𝜔𝜔        -      dimensionless frequency of vibration of the fluid, [-] 
𝜔𝜔′        -    frequency of vibration of the fluid, [rads-1] 
 
FORMULATION OF THE PROBLEM 
 
We consider the unsteady two-dimensional MHD free convective oscillatory flow and mass transfer of an optically thin 
gray fluid with electrically conducting incompressible viscous fluid past an infinite vertical porous plate embedded in a 
porous medium, through which suction occurs with constant velocity. The 𝑥𝑥′  - axis is along the plate in the upward 
direction and the 𝑦𝑦′  - axis is normal to it.  A uniform magnetic field is applied in the direction perpendicular to the 
plate.  Reynolds number is much less than unity and the induced magnetic field is negligible in comparison with the 
applied magnetic field.  It is also assumed that all the fluid properties are constant except that of the influence of the 
density variation with temperature and concentration in the body force term (Boussinesq’s approximation).  There is a 
chemical reaction between the diffusing species and the fluid.  The foreign mass present in the flow is assumed to be a 
low level and hence Soret and Dufour effects are negligible. Under these assumptions, the governing equations of the 
flow field are: 
 
Continuity equation 
𝜕𝜕𝑣𝑣′

𝜕𝜕𝑦𝑦 ′
= 0                                                       (1) 

 
Momentum equation 
𝜌𝜌 �𝜕𝜕𝑢𝑢

′

𝜕𝜕𝑡𝑡 ′
+  𝑣𝑣′ 𝜕𝜕𝑢𝑢

′

𝜕𝜕𝑦𝑦 ′
� =  −𝜕𝜕𝑝𝑝′

𝜕𝜕𝑥𝑥′
−  𝜌𝜌𝑔𝑔𝑥𝑥′ +  𝑣𝑣𝑣𝑣 𝜕𝜕2𝑢𝑢′

𝜕𝜕𝑦𝑦 ′2
−  �𝜎𝜎𝐵𝐵0

2 +  𝜌𝜌 𝑣𝑣′

𝑘𝑘′
� (𝑢𝑢′)                                                                  (2) 

 
Energy equation 
𝜕𝜕𝑇𝑇′

𝜕𝜕𝑡𝑡 ′
+ 𝑣𝑣′ 𝜕𝜕𝑇𝑇

′

𝜕𝜕𝑦𝑦 ′
=  𝜅𝜅

𝜌𝜌𝐶𝐶𝑝𝑝

𝜕𝜕2𝑇𝑇′

𝜕𝜕𝑦𝑦 ′2
+  𝑣𝑣

𝐶𝐶𝑝𝑝
�𝜕𝜕𝑢𝑢

′

𝜕𝜕𝑦𝑦 ′
�

2
− 1

𝜌𝜌𝐶𝐶𝑝𝑝

𝜕𝜕𝑞𝑞𝑟𝑟
𝜕𝜕𝑦𝑦′

                                                                 (3) 

 
Diffusion equation 
𝜕𝜕𝐶𝐶′

𝜕𝜕𝑡𝑡 ′
+ 𝑣𝑣′ 𝜕𝜕𝐶𝐶

′

𝜕𝜕𝑦𝑦 ′
= 𝐷𝐷 𝜕𝜕2𝐶𝐶′

𝜕𝜕𝑦𝑦 ′2
                                                                     (4) 

 
Where 𝑢𝑢′  and 𝑣𝑣′  are the components of the velocity parallel and perpendicular to the plate, 𝑡𝑡′ - the time, 𝑝𝑝′  - the 
pressure, 𝜌𝜌 - the fluid density, 𝑔𝑔𝑥𝑥′ - the acceleration due to gravity, 𝐵𝐵0 - the applied magnetic field, 𝑘𝑘′  - the permeability 
parameter, 𝑇𝑇′ - the fluid temperature, 𝑣𝑣- the kinematic viscosity, 𝐶𝐶𝑝𝑝 - the specific heat at constant pressure, 𝜅𝜅 - the 
thermal conductivity, 𝐶𝐶′ - the concentration and 𝐷𝐷 - the chemical diffusivity, 𝑞𝑞𝑟𝑟 - the radiative heat flux in the 𝑦𝑦′  
direction 
 
The boundary conditions are: 

� 𝑢𝑢′ = 0, 𝑣𝑣′ =  −𝑣𝑣0, 𝜕𝜕𝑇𝑇
′

𝜕𝜕𝑦𝑦 ′
=  − 𝑞𝑞′

𝜅𝜅
,𝐶𝐶′ =  𝐶𝐶𝑤𝑤′  𝑎𝑎𝑎𝑎 𝑦𝑦′ = 0

𝑢𝑢′ → 𝑈𝑈′ =  𝑈𝑈0�1 + 𝜀𝜀𝑒𝑒𝑖𝑖𝑤𝑤′ 𝑡𝑡 ′ �,𝑇𝑇′ → 𝑇𝑇∞′ ,𝐶𝐶′ → 𝐶𝐶∞′  𝑎𝑎𝑎𝑎  𝑦𝑦′ → ∞
�                                                                      (5) 

 
Where 𝑣𝑣0 is the constant suction velocity and the negative sign indicates that it is towards the plate, 𝑞𝑞′  - the constant 
heat flux, 𝑇𝑇∞′  - the fluid temperature far away from the plate, 𝐶𝐶𝑤𝑤′  - the species concentration at the plate, 𝐶𝐶∞′  - the 
species concentration far away from the plate, 𝑈𝑈0 - the mean free stream velocity, 𝜔𝜔′  - the frequency of vibration of the 
fluid, and 𝜀𝜀 (𝜀𝜀 < 1) - a constant quantity. 
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For the free stream, equation (2) becomes: 
𝜌𝜌 𝑑𝑑𝑈𝑈′

𝑑𝑑𝑡𝑡 ′
=  −𝜕𝜕𝑝𝑝′

𝜕𝜕𝑥𝑥′
−  𝜌𝜌∞𝑔𝑔𝑥𝑥′ − 𝜎𝜎𝐵𝐵0

2𝑈𝑈′ − 𝜌𝜌 𝑣𝑣′

𝑘𝑘′
𝑈𝑈′                                                     (6) 

 
On eliminating  𝜕𝜕𝑝𝑝

′

𝜕𝜕𝑥𝑥′
 between (2) and (6) we get: 

𝜌𝜌 �𝜕𝜕𝑢𝑢
′

𝜕𝜕𝑡𝑡 ′
+  𝑣𝑣′ 𝜕𝜕𝑢𝑢

′

𝜕𝜕𝑦𝑦 ′
� =  𝜌𝜌 𝑑𝑑𝑈𝑈′

𝑑𝑑𝑡𝑡 ′
+ 𝑔𝑔𝑥𝑥′ (𝜌𝜌∞ − 𝜌𝜌) +  𝑣𝑣𝑣𝑣 𝜕𝜕2𝑢𝑢′

𝜕𝜕𝑦𝑦 ′2
−  �𝜎𝜎𝐵𝐵0

2 +  𝜌𝜌 𝑣𝑣′

𝑘𝑘′
� �𝑢𝑢′ −  𝑈𝑈′(𝑡𝑡′)�                    (7) 

 
The state equation is  
𝑔𝑔𝑥𝑥′ (𝜌𝜌∞ − 𝜌𝜌) =  𝑔𝑔𝑥𝑥′ 𝜌𝜌𝜌𝜌(𝑇𝑇′ − 𝑇𝑇∞′ ) + 𝑔𝑔𝑥𝑥′ 𝜌𝜌𝛽𝛽∗(𝐶𝐶′ − 𝐶𝐶∞′ )                                                                (8) 
 
Where 𝛽𝛽 is the coefficient of thermal expansion and 𝛽𝛽∗ is the coefficient of concentration expansion 
 
From (7) and (8) we have 
𝜕𝜕𝑢𝑢′

𝜕𝜕𝑡𝑡 ′
+ 𝑣𝑣′ 𝜕𝜕𝑢𝑢

′

𝜕𝜕𝑦𝑦 ′
= 𝑑𝑑𝑈𝑈′

𝑑𝑑𝑡𝑡 ′
+ 𝑔𝑔𝑥𝑥′ 𝛽𝛽(𝑇𝑇′ − 𝑇𝑇∞′ ) + 𝑔𝑔𝑥𝑥′ 𝛽𝛽∗(𝐶𝐶′ − 𝐶𝐶∞′ ) + 𝑣𝑣 𝜕𝜕2𝑢𝑢′

𝜕𝜕𝑦𝑦 ′2
− �𝜎𝜎𝐵𝐵0

2

𝜌𝜌
+ 𝑣𝑣′

𝑘𝑘′
� �𝑢𝑢′ − 𝑈𝑈′(𝑡𝑡′)�                                       (9) 

 
In the case of an optically thin gray fluid the local radiant absorption is expressed as: 
−𝜕𝜕𝑞𝑞𝑟𝑟

𝜕𝜕𝑦𝑦′
= 4𝑑𝑑𝜎𝜎∗(𝑇𝑇∞′4 − 𝑇𝑇′4)                                      (10) 

 
where d is the absorption coefficient and 𝜎𝜎∗ the Stefan-Boltzman constant. 
 
We assume that the temperature differences within the flow are sufficiently small such that 𝑇𝑇′4 may be expressed as a 
linear function of the temperature.  This is accomplished by expanding 𝑇𝑇′4 in a Taylor series about 𝑇𝑇∞′  and neglecting 
higher-order terms, thus: 
 
𝑇𝑇′4 ≅ 4𝑇𝑇∞′3𝑇𝑇′ − 3𝑇𝑇∞′4                                                      (10) 
 
Equation (9) through (10) takes the form: 
− 𝜕𝜕𝑞𝑞𝑟𝑟

𝜕𝜕𝑦𝑦′
= 16𝑑𝑑𝜎𝜎∗𝑇𝑇∞′

3(𝑇𝑇∞′ − 𝑇𝑇′)                                                   (11) 
 
From the equations (3) and (11) we have 
𝜕𝜕𝑇𝑇′

𝜕𝜕𝑡𝑡 ′
+ 𝑣𝑣′ 𝜕𝜕𝑇𝑇

′

𝜕𝜕𝑦𝑦 ′
=  𝜅𝜅

𝜌𝜌𝐶𝐶𝑝𝑝

𝜕𝜕2𝑇𝑇′

𝜕𝜕𝑦𝑦 ′2
+  𝑣𝑣

𝐶𝐶𝑝𝑝
�𝜕𝜕𝑢𝑢

′

𝜕𝜕𝑦𝑦 ′
�

2
+ 1

𝜌𝜌𝐶𝐶𝑝𝑝
16𝑑𝑑𝜎𝜎∗𝑇𝑇∞′

3 (𝑇𝑇∞′ − 𝑇𝑇′)                                              (12) 

 
Equation (1) gives: 
𝑣𝑣′ =  −𝑣𝑣0(𝑣𝑣0 > 0)                                              (13) 
 
On substituting equation (13), in equations (9), (12) and (4) we take: 
𝜕𝜕𝑢𝑢′

𝜕𝜕𝑡𝑡 ′
− 𝑣𝑣0

𝜕𝜕𝑢𝑢′

𝜕𝜕𝑦𝑦 ′
= 𝑑𝑑𝑈𝑈′

𝑑𝑑𝑡𝑡 ′
+ 𝑔𝑔𝑥𝑥′ 𝛽𝛽(𝑇𝑇′ − 𝑇𝑇∞′ ) + 𝑔𝑔𝑥𝑥′ 𝛽𝛽∗(𝐶𝐶′ − 𝐶𝐶∞′ ) + 𝑣𝑣 𝜕𝜕2𝑢𝑢′

𝜕𝜕𝑦𝑦 ′2
− �𝜎𝜎𝐵𝐵0

2

𝜌𝜌
+ 𝑣𝑣′

𝑘𝑘′
� �𝑢𝑢′ − 𝑈𝑈′(𝑡𝑡′)�                                    (14)   

 
𝜕𝜕𝑇𝑇′

𝜕𝜕𝑡𝑡 ′
− 𝑣𝑣0

𝜕𝜕𝑇𝑇′

𝜕𝜕𝑦𝑦 ′
=  𝜅𝜅

𝜌𝜌𝐶𝐶𝑝𝑝

𝜕𝜕2𝑇𝑇′

𝜕𝜕𝑦𝑦 ′2
+  𝑣𝑣

𝐶𝐶𝑝𝑝
�𝜕𝜕𝑢𝑢

′

𝜕𝜕𝑦𝑦 ′
�

2
+ 16𝑑𝑑𝜎𝜎∗𝑇𝑇∞′

3

𝜌𝜌𝐶𝐶𝑝𝑝
(𝑇𝑇∞′ − 𝑇𝑇′)                                              (15) 

 
𝜕𝜕𝐶𝐶′

𝜕𝜕𝑡𝑡 ′
− 𝑣𝑣0

𝜕𝜕𝐶𝐶′

𝜕𝜕𝑦𝑦 ′
= 𝐷𝐷 𝜕𝜕2𝐶𝐶′

𝜕𝜕𝑦𝑦 ′2
                                                        (16) 

 
Using the transformations: 

�

𝑦𝑦 =  𝑦𝑦
′ 𝑣𝑣0
𝑣𝑣

, 𝑡𝑡 =  𝑡𝑡
′ 𝑣𝑣0

2

4𝑣𝑣
,𝑢𝑢 =  𝑢𝑢

′

𝑈𝑈0
,𝑈𝑈 =  𝑈𝑈

′

𝑈𝑈0
,𝜔𝜔 =  4𝑣𝑣𝜔𝜔′

𝑣𝑣0
2 𝑇𝑇 =  𝑇𝑇

′ − 𝑇𝑇∞′

𝑣𝑣𝑞𝑞′
𝑘𝑘𝑣𝑣0

𝐶𝐶 =  𝐶𝐶
′ −𝐶𝐶∞′

𝐶𝐶𝑤𝑤′ −𝐶𝐶∞′  
,𝐺𝐺𝐺𝐺 =  

𝑔𝑔𝑥𝑥′ 𝛽𝛽𝑣𝑣
2𝑞𝑞′

𝑘𝑘𝑈𝑈0𝑣𝑣0
3 ,𝐺𝐺𝐺𝐺 =  

𝑣𝑣𝑔𝑔𝑥𝑥′ 𝛽𝛽
∗�𝐶𝐶𝑤𝑤′ − 𝐶𝐶∞′ �

𝑈𝑈0𝑣𝑣0
2 , Pr =  𝜌𝜌𝜌𝜌𝐶𝐶𝑝𝑝

𝑘𝑘
,

𝐸𝐸𝐸𝐸 = 𝑘𝑘𝑈𝑈0
2𝑣𝑣0

𝐶𝐶𝑝𝑝𝑣𝑣𝑞𝑞′
,𝑀𝑀 =  𝜎𝜎𝐵𝐵0

2𝑣𝑣
𝜌𝜌𝑣𝑣0

2 , 𝑆𝑆𝑆𝑆 =  𝑣𝑣
𝐷𝐷

, 𝑘𝑘 =  𝑘𝑘
′ 𝑣𝑣2

𝑣𝑣0
2 , 𝑆𝑆 = 16𝑑𝑑𝜎𝜎∗𝑇𝑇∞′

3𝑣𝑣3
⎭
⎪
⎬

⎪
⎫

                                                                              (17) 

 
With the help of the non-dimensional quantities (17), equations (14)-(16) reduce to: 
1
4
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
−  𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
=  1

4
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝐺𝐺𝐺𝐺𝐺𝐺 + 𝐺𝐺𝐺𝐺𝐺𝐺 + 𝜕𝜕
2𝑢𝑢

𝜕𝜕𝑦𝑦2 − �𝑀𝑀 + 1
𝑘𝑘
� (𝑢𝑢 − 𝑈𝑈)                                              (18) 

 

𝑃𝑃𝑃𝑃 �1
4
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
−  𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
� =  𝜕𝜕

2𝑇𝑇
𝜕𝜕𝑦𝑦2 +  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 �𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
�

2
− 𝑆𝑆𝑆𝑆                                                  (19) 
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𝑆𝑆𝑆𝑆 �1

4
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
−  𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
� =  𝜕𝜕

2𝐶𝐶
𝜕𝜕𝑦𝑦2                                              (20) 

 
With the boundary conditions: 

�𝑢𝑢 = 0,         𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=  −1,           𝐶𝐶 = 1       𝑎𝑎𝑎𝑎     𝑦𝑦 = 0

𝑢𝑢 → 𝑈𝑈(𝑡𝑡) = 1 + 𝜀𝜀𝑒𝑒𝑖𝑖 𝜔𝜔  𝑡𝑡 ,𝑇𝑇 → 0,𝐶𝐶 → 0 𝑎𝑎𝑎𝑎 𝑦𝑦 → ∞
�                                                               (21) 

 
SOLUTION OF THE PROBLEM 
 
Equations (18) – (20) are coupled, non-linear partial differential equations and these cannot be solved in closed form.  
However, these equations can be reduced to a set of ordinary differential equations, which can be solved analytically.  
This can be done by representing the velocity, temperature and concentration of the fluid in the neighbourhood of the 
plate as: 
𝑢𝑢(𝑦𝑦, 𝑡𝑡) =  𝑢𝑢0(𝑦𝑦) + 𝜀𝜀𝑒𝑒𝑖𝑖 𝜔𝜔  𝑡𝑡𝑢𝑢1(𝑦𝑦) + ⋯                                                           (22) 
 
𝑇𝑇(𝑦𝑦, 𝑡𝑡) =  𝑇𝑇0(𝑦𝑦) + 𝜀𝜀𝑒𝑒𝑖𝑖  𝜔𝜔  𝑡𝑡𝑇𝑇1(𝑦𝑦) + ⋯                                                   (23) 
 
𝐶𝐶(𝑦𝑦, 𝑡𝑡) =  𝐶𝐶0(𝑦𝑦) + 𝜀𝜀𝑒𝑒𝑖𝑖 𝜔𝜔  𝑡𝑡𝐶𝐶1(𝑦𝑦) + ⋯                                                          (24) 
 
On substituting equations (22)-(24) in equations (18)-(20) we get the following system of differential equations: 
𝑑𝑑2𝑢𝑢0
𝑑𝑑𝑦𝑦2 + 𝑑𝑑𝑢𝑢0

𝑑𝑑𝑑𝑑
−  �𝑀𝑀 + 1

𝑘𝑘
� 𝑢𝑢0 = − �𝐺𝐺𝐺𝐺𝑇𝑇0 + 𝐺𝐺𝐺𝐺𝐶𝐶0 + �𝑀𝑀 + 1

𝑘𝑘
��                                               (25) 

 
𝑑𝑑2𝑢𝑢1
𝑑𝑑𝑦𝑦2 + 𝑑𝑑𝑢𝑢1

𝑑𝑑𝑑𝑑
−  �𝑖𝑖𝑖𝑖

4
+  𝑀𝑀 + 1

𝑘𝑘
� 𝑢𝑢1 = − �𝐺𝐺𝐺𝐺𝑇𝑇1 + 𝐺𝐺𝐺𝐺𝐶𝐶1 + �𝑖𝑖𝑖𝑖

4
+ 𝑀𝑀 + 1

𝑘𝑘
��  `                                                        (26) 

 
𝑑𝑑2𝑇𝑇0
𝑑𝑑𝑦𝑦2 + 𝑃𝑃𝑃𝑃 𝑑𝑑𝑇𝑇0

𝑑𝑑𝑑𝑑
− 𝑆𝑆𝑇𝑇0 = −𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 �𝑑𝑑𝑢𝑢0

𝑑𝑑𝑑𝑑
�

2
                                                       (27) 

 
𝑑𝑑2𝑇𝑇1
𝑑𝑑𝑦𝑦2 + 𝑃𝑃𝑃𝑃 𝑑𝑑𝑇𝑇1

𝑑𝑑𝑑𝑑
− 𝑖𝑖𝑖𝑖

4
𝑃𝑃𝑃𝑃𝑇𝑇1 − 𝑆𝑆𝑇𝑇1 = −2𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 �𝑑𝑑𝑢𝑢0

𝑑𝑑𝑑𝑑
� �𝑑𝑑𝑢𝑢1

𝑑𝑑𝑑𝑑
�                                                                       (28) 

 
𝑑𝑑2𝐶𝐶0
𝑑𝑑𝑦𝑦2 + 𝑆𝑆𝑆𝑆 𝑑𝑑𝐶𝐶0

𝑑𝑑𝑑𝑑
= 0                                         (29) 

 
𝑑𝑑2𝐶𝐶1
𝑑𝑑𝑦𝑦2 + 𝑆𝑆𝑆𝑆 𝑑𝑑𝐶𝐶1

𝑑𝑑𝑑𝑑
= 0                                          (30) 

 
The corresponding boundary conditions (21) become:  

� 𝑢𝑢0 = 0,𝑢𝑢1 = 0, 𝑑𝑑𝑇𝑇0
𝑑𝑑𝑑𝑑

= −1, 𝑑𝑑𝑇𝑇1
𝑑𝑑𝑑𝑑

= 0,𝐶𝐶0 = 1,𝐶𝐶1 = 0 𝑎𝑎𝑎𝑎 𝑦𝑦 = 0
𝑢𝑢0 → 1,𝑢𝑢1 → 1,𝑇𝑇0 → 0,𝑇𝑇1 → 0,𝐶𝐶0 → 0,𝐶𝐶1 → 0   𝑎𝑎𝑎𝑎   𝑦𝑦 → ∞

�                                               (31) 

 
In order to solve the system of the differential equations (25)-(28) we put: 
�𝑢𝑢0(𝑦𝑦) =  𝑢𝑢01(𝑦𝑦) +  𝐸𝐸𝐸𝐸𝑢𝑢02(𝑦𝑦)
𝑇𝑇0(𝑦𝑦) =  𝑇𝑇01(𝑦𝑦) +  𝐸𝐸𝐸𝐸𝑇𝑇02 (𝑦𝑦) �                                                 (32) 

and 
�𝑢𝑢1(𝑦𝑦) =  𝑢𝑢11(𝑦𝑦) +  𝐸𝐸𝐸𝐸𝑢𝑢12(𝑦𝑦)
𝑇𝑇1(𝑦𝑦) =  𝑇𝑇11 (𝑦𝑦) +  𝐸𝐸𝐸𝐸𝑇𝑇12(𝑦𝑦) �                                                                      (33) 

 
In this system, equating the coefficients of 𝐸𝐸𝐸𝐸0 and 𝐸𝐸𝐸𝐸1 we get: 
𝑑𝑑2𝑢𝑢01
𝑑𝑑𝑦𝑦2 + 𝑑𝑑𝑢𝑢01

𝑑𝑑𝑑𝑑
−  �𝑀𝑀 + 1

𝑘𝑘
� 𝑢𝑢01 =  −�𝐺𝐺𝐺𝐺𝑇𝑇01 +  𝐺𝐺𝐺𝐺𝐶𝐶01 +  �𝑀𝑀 + 1

𝑘𝑘
��                                                                  (34) 

 
𝑑𝑑2𝑢𝑢02
𝑑𝑑𝑦𝑦2 + 𝑑𝑑𝑢𝑢02

𝑑𝑑𝑑𝑑
−  �𝑀𝑀 + 1

𝑘𝑘
� 𝑢𝑢02 =  −(𝐺𝐺𝐺𝐺𝑇𝑇02 +  𝐺𝐺𝐺𝐺𝐶𝐶02)                                                     (35) 

 
𝑑𝑑2𝑇𝑇01
𝑑𝑑𝑦𝑦2 +  𝑃𝑃𝑃𝑃 𝑑𝑑𝑇𝑇01

𝑑𝑑𝑑𝑑
− 𝑆𝑆𝑇𝑇01 = 0                                                               (36) 

 
𝑑𝑑2𝑇𝑇02
𝑑𝑑𝑦𝑦2 +  𝑃𝑃𝑃𝑃 𝑑𝑑𝑇𝑇02

𝑑𝑑𝑑𝑑
− 𝑆𝑆𝑇𝑇02 =  −2𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 �𝑑𝑑𝑢𝑢01

𝑑𝑑𝑑𝑑
�

2
                                                  (37) 

 
𝑑𝑑2𝑢𝑢11
𝑑𝑑𝑦𝑦2 + 𝑑𝑑𝑢𝑢11

𝑑𝑑𝑑𝑑
−  �𝑖𝑖𝑖𝑖

4
+  𝑀𝑀 + 1

𝑘𝑘
� 𝑢𝑢11 =  −�𝑖𝑖𝜔𝜔

4
+  𝐺𝐺𝐺𝐺𝑇𝑇11 +  𝐺𝐺𝐺𝐺𝐶𝐶11 +  𝑀𝑀 + 1

𝑘𝑘
�                                           (38) 
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𝑑𝑑2𝑢𝑢12
𝑑𝑑𝑦𝑦2 + 𝑑𝑑𝑢𝑢12

𝑑𝑑𝑑𝑑
−  �𝑖𝑖𝑖𝑖

4
+  𝑀𝑀 + 1

𝑘𝑘
� 𝑢𝑢11 =  −( 𝐺𝐺𝐺𝐺𝑇𝑇12 +  𝐺𝐺𝐺𝐺𝐶𝐶12)                                                     (39) 

 
𝑑𝑑2𝑇𝑇11
𝑑𝑑𝑦𝑦2 +  𝑃𝑃𝑃𝑃 𝑑𝑑𝑇𝑇11

𝑑𝑑𝑑𝑑
−  �𝑖𝑖𝑖𝑖

4
𝑃𝑃𝑃𝑃 + 𝑆𝑆�𝑇𝑇11 = 0                                         (40) 

 
𝑑𝑑2𝑇𝑇12
𝑑𝑑𝑦𝑦2 +  𝑃𝑃𝑃𝑃 𝑑𝑑𝑇𝑇12

𝑑𝑑𝑑𝑑
−  �𝑖𝑖𝑖𝑖

4
𝑃𝑃𝑃𝑃 + 𝑆𝑆�𝑇𝑇12 =  −2𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 �𝑑𝑑𝑢𝑢01

𝑑𝑑𝑑𝑑
� �𝑑𝑑𝑢𝑢11

𝑑𝑑𝑑𝑑
�                                                            (41) 

 
The corresponding boundary conditions (31) become: 
 

�

�
𝑢𝑢00 = 0,    𝑢𝑢01 = 0,      𝑢𝑢11 = 0,   𝑢𝑢12 = 0
𝑑𝑑𝑇𝑇00
𝑑𝑑𝑑𝑑

=  −1, 𝑑𝑑𝑇𝑇01
𝑑𝑑𝑑𝑑

=  0, 𝑑𝑑𝑇𝑇11
𝑑𝑑𝑑𝑑

=  0, 𝑑𝑑𝑇𝑇12
𝑑𝑑𝑑𝑑

= 0 
𝐶𝐶0 = 1,𝐶𝐶1 = 0

�  𝑎𝑎𝑎𝑎 𝑦𝑦 = 0

�
𝑢𝑢00 → 1,  𝑢𝑢01 → 0, 𝑢𝑢11 → 1, 𝑢𝑢12 → 0 
𝑇𝑇00 → 0, 𝑇𝑇01 → 0, 𝑇𝑇11 → 0, 𝑇𝑇12 → 0 

 𝐶𝐶0 → 0,𝐶𝐶1 → 0
�  𝑎𝑎𝑎𝑎 𝑦𝑦 → ∞

⎭
⎪⎪
⎬

⎪⎪
⎫

                                                                      (42) 

 
Solving the differential equations (29), (30) and (34) – (41), using boundary conditions (42) we get 
 𝑢𝑢10 =  𝛼𝛼5𝑒𝑒𝛼𝛼2𝑦𝑦 + 𝛼𝛼3𝑒𝑒𝛽𝛽2𝑦𝑦 + 𝛼𝛼4𝑒𝑒𝛾𝛾2𝑦𝑦 + 1                                                (43) 
 
𝑢𝑢02 =  𝛼𝛼13𝑒𝑒𝛼𝛼2𝑦𝑦 + 𝛼𝛼6𝑒𝑒𝛽𝛽2𝑦𝑦 + 𝛼𝛼7𝑒𝑒2𝛼𝛼2𝑦𝑦 + 𝛼𝛼8𝑒𝑒2𝛽𝛽2𝑦𝑦 + 𝛼𝛼9𝑒𝑒2𝛾𝛾2𝑦𝑦 + 𝛼𝛼10𝑒𝑒(𝛼𝛼2+𝛽𝛽2)𝑦𝑦 + 𝛼𝛼11𝑒𝑒(𝛽𝛽2+𝛾𝛾2)𝑦𝑦 + 𝛼𝛼12𝑒𝑒(𝛾𝛾2+𝛼𝛼2)𝑦𝑦              (44) 
 
𝑢𝑢11 =  −𝑒𝑒𝛼𝛼15𝑦𝑦 + 1                                    (45) 
 
𝑢𝑢12 =  𝛼𝛼20𝑒𝑒𝛼𝛼15𝑦𝑦 + 𝛼𝛼16𝑒𝑒𝛽𝛽11𝑦𝑦 + 𝛼𝛼17𝑒𝑒(𝛼𝛼2+𝛼𝛼15 )𝑦𝑦 + 𝛼𝛼18𝑒𝑒(𝛽𝛽2+𝛼𝛼15 )𝑦𝑦 + 𝛼𝛼19𝑒𝑒(𝛾𝛾2+𝛼𝛼15 )𝑦𝑦                                                          (46) 
 
𝑇𝑇01 = −1

𝛽𝛽2
𝑒𝑒𝛽𝛽2𝑦𝑦                                      (47) 

 
𝑇𝑇02 = 𝛽𝛽9𝑒𝑒𝛽𝛽2𝑦𝑦 + 𝛽𝛽3𝑒𝑒2𝛼𝛼2𝑦𝑦 + 𝛽𝛽4𝑒𝑒2𝛽𝛽2𝑦𝑦 + 𝛽𝛽5𝑒𝑒2𝛾𝛾2𝑦𝑦 + 𝛽𝛽6𝑒𝑒(𝛼𝛼2+𝛽𝛽2)𝑦𝑦 + 𝛽𝛽7𝑒𝑒(𝛽𝛽2+𝛾𝛾2)𝑦𝑦 + 𝛽𝛽8𝑒𝑒(𝛼𝛼2+𝛾𝛾2)𝑦𝑦                (48) 
 
𝑇𝑇11 = 0                                                    (49) 
 
𝑇𝑇12 = 𝛽𝛽15𝑒𝑒𝛽𝛽11𝑦𝑦 + 𝛽𝛽12𝑒𝑒(𝛼𝛼2+𝛼𝛼15 )𝑦𝑦 + 𝛽𝛽13𝑒𝑒(𝛽𝛽2+𝛼𝛼15 )𝑦𝑦 + 𝛽𝛽14𝑒𝑒(𝛾𝛾2+𝛼𝛼15 )𝑦𝑦                                              (50) 
 
𝐶𝐶0 =  𝑒𝑒𝑆𝑆𝑆𝑆𝑆𝑆                                      (51) 
 
𝐶𝐶1 = 0                                                    (52) 
 
With the help of (43) – (50) the equations (32) and (33) becomes 
 
𝑢𝑢0 =  �𝛼𝛼5𝑒𝑒𝛼𝛼2𝑦𝑦 + 𝛼𝛼3𝑒𝑒𝛽𝛽2𝑦𝑦 + 𝛼𝛼4𝑒𝑒𝛾𝛾2𝑦𝑦 + 1� 
           +𝐸𝐸𝐸𝐸�𝛼𝛼13𝑒𝑒𝛼𝛼2𝑦𝑦 + 𝛼𝛼6𝑒𝑒𝛽𝛽2𝑦𝑦 + 𝛼𝛼7𝑒𝑒2𝛼𝛼2𝑦𝑦 + 𝛼𝛼8𝑒𝑒2𝛽𝛽2𝑦𝑦 + 𝛼𝛼9𝑒𝑒2𝛾𝛾2𝑦𝑦 + 𝛼𝛼10𝑒𝑒(𝛼𝛼2+𝛽𝛽2)𝑦𝑦 + 𝛼𝛼11𝑒𝑒(𝛽𝛽2+𝛾𝛾2)𝑦𝑦 + 𝛼𝛼12𝑒𝑒(𝛾𝛾2+𝛼𝛼2)𝑦𝑦�   (53) 
 
𝑇𝑇0 =  �−1

𝛽𝛽2
𝑒𝑒𝛽𝛽2𝑦𝑦� +  𝐸𝐸𝐸𝐸�𝛽𝛽9𝑒𝑒𝛽𝛽2𝑦𝑦 + 𝛽𝛽3𝑒𝑒2𝛼𝛼2𝑦𝑦 + 𝛽𝛽4𝑒𝑒2𝛽𝛽2𝑦𝑦 + 𝛽𝛽5𝑒𝑒2𝛾𝛾2𝑦𝑦 + 𝛽𝛽6𝑒𝑒(𝛼𝛼2+𝛽𝛽2)𝑦𝑦 + 𝛽𝛽7𝑒𝑒(𝛽𝛽2+𝛾𝛾2)𝑦𝑦 + 𝛽𝛽8𝑒𝑒(𝛼𝛼2+𝛾𝛾2)𝑦𝑦�          (54) 

 
𝑢𝑢1 =  (−𝑒𝑒𝛼𝛼15𝑦𝑦 + 1) +  𝐸𝐸𝐸𝐸�𝛼𝛼20𝑒𝑒𝛼𝛼15𝑦𝑦 + 𝛼𝛼16𝑒𝑒𝛽𝛽11𝑦𝑦 + 𝛼𝛼17𝑒𝑒(𝛼𝛼2+𝛼𝛼15 )𝑦𝑦 + 𝛼𝛼18𝑒𝑒(𝛽𝛽2+𝛼𝛼15 )𝑦𝑦 + 𝛼𝛼19𝑒𝑒(𝛾𝛾2+𝛼𝛼15 )𝑦𝑦�              (55) 
                
𝑇𝑇1 =  𝐸𝐸𝐸𝐸�𝛽𝛽15𝑒𝑒𝛽𝛽11𝑦𝑦 + 𝛽𝛽12𝑒𝑒(𝛼𝛼2+𝛼𝛼15 )𝑦𝑦 + 𝛽𝛽13𝑒𝑒(𝛽𝛽2+𝛼𝛼15 )𝑦𝑦 + 𝛽𝛽14𝑒𝑒(𝛾𝛾2+𝛼𝛼15 )𝑦𝑦�                                                         (56) 
 
Finally from the above equations (51) – (56) and with the help of equations (22), (23) and (24) we obtain the velocity, 
temperature and concentration fields are as follows: 
𝑢𝑢(𝑦𝑦, 𝑡𝑡) =  𝑢𝑢0 +  𝜀𝜀(cos(𝑤𝑤𝑤𝑤) + 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑤𝑤𝑤𝑤))𝑢𝑢1

=  ��𝛼𝛼5𝑒𝑒𝛼𝛼2𝑦𝑦 +  𝛼𝛼3𝑒𝑒𝛽𝛽2𝑦𝑦 + 𝛼𝛼4𝑒𝑒𝛾𝛾2𝑦𝑦 + 1�
+  𝐸𝐸𝐸𝐸�𝛼𝛼13𝑒𝑒𝛼𝛼2𝑦𝑦 + 𝛼𝛼6𝑒𝑒𝛽𝛽2𝑦𝑦 + 𝛼𝛼7𝑒𝑒2𝛼𝛼2𝑦𝑦 + 𝛼𝛼8𝑒𝑒2𝛽𝛽2𝑦𝑦 + 𝛼𝛼9𝑒𝑒2𝛾𝛾2𝑦𝑦 + 𝛼𝛼10𝑒𝑒(𝛼𝛼2+𝛽𝛽2)𝑦𝑦 + 𝛼𝛼11𝑒𝑒(𝛽𝛽2+𝛾𝛾2)𝑦𝑦

+ 𝛼𝛼12𝑒𝑒(𝛾𝛾2+𝛼𝛼2)𝑦𝑦)�+  𝜀𝜀(cos(𝑤𝑤𝑤𝑤) + 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑤𝑤𝑤𝑤))(−𝑒𝑒𝛼𝛼15𝑦𝑦 + 1)
+  𝐸𝐸𝐸𝐸�𝛼𝛼20𝑒𝑒𝛼𝛼15𝑦𝑦 + 𝛼𝛼16𝑒𝑒𝛽𝛽11𝑦𝑦 + 𝛼𝛼17𝑒𝑒(𝛼𝛼2+𝛼𝛼15 )𝑦𝑦 + 𝛼𝛼18𝑒𝑒(𝛽𝛽2+𝛼𝛼15 )𝑦𝑦 + 𝛼𝛼19𝑒𝑒(𝛾𝛾2+𝛼𝛼15 )𝑦𝑦� 

                                                                                                                                                                                         (57) 



G. Sivakumar1, G. Viswanatha Reddy2*, J. Girish Kumar3 and P. M. Kishore4/ MHD FREE CONVECTIVE OSCILLATORY FLOW AND 
MASS TRANSFER PAST A… / IJMA- 4(7), July-2013. 

© 2013, IJMA. All Rights Reserved                                                                                                                                                                        89   

 
𝑇𝑇(𝑦𝑦, 𝑡𝑡) =  𝑇𝑇0 +  𝜀𝜀�cos(𝑤𝑤𝑤𝑤) + 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑤𝑤𝑤𝑤)�𝑇𝑇1 

             = ��−1
𝛽𝛽2
𝑒𝑒𝛽𝛽2𝑦𝑦� +  𝐸𝐸𝐸𝐸�𝛽𝛽9𝑒𝑒𝛽𝛽2𝑦𝑦 + 𝛽𝛽3𝑒𝑒2𝛼𝛼2𝑦𝑦 + 𝛽𝛽4𝑒𝑒2𝛽𝛽2𝑦𝑦 + 𝛽𝛽5𝑒𝑒2𝛾𝛾2𝑦𝑦 + 𝛽𝛽6𝑒𝑒(𝛼𝛼2+𝛽𝛽2)𝑦𝑦 + 𝛽𝛽7𝑒𝑒(𝛽𝛽2+𝛾𝛾2)𝑦𝑦 + 𝛽𝛽8𝑒𝑒(𝛼𝛼2+𝛾𝛾2)𝑦𝑦��  

                +𝜀𝜀(cos(𝑤𝑤𝑤𝑤) + 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑤𝑤𝑤𝑤)) �𝐸𝐸𝐸𝐸�𝛽𝛽15𝑒𝑒𝛽𝛽11𝑦𝑦 + 𝛽𝛽12𝑒𝑒(𝛼𝛼2+𝛼𝛼15 )𝑦𝑦 + 𝛽𝛽13𝑒𝑒(𝛽𝛽2+𝛼𝛼15 )𝑦𝑦 + 𝛽𝛽14𝑒𝑒(𝛾𝛾2+𝛼𝛼15 )𝑦𝑦��                      (58) 
 
𝐶𝐶(𝑦𝑦, 𝑡𝑡) =  𝐶𝐶0 +  𝜀𝜀(cos(𝑤𝑤𝑤𝑤) + 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑤𝑤𝑤𝑤))𝐶𝐶1 =  𝑒𝑒𝛾𝛾2𝑦𝑦                                                         (59) 
 
RESULTS AND DISCUSSIONS 
 
The chemical reaction effects on MHD free convective oscillatory flow past a porous plate embedded in a porous 
medium and in the presence of heat source have been studied.  The governing equations are solved by using 
perturbation method and approximate solutions are obtained for velocity, temperature and concentration fields.  The 
effects of the flow parameters such as Radiation parameter (S), Prandtl number (Pr), Eckert number (Ec), Schmidt 
number (Sc), Grashof number for heat and mass transfer (Gr, Gc), magnetic parameter or Hartmann number (M) and 
permeability parameter (k) on the velocity, temperature and concentration profiles of the flow field are presented with 
help of velocity, temperature and concentration profile.   
  
For different values of the radiation parameter S the velocity and temperature profiles are plotted in Figs. 1(a) and 1(b).  
It is obvious that an increase in the radiation parameter S results a decrease in the velocity and temperature profiles 
within the boundary layer.  This decrease of temperature may be attributed to the loss of heat energy due to radiation as 
well as low diffusivity. 
 
Figs. 2(a) and 2(b) are shown that the behavior of the velocity (u) and temperature (T) for different values of the 
Prandtl number Pr.  The numerical results show that the effect of increasing values of Pr results in a decreasing 
velocity.  From Fig. 2(b), it is observed that an increase in Pr results in a decrease of the thermal boundary layer 
thickness and in general lower average temperature within the boundary layer.  The reason is that smaller values of Pr 
are equivalent to increase in the thermal conductivity of the fluid and therefore heat is able to diffuse away from the 
heated surface more rapidly for higher values of Pr.  Hence in the case of smaller Prandtl numbers as the thermal 
boundary layer is thicker and therefore the rate of heat transfer is reduced. 
 
The influence of the viscous dissipation parameter i.e., the Eckert number (Ec) on velocity and temperature are shown 
in Fig. 3(a) and 3(b). The velocity and temperature both are increases with increasing Eckert number.  It expresses the 
relationship between the kinetic energy in the flow and the enthalpy.  It embodies the conversion of kinetic energy in to 
internal energy by work done against the viscous fluid stresses.  Greater viscous dissipative heat causes a rise in the 
temperature as well as the velocity. 
 
The effects of Schmidt number on the velocity (u) and concentrations (C) are displays in Figs. 4(a) and 4(b).  As the 
Schmidt number increases, the concentration decreases.  This causes the concentration buoyancy effects to decrease 
yielding a reduction in the fluid velocity.  Reductions in the velocity and concentration distributions are accompanied 
by simultaneous reductions in the velocity and concentration boundary layers. 
 
The velocity profiles for different values of the thermal Grashof number Gr are described in Fig. 5(a).  It is observed 
that an increase in Gr leads to arise in the values of velocity.  Hence the positive values of Gr correspond to cooling of 
the plate.  In addition, it is observed that the velocity increases rapidly near wall of the plate as Grashof number 
increases and then decays to the free stream velocity.  For the case of different values of the solutal Grashof number 
Gc, the velocity profiles in the boundary layer are shown in Fig. 5(b).  It is observed that an increase in Gc, leads to a 
rise in the values of velocity.  
 
The influence of magnetic parameter or Hartmann number M, on the velocity (u) is shown in Fig.6. An increase in M 
reduces the velocity.  The application of a transverse magnetic field to an electrically conducting field gives rise to a 
resistive type of force called Lorentz force.  This force has the tendency to slow down the fluid.  This trend is apparent 
from Fig.7. 
 
Fig. 7 depicts the velocity profiles for different values of permeability parameter k. Clearly as k increases the peak 
value of velocity across the boundary layer tends to increase rapidly near wall of the porous plate  
 
CONCLUSIONS 
 
We summarize below the following results of physical interest on the velocity, temperature and concentration 
distribution of the flow field. 
1. The velocity decreases with the increase of the radiation parameter. 
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2. A growing magnetic parameter or Prandtl number or Schmidt number or chemical reaction parameter retards the 

velocity of the flow field at all points. 
3. The effect of increasing Grashof number or modified Grashof number or permeability parameter or Eckert number 

is to accelerate velocity of the flow field at all points. 
4. A growing Prandtl number decreases temperature of the flow field at all points 
5. The growing Schmidt number decreases the concentration of the flow field at all points. 
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(𝛽𝛽2+𝛾𝛾2)2+𝑃𝑃𝑃𝑃(𝛽𝛽2+𝛾𝛾2)−𝑆𝑆
, 𝛽𝛽8 = −4𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝛼𝛼2𝛾𝛾2𝛼𝛼4𝛼𝛼5

(𝛼𝛼2+𝛾𝛾2)2+𝑃𝑃𝑃𝑃 (𝛼𝛼2+𝛾𝛾2)−𝑆𝑆
, 

 
𝛽𝛽9 = −1

𝛽𝛽2
[2𝛼𝛼2𝛽𝛽3 + 2𝛽𝛽2𝛽𝛽5 + 2𝛾𝛾2𝛽𝛽5 + (𝛼𝛼2 + 𝛽𝛽2)𝛽𝛽6 + (𝛽𝛽2 + 𝛾𝛾2)𝛽𝛽7 + (𝛼𝛼2 + 𝛾𝛾2)𝛽𝛽8]  

 

 𝛽𝛽10 =
−𝑃𝑃𝑃𝑃+�𝑃𝑃𝑃𝑃 2+4�𝑖𝑖𝑖𝑖4 𝑃𝑃𝑃𝑃+𝑆𝑆�

2
, 𝛽𝛽11 =

−𝑃𝑃𝑃𝑃−�𝑃𝑃𝑃𝑃 2+4�𝑖𝑖𝑖𝑖4 𝑃𝑃𝑃𝑃+𝑆𝑆�

2
,  

 
𝛽𝛽12 = 2𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝛼𝛼2𝛼𝛼5𝛼𝛼15

(𝛼𝛼2+𝛼𝛼15 )2+𝑃𝑃𝑃𝑃(𝛼𝛼2+𝛼𝛼15 )−�𝑖𝑖𝑖𝑖4 𝑃𝑃𝑃𝑃+𝑆𝑆�
, 𝛽𝛽13 = 2𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝛽𝛽2𝛼𝛼3𝛼𝛼15

(𝛽𝛽2+𝛼𝛼15 )2+𝑃𝑃𝑃𝑃(𝛽𝛽2+𝛼𝛼15 )−�𝑖𝑖𝑖𝑖4 𝑃𝑃𝑃𝑃+𝑆𝑆�
 

 
𝛽𝛽14 = 2𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝛾𝛾2𝛼𝛼4𝛼𝛼15

(𝛾𝛾2+𝛼𝛼15 )2+𝑃𝑃𝑃𝑃(𝛾𝛾2+𝛼𝛼15 )−�𝑖𝑖𝑖𝑖4 𝑃𝑃𝑃𝑃+𝑆𝑆�
,   

 
𝛽𝛽15 = −1

𝛽𝛽11
[𝛽𝛽12(𝛼𝛼2 + 𝛼𝛼15 ) + 𝛽𝛽13 (𝛽𝛽2 + 𝛼𝛼15) + 𝛽𝛽14(𝛾𝛾2 + 𝛼𝛼15 )]     

 

𝛾𝛾1 =  −𝑆𝑆𝑆𝑆+�𝑆𝑆𝑆𝑆2+4𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾
2

, 𝛾𝛾2 =  −𝑆𝑆𝑆𝑆−
�𝑆𝑆𝑆𝑆2+4𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾

2
, 𝛾𝛾3 =  

−𝑆𝑆𝑆𝑆+�𝑆𝑆𝑆𝑆2+4�𝑖𝑖 𝜔𝜔4 + 𝐾𝐾𝐾𝐾�𝑆𝑆𝑆𝑆

2
,  

 

𝛾𝛾4 =  
−𝑆𝑆𝑆𝑆−�𝑆𝑆𝑆𝑆2+4�𝑖𝑖 𝜔𝜔4 + 𝐾𝐾𝐾𝐾�𝑆𝑆𝑆𝑆

2
   

 
 

Figure - 1(a): Velocity profiles for different values of 
Radiation parameter ‘S’ when Gr = 5, Gc = 2, 

Ec = 0.001, Sc = 0.22, M = 1.0, k = 0.1. 
 

 
Figure - 1(b): Temperature profiles for different values 
of Prandtl number ‘Pr’ when Gr = 5, Gc = 2, Ec = 0.001, 

Sc = 0.22, M = 1.0, k = 0.1. 
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Figure - 2(a): Velocity profiles for different values of 
Prandtl number ‘Pr’ when Gr = 5, Gc = 2, Ec = 0.001,  

Sc = 0.22, M = 1.0, k = 0.1 
 

 

 
Figure - 2(b): Temperature profiles for different values 
of Prandtl number ‘Pr’ when Gr = 5, Gc = 2, Ec = 0.001, 

Sc = 0.22, M = 1.0, k = 0.1. 
 

 
Figure - 3(a): Velocity profiles for different values of 

Eckert number ‘Ec’ when Gr = 5, Gc = 2, Pr = 0.7, Sc = 
0.22, M = 1.0, k = 0.1. 

 

 
Figure - 3(b): Temperature profiles for different values 
of Eckert number ‘Ec’ when Gr = 5, Gc = 2, Pr = 0.7,  

Sc = 0.22, M = 1.0, k = 0.1. 
 

 
Figure - 4(a): Velocity profiles for different values of 

Schmidt number ‘Sc’ when Gr = 5, Gc = 2, Ec = 0.001, 
Pr = 0.7, M = 1.0, k = 0.1. 

 
Figure - 4(b): Concentration profile for different values 

of Schmidt number ‘Sc’ 
 

 
 

Figure - 5(a): Velocity profiles for different values of 
Grashof number ‘Gr’ when Gc = 2, Ec = 0.001, Pr = 0.7, 

Sc = 0.22, M = 1.0, k = 0.1. 
 

 
Figure - 5(b): Velocity profiles for different values of 

modified Grashof number ‘Gc’ when Gr = 5, Ec = 0.001, 
Pr = 0.7, Sc = 0.22, M = 1.0, k = 0.1. 
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Figure - 6: Velocity profiles for different values of 
magnetic parameter ‘M’ when Gr = 5, Gc = 2, Ec = 

0.001, Pr = 0.7, Sc = 0.22, k = 0.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Figure - 7: Velocity profiles for different values of 
permeability parameter ‘k’ when Gr = 5, Gc = 2, 

Ec = 0.001, Pr = 0.7, Sc = 0.22, M = 1.0. 
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