On bg - Closed Sets in Topological Spaces

*R. Subasree & [#]M. Maria Singam

*Assistant Professor of Mathematics, Chandy College of Engineering, Thoothukudi, (T.N.), India

#Associate Professor of Mathematics, V.O. Chidambaram College, Thoothukudi, (T.N.), India

(Received on: 23-05-13; Revised & Accepted on: 11-06-13)

ABSTRACT

In this paper a new class of sets namely, $b\hat{g}$ – Closed Sets is introduced in Topological Spaces. We find some basic properties and applications of $b\hat{g}$ – Closed Sets. We also introduce and study a new class of space namely $Tb\hat{g}$ - space.

Keywords: $b\hat{g}$ – Closed sets, \hat{g} – Open sets, $Tb\hat{g}$ – Space.

AMS subject classification: 54A05, 54F65, 54C55.

1. INTRODUCTION

Levine [4], Mashhour et~al [8], Njastad [10] and Velicko [13] introduced semi-open sets, pre-open sets, α -open sets and δ -closed sets respectively. Levine [5] introduced generalized closed (briefly g-closed) sets and studied their basic properties. Bhattacharya and Lahiri [2], Arya and Nour[1], Maki et~al [6,7], Dontchev and Ganster[3] introduced semi-generalized closed (briefly sg-closed) sets, generalized semi-closed (briefly gs-closed) sets, generalized α -closed (briefly α -closed) sets, α -generalized closed (briefly α -closed) sets and α -generalized closed (briefly α -closed) sets respectively. Veera Kumar [12] introduced α -closed sets in topological spaces. Andrijevic [14] introduced a new class of generalized open sets called b-open sets. Also Ahmad Al-Omari and Mohd. Salmi MD.Noorani [15] introduced generalized b-closed (briefly gb-closed) sets. M.LellisThivagar, B. Meera Devi and E. Hatir[16] introduced a new class of sets called α -closed sets.

The purpose of this present paper is to define a new class of sets called b \hat{g} -Closed sets and also to obtain some basic properties of b \hat{g} -Closed sets in topological spaces. Applying these sets, we obtain a new space called Tb \hat{g} - Space.

2. PRELIMINARIES

Throughout this paper (X, τ) (or simply X) represents topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset of X, cl(A), Int(A) and A^c denote the closure of A, interior of A and the complement of A respectively. Let us recall the following definitions.

Definition 2.1: A subset A of a space (X, τ) is called a

- i) Semi-open set if $A \subseteq cl[Int(A)]$
- ii) α -open set if $A \sqsubseteq Int[cl(Int(A))]$
- iii) b-open set if $A \sqsubseteq cl[Int(A)] \cup Int[cl(A)]$

The complement of a semi-open (resp. α -open, b-open) set is called semi-closed (resp. α -closed, b-closed) set.

The intersection of all semi-closed (resp. α -closed, b-closed) sets of X containing A is called the semi-closure (resp. α -closure, b-closure) of A and is denoted by scl(A) (resp. α cl(A), bcl(A)). The family of all semi-open (resp. α -open, b-open) subsets of a space X is denoted by SO(X) (resp. α O(X), bO(X)).

Definition 2.2: A subset A of a space (X, τ) is called a

- i) generalized closed (briefly g-closed) set [5] if $cl(A) \sqsubseteq U$ whenever $A \sqsubseteq U$ and U is open set in (X, τ) .
- ii) semi-generalized closed (briefly sg-closed) set [2] if $scl(A) \sqsubseteq U$ whenever $A \sqsubseteq U$ and U is a semi-open set in (X, τ) .
- iii) generalized semi-closed (briefly gs-closed) set [1] if $scl(A) \sqsubseteq U$ whenever $A \sqsubseteq U$ and U is open set in (X, τ) .
- iv) α -generalized closed (briefly αg -closed) set [7] if $\alpha cl(A) \sqsubseteq U$ whenever $A \sqsubseteq U$ and U is open set in (X, τ) .
- v) generalized α-closed (briefly gα-closed) set [6] if α cl(A) \sqsubseteq U whenever A \sqsubseteq U and U is α-open set in (X, τ).

*R. Subasree & #M. Maria Singam/On bĝ - Closed Sets in Topological Spaces/ IJMA- 4(7), July-2013.

- vi) δ -generalized closed (briefly δg -closed) set [3] if $cl\delta(A) \sqsubseteq U$ whenever $A \sqsubseteq U$ and U is open set in (X, τ) .
- vii) \hat{g} -closed set [12] if $cl(A) \sqsubseteq U$ whenever $A \sqsubseteq U$ and U is a semi-open set in (X, τ) .
- viii) $\alpha \hat{g}$ -closed set [9] if $\alpha cl(A) \sqsubseteq U$ whenever $A \sqsubseteq U$ and U is \hat{g} -open set in (X, τ) .
- ix) gb-closed set [15] if $bcl(A) \sqsubseteq U$ whenever $A \sqsubseteq U$ and U is open set in (X, τ) .

The complement of a g-closed (resp. sg-closed, gs-closed, α g-closed, α g-closed

Theorem 2.3: Every open set is \hat{g} –open.

Proof: Let A be a open set in X. Then A^c is closed. Therefore, $cl(A^c) = A^c \sqsubseteq X$ and X is semi-open. This implies A^c is \hat{g} –closed. Hence A is \hat{g} –open.

Definition 2.4: A space (X, τ) is called a

- (i) T1/2 space [5] if every g-closed set in it is closed.
- (ii) $T\alpha\hat{g}$ space [9] if every $\alpha\hat{g}$ –closed set in it is α closed.
- (iii) b T1/2 space [15] if every singleton set is either b-open or b-closed.
- (iv) Tgs space [15] if and only if every gb–closed is b-closed.

3. bĝ -CLOSED SETS

We introduce the following definition.

Definition 3.1: A subset A of a space (X, τ) is said to be a b \hat{g} –closed set if bcl(A) $\sqsubseteq U$, whenever $A \sqsubseteq U$ and U is a \hat{g} – open set in (X, τ) .

Example 3.2: Let $X = \{a, b, c\}$ and $\tau = \{X, \Phi, \{a, c\}\}$ then $\{X, \Phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}\}$ are bĝ –closed sets.

Proposition 3.3: Every b-closed set is bĝ –closed set.

Proof: Let A be a b-closed set and U be any \hat{g} –open set such that $A \sqsubseteq U$. Since A is b-closed, bcl(A) = A for every subset A of X. Therefore $bcl(A) = A \sqsubseteq U$ and hence A is a $b\hat{g}$ –closed set.

Remark 3.4: The converse of the above theorem need not be true as shown in the following example.

Example 3.5: Let $X = \{a, b, c\}$ and $\tau = \{X, \Phi, \{a\}, \{a, b\}\}$ b-closed sets of $X = \{X, \Phi, \{b\}, \{c\}, \{b, c\}\}$ b\hat{g} -closed sets of $X = \{X, \Phi, \{b\}, \{c\}, \{a, c\}, \{b, c\}\}$ Here $\{a, c\}$ is b\hat{g} -closed but not b-closed in (X, τ) .

Proposition 3.6: Every g-closed set is bĝ –closed set.

Proof: Let A be any g-closed set. Let U be any open set containing A such that $clA \sqsubseteq U$. Since every open set is \hat{g} open, we have $bclA \sqsubseteq clA \sqsubseteq U$ for every subset A of X. Hence A is $b\hat{g}$ -closed set.

Remark 3.7: The converse of the above theorem need not be true as shown in the following example.

Example 3.8: Let $X = \{a, b, c\}$ and $\tau = \{X, \Phi, \{a\}, \{a, b\}\}$ g-closed sets of $X = \{X, \Phi, \{c\}, \{a, c\}, \{b, c\}\}$ b\hat{g} -closed sets of $X = \{X, \Phi, \{b\}, \{c\}, \{a, c\}, \{b, c\}\}$

Here $\{b\}$ is $b\hat{g}$ –closed but not g-closed in (X, τ) .

Proposition 3.9: Every ĝ-closed set is bĝ –closed set.

Proof: The Proof is straight forward. Since by theorem **3.01[12]**, "Every \hat{g} -closed set is g-closed" and by the Proposition **3.6**, "Every g-closed set is \hat{bg} -closed". Hence We have every \hat{g} -closed set is \hat{bg} -closed.

Remark 3.10: The converse of the above theorem need not be true as shown in the following example.

Example 3.11: Let $X = \{a, b, c\}$ and $\tau = \{X, \Phi, \{a\}\}$ \hat{g} -closed sets of $X = \{X, \Phi, \{b, c\}\}$ b \hat{g} -closed sets of $X = \{X, \Phi, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}$ Here $\{\{b\}, \{c\}, \{a, b\}, \{a, c\}\}$ are b \hat{g} -closed but not \hat{g} -closed in (X, τ) .

Proposition 3.12: Every gs-closed set is bĝ -closed.

* R. Subasree & $^\#$ M. Maria Singam/On bĝ - Closed Sets in Topological Spaces/ IJMA- 4(7), July-2013.

Proof: Let A be any gs-closed set. Let U be any open set containing A such that $sclA \sqsubseteq U$. Since every open set is \hat{g} open, we have $bclA \sqsubseteq sclA \sqsubseteq U$ for every subset A of X. Hence A is $b\hat{g}$ –closed set.

Remark 3.13: The converse of the above theorem need not be true as shown in the following example.

Example 3.14:Let $X = \{a, b, c\}$ and $\tau = \{X, \Phi, \{a, c\}\}$ gs-closed sets of $X = \{X, \Phi, \{b\}, \{a, b\}, \{b, c\}\}$ bĝ -closed sets of $X = \{X, \Phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}\}$ Here $\{a\}, \{c\}$ are bĝ -closed but not gs-closed in (X, τ) .

Proposition 3.15: Every αg-closed set is bĝ –closed.

Proof: Let A be any αg -closed set. Let U be any open set containing A such that $\alpha clA \sqsubseteq U$. Since every open set is \hat{g} open, we have $bclA \sqsubseteq \alpha clA \sqsubseteq U$ for every subset A of X. Hence A is $b\hat{g}$ -closed set.

Remark 3.16: The converse of the above theorem need not be true as shown in the following example.

Example 3.17: Let $X = \{a, b, c\}$ and $\tau = \{X, \Phi, \{a\}, \{b\}, \{a, b\}\}$ αg -closed sets of $X = \{X, \Phi, \{c\}, \{a, c\}, \{b, c\}\}$ b\hat{\text{\$\text{\$g\$}} - \text{closed sets of } X = \{X, \Phi, \{a}\}, \{b}\}, \{c}\}, \{a, c}\}, \{b, c}\} Here \{a}\}, \{b}\ are b\hat{\text{\$\text{\$\text{\$g\$}}}} - closed but not \$\text{\$\text{\$\text{\$g\$}}}\$-closed in (X, τ) .

Proposition 3.18: Every gb-closed set is bĝ –closed.

Proof: Let A be any gb-closed set. Let U be any open set containing A such that $bclA \sqsubseteq U$. Since every open set is \hat{g} open, we have $bclA \sqsubseteq U$ for every subset A of X. Hence A is $b\hat{g}$ -closed set.

Corollary 3.19: The converse of the above theorem is also true.

(i.e) Every bĝ -closed is gb-closed.

Proof: Let A be any b \hat{g} –closed set. Let U be any \hat{g} –open set containing A such that bclA \sqsubseteq U. Also for every open set U, bclA \sqsubseteq U for every subset A of X.

Proposition 3.20: Every $\alpha \hat{g}$ -closed set is $b\hat{g}$ –closed.

Proof: Let A be any $\alpha \hat{g}$ -closed set. Let U be any \hat{g} -open set containing A such that $\alpha clA \sqsubseteq U$. Now for every subset A of X, we have $bclA \sqsubseteq \alpha clA \sqsubseteq U$. Hence A is $b\hat{g}$ -closed set.

Remark 3.21: The converse of the above theorem need not be true as shown in the following example.

Example 3.22: Let $X = \{a, b, c\}$ and $\tau = \{X, \Phi, \{a\}, \{b, c\}\}$ $\alpha \hat{g}$ -closed sets of $X = \{X, \Phi, \{a\}, \{b, c\}\}$ $b \hat{g}$ -closed sets of $X = \{X, \Phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}\}$ Here $\{b\}, \{c\}, \{a, b\}, \{a, c\}$ are $b \hat{g}$ -closed but not $\alpha \hat{g}$ -closed in (X, τ) .

Remark 3.23: The following diagram shows the relationships of bĝ −closed sets with other known existing sets. A → B represents A implies B but not conversely.

bĝ –closed
g-closed

2. b-closed **6.** αg-closed

3. gb-closed7. gα-closed

4. ĝ –closed

9. α-closed

10. semi-closed

7. gα-close

8. αĝ –closed

13. Closed

osea

11. sg-closed

12.gs-closed

4. CHARACTERIZATION

Remark 4.1: The finite union of bg –closed set need not be bg –closed set.

Example 4.2: Let $X = \{a, b, c\}$ and $\tau = \{X, \Phi, \{a\}, \{b\}, \{a, b\}\}$ bĝ –closed sets of $X = \{X, \Phi, \{a\}, \{b\}, \{c\}, \{a, c\}, \{b, c\}\}$ Here $\{a\} \cup \{b\} = \{a, b\}$ is not bĝ –closed.

Remark 4.3: Intersection of any two bĝ –closed sets need not be bĝ –closed.

Example 4.4: Let $X = \{a, b, c\}$ and $\tau = \{X, \Phi, \{a\}\}$ bĝ –closed sets of $X = \{X, \Phi, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}$ Here $\{a, b\} \cap \{a, c\} = \{a\}$ is not bĝ –closed.

Proposition 4.5: Let A be a b \hat{g} –closed set of (X, τ) . Then bclA-A does not contain a nonempty \hat{g} –closed set.

Proof: Suppose A is a b \hat{g} -closed set. Let F be a \hat{g} -closed set contained in bclA-A. Now F^c is a \hat{g} -open set of (X, τ) such that $A \sqsubseteq F^c$. Since A is b \hat{g} -closed, we have bclA $\sqsubseteq F^c$. Hence $F \sqsubseteq (bclA)^c$.

Also $F \sqsubseteq bclA-A$.

Therefore $F \sqsubseteq bclA \cap (bcl A)^c = \Phi$.

Hence, F must be Φ .

Proposition 4.6: If A is \hat{g} –open and $b\hat{g}$ –closed set of (X, τ) , then A is b-closed.

Proof: Since A is \hat{g} –open and $b\hat{g}$ –closed, we have $bclA \sqsubseteq A$. Hence, A is b-closed.

Proposition 4.7: The intersection of a b \hat{g} –closed and a b-closed set of (X, τ) is always b \hat{g} –closed.

Proof: Let A be a b \hat{g} –closed set and F be a b-closed set. If U is a \hat{g} –open set with $A \cap F \subseteq U$.

To Prove: $bcl(A \cap F) \sqsubseteq U$.

Since $A \cap F \sqsubseteq U \Longrightarrow A \sqsubseteq (U \cup F^c)$

Since A is $b\hat{g}$ –closed, $bclA \sqsubseteq (U \cup F^c) \Longrightarrow bclA \cap F \sqsubseteq U$ (1)

Now, $bcl(A \cap F) \sqsubseteq bclA \cap bcl F$ $\sqsubseteq bclA \cap F[$ since F is b-closed, $bclF \sqsubseteq F]$ $\sqsubseteq U [$ from (1)]

Hence, $bcl(A \cap F) \sqsubseteq U$.

Therefore, intersection of any b \hat{g} –closed set and a b-closed set of (X, τ) is always b \hat{g} –closed.

5. APPLICATIONS

Definition 5.1: A Space (X, τ) is called a Tb \hat{g} -space, if every b \hat{g} -closed set in it is b-closed.

Proposition 5.2: Every T1/2 space is Tbĝ–space.

Proof: Since in a T1/2 space, every g-closed set is closed. Also we know that [15] every closed set is b-closed and from Proposition **3.6**, "Every g-closed set is $b\hat{g}$ -closed". Hence every $b\hat{g}$ -closed is b-closed.

Remark 5.3: The converse of the above theorem need not be true.

(i.e) Every Tbĝ-space need not be a T1/2 space as shown in the following example.

Example 5.4: Let Let $X = \{a, b, c\}$ and $\tau = \{X, \Phi, \{a, b\}, \{c\}\}$ bĝ –closed sets of $X = \{X, \Phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{c\}, \{b, c\}\}$ b–closed sets of $X = \{X, \Phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}$ g–closed sets of $X = \{X, \Phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}$ closed sets of $X = \{X, \Phi, \{a, b\}, \{c\}\}$ Here (X, τ) is a Tbĝ-space but not a T1/2 space.

* R. Subasree & $^\#$ M. Maria Singam/On bĝ - Closed Sets in Topological Spaces/ IJMA- 4(7), July-2013.

Proposition 5.5: Every $T\alpha\hat{g}$ -space is $Tb\hat{g}$ -space.

Proof: The Proof is straight forward. Since, from Proposition 3.20, every $\alpha \hat{g}$ -closed set is $\frac{\alpha}{2}$ -closed and also since every α -closed set is b-closed, we have every α -closed set is b-closed. Hence the Proof.

Remark 5.6: The converse of the above theorem need not be true.

(i.e) Every Tbĝ-space need not be a Tαĝ-space as shown in the following example.

Example 5.7: Let Let X={a, b, c} and $\tau = \{X, \Phi, \{a, c\}\}$ b\hat{g} -closed sets of X = {X, \Phi, {a}, {b}, {c}, {a, b}, {b, c}}b-closed sets of X = {X, \Phi, {a}, {b}, {c}, {a, b}, {b, c}}\alpha\hat{g}-closed sets of X = {X, \Phi, {a, b}, {b, c}} \alpha-closed sets of X = {X, \Phi, {b}, {b, c}} \alpha-closed sets of X = {X, \Phi, {b}} Here (X, \tau) is a Tb\hat{g}-space but not T\alpha\hat{g}-space.

Proposition 5.8: Every Tbĝ-space is b-T1/2 – space.

Proof: Let $x \in X$ and (X, τ) is a Tbĝ-space. Let $\{x\} \in X$ is not a b-closed set. Then $X - \{x\}$ is not a b-open set.

To Prove: {x} is b-open.

Thus, $A = X - \{x\}$ is a bĝ –closed set, since the only open set containing A is X.

Since X is Tbĝ-space, A is b-closed.

Therefore $X - \{x\}$ is b-closed $\Longrightarrow \{x\}$ is b-open. Hence the Proof.

Remark 5.9: The converse of the above theorem need not be true.

(i.e) Every b-T1/2-space need not be a Tbĝ-space as shown in the following example.

Example 5.10: Let $X = \{a, b, c, d\}$ and $\tau = \{X, \Phi, \{a, b\}, \{b\}, \{b, c, d\}\}$ bĝ -closed sets of $X = \{X, \Phi, \{a\}, \{c\}, \{d\}, \{a, c\}, \{a, d\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}\}$ b-closed sets of $X = \{X, \Phi, \{a\}, \{c\}, \{d\}, \{a, c\}, \{a, d\}, \{c, d\}, \{a, c\}, \{a, b\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{b, c, d\}\}$ Here (X, τ) is a b-T1/2-space but not Tbĝ-space.

Proposition 5.11: Every Tbĝ-space is Tgs-space.

Proof: Let (X, τ) be a Tb \hat{g} -space. Let $A \sqsubseteq X$ be a gb-closed set, since by Proposition 3.18, A is also a \hat{g} -closed set. Also since X is a Tb \hat{g} -space, then A is b-closed.

Remark 5.12: The converse of the above theorem is also true.

Corollary 5.13: Every Tgs-space is also a Tbĝ-space

Proof: Let (X, τ) be a Tgs-space. Let $A \sqsubseteq X$ be a b \hat{g} -closed set, since by Corollary **3.19**, A is also a gb-closed set. Also since X is a Tgs-space, then A is b-closed.

Remark 5.14: The following diagram shows the relationships about Tbĝ-space with other known existing spaces.

- 1. Tbĝ-space
- **4**. b-T1/2–space
- **2**. T1/2–space
- 5. Tgs-space
- **3.** Tαĝ–space

6. REFERENCES

- [1] S.PArya and T Nour, Characterizations of S-normal spaces, Indian J. Pure. Appl. MAth., 21(8) (1990), 717-719.
- [2] P Bhattacharya and B.K Lahiri, Semi-generalized closed sets in topology, *Indian J. Math.*, 29(1987), 375-382.
- [3] J Dontchev and M Ganster, On δ-generalized closed sets and T3/4-spaces, Mem. Fac. Sci. Kochi Univ. Ser. A, Math., 17(1996), 15-31.
- [4] N Levine, Semi-open sets and semi-continuity in topological spaces Amer Math. Monthly, 70(1963), 36-41.
- [5] N Levine, Generalized closed sets in topology Rend. Circ. Mat. Palermo, 19(1970) 89-96.
- [6] H Maki, R Devi and K Balachandran, Generalized α -closed sets in topology, *Bull. Fukuoka Uni. Ed part III*, 42 (1993), 13-21.
- [7] H Maki, R Devi and K Balachandran, Associated topologies of Generalized α -closed sets and α -generalized closed sets, *Mem. Fac. Sci. Kochi Univ. Ser. A. Math.*, 15(1994), 57-63.
- [8] A.S. Mashhour, M. E Abd El-Monsef and S.N. El-Debb, On precontinuous and weak precontinuous mappings, *Proc. Math. and Phys. Soc. Egypt* 55 (1982), 47-53.
- [9] M. E Abd El-Monsef, S.Rose Mary and M. Lellis Thivagar, Onαĝ-closedsets in topological spaces, *Assiut University Journal of Mathematics and Computer Science*, Vol. 36(1), P-P.43-51(2007).
- [10] ONjastad, On some classes of nearly open sets, Pacific J Math., 15(1965), 961-970.
- [11] M Stone, Application of the theory of Boolian rings to general topology, *Trans. Amer. Math. Soc.*, 41(1937), 374-481.
- [12] M.K.R.S. Veera Kumar, ĝ-closed sets in topological spaces, Bull. Allah. Math. Soc, 18(2003), 99-112.
- [13] N.V. Velicko, H-closed topological spaces, Amer. Math. Soc. Transl., 78(1968), 103-118.
- [14] D. Andrijevic, On b-open sets, Mat. Vesnik 48(1996), no. 1-2, 59-64.
- [15] Ahmad Al. Omari and Mohd. SalmiMD. Noorani, On Generalized b-closed sets, *Bull. Malaysian Mathematical Sciences Society* (2) 32(1) (2009), 19-30
- [16] M. Lellis Thivagar, B. Meera Devi and E. Hatir, & closed sets in Topological Spaces, Gen. Math. Notes, Vol 1, No. 2, December 2010, PP 17-25.

Source of support: Nil, Conflict of interest: None Declared