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ABSTRACT  
Using the structure of the Heisenberg group we define madulation spaces 𝐻𝐻𝑤𝑤

𝑝𝑝 (𝑅𝑅𝑑𝑑),  1 ≤ 𝑝𝑝 ≤ ∞, and their antiduals 
𝐻𝐻𝑤𝑤
𝑝𝑝∼(𝑅𝑅𝑑𝑑). We obtain atomic characterization of 𝐻𝐻𝑤𝑤

𝑝𝑝 (𝑅𝑅𝑑𝑑) in terms of Gabor atoms and study the boundedness 
properties of Gabor multipliers on these spaces of functions or distributions.  
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1. INTRODUCTION 
 
In Gabor analysis the basic problem is the expansion of an arbitrary function in terms of translations and modulations 
of an analyzing vector with coefficients as Gabor transforms of the function with respect to an analyzing vector. A 
number of problems in signal analysis in the time-frequency plane involve the pointwise multiplication of Gabor 
coefficient by some other functions satisfying suitable conditions. This technique is frequently used in signal 
processing and, in engineering terminology, it is known as masking operation (cf, [FZ 98] p.143). Recently, Feichtinger 
[Fei 02] has developed a fairly general theory of Gabor multipliers. 
 
According to his definition, if Λ is a TF-lattice in 𝑅𝑅𝑑𝑑 × 𝑅𝑅�𝑑𝑑 , {𝑚𝑚(𝜆𝜆)}𝜆𝜆∈Λ a complex-valued sequence on Λ and 𝑔𝑔1, 𝑔𝑔2 are 
any two square - integrable functions, then the Gabor multipliers associated with the triple (𝑔𝑔1, 𝑔𝑔2,Λ) with upper 
symbol m is given by  

𝐺𝐺𝑚𝑚(𝑓𝑓) ≡ 𝐺𝐺𝑔𝑔1,𝑔𝑔2,Λ,𝑚𝑚 (𝑓𝑓) = �𝑚𝑚
𝜆𝜆∈Λ

(𝜆𝜆) < 𝑓𝑓, 𝜋𝜋(𝜆𝜆)𝑔𝑔1 > 𝜋𝜋(𝜆𝜆)𝑔𝑔2. 

 
Feichtinger (loc.cit), in fact, has paved a new way to move from function space theory towards operator theory 
associated with Gabor expansions and laid the foundation of the theory of Gabor multipliers, which arise from 
pointwise multiplication of Gabor coefficients. He has discussed in details the boundedness properties of Gabor 
multipliers on the function spaces 𝐿𝐿2(𝑅𝑅𝑑𝑑), Feichtinger algebra 𝑆𝑆0(𝑅𝑅𝑑𝑑) and its dual space 𝑆𝑆0

′(𝑅𝑅𝑑𝑑). 
 

More recently, Feichtinger and Nowak [FN 03, Chapter 5] have given the first systematic and extensive survey of 
Gabor multipliers. In this chapter our aim is to study the theory of Gabor multipliers on the Heisenberg group. In 
section 2, we present the basic notations and definitions for use in the sequel. In section 3, we define weighted Banach 
spaces on the Heisenberg group including some of their properties. 
 
Using the structure of the Heisenberg group in section 4, we define weighted Banach spaces 𝐻𝐻𝑤𝑤

𝑝𝑝 (𝑅𝑅𝑑𝑑),  1 ≤ 𝑝𝑝 ≤ ∞, of 
test functions, which include the well known Feichtinger algebra 𝑆𝑆0(𝑅𝑅𝑑𝑑) as a particular case for 𝑤𝑤 = 1 and 𝑝𝑝 = 1. 
Also, we define 𝐻𝐻𝑤𝑤

𝑝𝑝∼(𝑅𝑅𝑑𝑑), as the space of all continuous conjugate linear functionals on 𝐻𝐻𝑤𝑤
𝑝𝑝 (𝑅𝑅𝑑𝑑). Section 5 deals with 

the atomic characterization of the space 𝐻𝐻𝑤𝑤
𝑝𝑝 (𝑅𝑅𝑑𝑑) in terms of Gabor atoms. In Section 6 we prove three lemma for use in 

the proof of Theorem 5.1. In the last section of the chapter we demonstrate the boundedness of Gabor operators on the 
spaces 𝐿𝐿𝑤𝑤2 (𝑅𝑅𝑑𝑑), 𝐻𝐻𝑤𝑤

𝑝𝑝 (𝑅𝑅𝑑𝑑) and 𝐻𝐻𝑤𝑤
𝑝𝑝∼(𝑅𝑅𝑑𝑑).  

 
2. NOTATIONS AND BASIC CONCEPTS 
 
Let 𝑅𝑅𝑑𝑑  be the d-dimensional Euclidean space and 𝑍𝑍𝑑𝑑  the set of all d-tuples of integers. Let 𝐻𝐻𝑑𝑑 = 𝑅𝑅𝑑𝑑 × 𝑅𝑅�𝑑𝑑 × 𝜏𝜏 be the 
Heisenberg group with the group operations defined by  
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                                         ℎ1. ℎ2 = (𝑥𝑥1, 𝜉𝜉1, 𝑡𝑡1). (𝑥𝑥2, 𝜉𝜉2, 𝑡𝑡2) 
 

= (𝑥𝑥1 + 𝑥𝑥2, 𝜉𝜉1 + 𝜉𝜉2, 𝑡𝑡1. 𝑡𝑡2. 𝑒𝑒2𝜋𝜋𝜋𝜋𝑥𝑥2𝜉𝜉1 );  ∀ ℎ1, ℎ2 ∈ 𝐻𝐻𝑑𝑑  
 
                                    and  ℎ−1 = (𝑥𝑥, 𝑦𝑦, 𝑡𝑡)−1 = (−𝑥𝑥,−𝑦𝑦, 𝑡𝑡−1𝑒𝑒2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋 ),   ∀ ℎ ∈ 𝐻𝐻𝑑𝑑 , 
 
where 𝑅𝑅�𝑑𝑑  is the dual group of 𝑅𝑅𝑑𝑑  and the elements (𝑥𝑥1, 𝑦𝑦1, 𝑡𝑡1) and (𝑥𝑥2, 𝑦𝑦2, 𝑡𝑡2) belong to the Heisenberg group 𝐻𝐻𝑑𝑑 . 
 
The identity element in 𝐻𝐻𝑑𝑑  is (0, 0, 1) and 𝐻𝐻𝑑𝑑  is topologized by the product topology on 𝑅𝑅𝑑𝑑 × 𝑅𝑅�𝑑𝑑 × 𝜏𝜏. Since for the 
Euclidean space 𝑅𝑅𝑑𝑑 , we have 𝑅𝑅𝑑𝑑 ≅ 𝑅𝑅�𝑑𝑑 , hence it is convenient to use 𝑅𝑅𝑑𝑑  in place of 𝑅𝑅�𝑑𝑑 . 
 
Let 𝑇𝑇𝑥𝑥  be the translation (time- shift) operator such that  

 
𝑇𝑇𝑥𝑥𝑓𝑓(𝑦𝑦) = 𝑓𝑓(𝑦𝑦 − 𝑥𝑥)  for all 𝑥𝑥, 𝑦𝑦 ∈ 𝑅𝑅𝑑𝑑 . 

  
We denote by 𝑀𝑀𝜉𝜉  the modulation (frequency-shift) operator such that  

 
𝑀𝑀𝜉𝜉𝑓𝑓(𝑦𝑦) = 𝑒𝑒2𝜋𝜋𝜋𝜋𝜋𝜋 .𝑦𝑦𝑓𝑓(𝑦𝑦), ∀ 𝑦𝑦 ∈ 𝑅𝑅𝑑𝑑 and 𝜉𝜉 ∈ 𝑅𝑅�𝑑𝑑 . 

 
By virtue of the above definitions, it is easy to verify that  

 
𝑇𝑇𝑥𝑥𝑓𝑓� = 𝑀𝑀−𝑥𝑥𝑓𝑓 

 
𝑀𝑀𝜉𝜉𝑓𝑓� = 𝑇𝑇𝜉𝜉𝑓𝑓 

 
and    𝑀𝑀𝜉𝜉𝑇𝑇𝑥𝑥 = 𝑒𝑒2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋   𝑇𝑇𝑥𝑥  𝑀𝑀𝜉𝜉 , 

 
where 𝑓𝑓 denotes the Fourier transform of 𝑓𝑓 on 𝑅𝑅𝑑𝑑  defined by  

 

𝑓𝑓(𝜉𝜉) = � 𝑒𝑒−2𝜋𝜋𝜋𝜋𝜋𝜋 .𝜉𝜉

𝑅𝑅𝑑𝑑
𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑. 

 
It is well known that the Lebesgue measure 𝑑𝑑ℎ = 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 is the Haar measure on 𝐻𝐻𝑑𝑑, which is unimodular. 

 
We denote by £(𝑋𝑋, 𝑌𝑌) the space of all bounded linear operators  𝑇𝑇: 𝑋𝑋 → 𝑌𝑌 with operator norm | ∥ 𝑇𝑇|£(𝑋𝑋, 𝑌𝑌)| ∥;   𝑋𝑋,  𝑌𝑌 
being any two Banach spaces.  
 
3. WEIGHTED BANACH SPACES ON 𝑯𝑯𝒅𝒅 
 
A strictly positive and constant function 𝑚𝑚:𝐻𝐻𝑑𝑑 → 𝑅𝑅+ is called a submultiplicative weight on 𝐻𝐻𝑑𝑑  provided  
 

𝑚𝑚(ℎℎ′) ≤ 𝑚𝑚(ℎ)𝑚𝑚(ℎ′); ∀ ℎ, ℎ′ ∈ 𝐻𝐻𝑑𝑑 . 
 
A weight function 𝑢𝑢 is called moderate with respect to 𝑚𝑚, if  
 

𝑢𝑢(ℎℎ′) ≤ 𝑚𝑚(ℎ)𝑢𝑢(ℎ′); ∀ ℎ, ℎ′ ∈ 𝐻𝐻𝑑𝑑 . 
 
We denote by 𝐿𝐿𝑢𝑢

𝑝𝑝 (𝐻𝐻𝑑𝑑),1 ≤ 𝑝𝑝 < ∞, the Banach space of functions on 𝐻𝐻𝑑𝑑  under the norm  
 

 ∥  𝐹𝐹|𝐿𝐿𝑢𝑢
𝑝𝑝 (𝐻𝐻𝑑𝑑) ∥= �� |

𝐻𝐻𝑑𝑑
𝐹𝐹(ℎ)|𝑝𝑝𝑢𝑢𝑝𝑝(ℎ)𝑑𝑑ℎ�

1/𝑝𝑝

< ∞. (3.1) 

 
In case 𝑝𝑝 = ∞, the space 𝐿𝐿𝑢𝑢∞(𝐻𝐻𝑑𝑑) denotes the space of all measurable functions  𝐹𝐹 on 𝐻𝐻𝑑𝑑  such that  
 
 ∥  𝐹𝐹|𝐿𝐿𝑢𝑢∞ ∥= 𝑒𝑒𝑒𝑒𝑒𝑒 sup { | 𝐹𝐹(ℎ)|𝑢𝑢(ℎ): ℎ ∈ 𝐻𝐻𝑑𝑑} < ∞. (3.2) 
 
We denote the conjugate space of 𝐿𝐿𝑤𝑤

𝑝𝑝 (𝐻𝐻𝑑𝑑) by 𝐿𝐿𝑤𝑤−1
𝑝𝑝 ′ (𝐻𝐻𝑑𝑑), where 1/𝑝𝑝 + 1/𝑝𝑝′ = 1. 

 
The unimodularity of the Heisenberg group ensures that the left and right translation operators given by  
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𝐿𝐿ℎ 𝐹𝐹(𝑔𝑔) =  𝐹𝐹(ℎ−1𝑔𝑔) 
and  

𝑅𝑅ℎ 𝐹𝐹(𝑔𝑔) =  𝐹𝐹(𝑔𝑔ℎ) 
 
respectively act isometrically on 𝐿𝐿𝑤𝑤

𝑝𝑝 (𝐻𝐻)𝑑𝑑 ,   1 ≤ 𝑝𝑝 ≤ ∞. 
 
We assume that  

𝑢𝑢(ℎ) = ||| 𝐿𝐿ℎ | 𝐿𝐿𝑢𝑢
𝑝𝑝 (𝐻𝐻𝑑𝑑) ||| 

 
and    𝑣𝑣(ℎ) =△ (ℎ−1) = |||𝑅𝑅ℎ−1 |𝐿𝐿𝑣𝑣

𝑝𝑝 (𝐻𝐻𝑑𝑑) |||, 
 
where 𝑢𝑢, 𝑣𝑣 are moderate weight functions and the operator norm ||| ⋅ ||| is the norm of left and right translations on 
𝐿𝐿𝑢𝑢
𝑝𝑝 (𝐻𝐻𝑑𝑑) and 𝐿𝐿𝑣𝑣

𝑝𝑝 (𝐻𝐻𝑑𝑑). 
 
In the sequel we assume that 𝑤𝑤 is a moderate weight function on 𝐻𝐻𝑑𝑑  such that  
 

𝑤𝑤(ℎ) ≥ 𝐶𝐶max { 𝑢𝑢(ℎ), 𝑢𝑢(ℎ−1), 𝑣𝑣(ℎ), 𝑣𝑣(ℎ−1) △ (ℎ−1)}, 
 
𝐶𝐶 being a positive constant not necessarily the same at each occurrence. 
 
In particular, we suppose that 𝑤𝑤(ℎ) ≥ 1 and  
 

∥ 𝐹𝐹 | 𝐿𝐿𝑤𝑤
𝑝𝑝
 ||| = ∥ 𝐹𝐹▽ | 𝐿𝐿𝑤𝑤

𝑝𝑝
 ∥, 

 
where the involution 𝐹𝐹∇ is given by  

𝐹𝐹∇▽(ℎ) = 𝐹𝐹(ℎ−1). 
 
If 𝐶𝐶𝑐𝑐(𝐻𝐻𝑑𝑑) denotes the space of all continuous complex-valued functions on 𝐻𝐻𝑑𝑑  with compact support, then the 
convolution of any two functions  𝐹𝐹,  𝐺𝐺 ∈ 𝐶𝐶𝑐𝑐(𝐻𝐻𝑑𝑑) is given by  
 

(𝐹𝐹 ∗ 𝐺𝐺)(𝑔𝑔) = � 𝐺𝐺
𝐻𝐻𝑑𝑑

(ℎ−1𝑔𝑔) 𝐹𝐹(ℎ)𝑑𝑑ℎ = ��  
𝐻𝐻𝑑𝑑

𝐹𝐹(ℎ)𝐿𝐿ℎ𝐺𝐺 𝑑𝑑ℎ� (𝑔𝑔). 

 
It is well known that convolution of functions on 𝐻𝐻𝑑𝑑  is associative, but not commutative. The following basic 
properties of convolution of functions on 𝐻𝐻𝑑𝑑  can be easily verified as in [FG 92c, pp.370-371]:  
 
(i)  𝐿𝐿ℎ(𝐹𝐹 ∗ 𝐺𝐺) = 𝐿𝐿ℎ 𝐹𝐹 ∗ 𝐺𝐺 and 𝑅𝑅ℎ(𝐹𝐹 ∗ 𝐺𝐺) =  𝐹𝐹 ∗ 𝑅𝑅ℎ𝐺𝐺.  
 
(ii) 𝐿𝐿𝑤𝑤1 (𝐻𝐻𝑑𝑑) is a Banach algebra with respect to convolution as multiplication.  
 
(iii)     𝐿𝐿𝑤𝑤

𝑝𝑝 (𝐻𝐻𝑑𝑑) is a convolution module over 𝐿𝐿𝑤𝑤1 (𝐻𝐻𝑑𝑑), i.e., the following properties are satisfied :  
 
           𝐿𝐿𝑤𝑤

𝑝𝑝 ∗ 𝐿𝐿𝑤𝑤1 ⊆ 𝐿𝐿𝑤𝑤
𝑝𝑝 ,  1 ≤ 𝑝𝑝 ≤ ∞  

 
           and  ∥ ( 𝐹𝐹 ∗ 𝐺𝐺)|𝐿𝐿𝑤𝑤

𝑝𝑝 ∥ ≤ ∥  𝐹𝐹|𝐿𝐿𝑤𝑤
𝑝𝑝 ∥  ∥ 𝐺𝐺|𝐿𝐿𝑤𝑤1 ∥,   for all  𝐹𝐹 ∈ 𝐿𝐿𝑤𝑤

𝑝𝑝 (𝐻𝐻𝑑𝑑) and 𝐺𝐺 ∈ 𝐿𝐿𝑤𝑤1 (𝐻𝐻𝑑𝑑).  
 
4. GABOR TRANSFORM FOR WEIGHTED BANACH 
 
The Gabor Heisenberg transform of a function 𝑓𝑓 ∈ 𝐿𝐿2(𝑅𝑅𝑑𝑑) with respect to a window function 𝑔𝑔 ∈ 𝐿𝐿2(𝑅𝑅𝑑𝑑) is given by 
(cf. [FG 92c], p.371):  

𝑉𝑉𝑔𝑔𝑓𝑓(ℎ) =< 𝜋𝜋(ℎ)𝑔𝑔, 𝑓𝑓 >,  ∀ ℎ ∈ 𝐻𝐻𝑑𝑑 . 
 
Feichtinger and Gr𝑜̈𝑜chenig [FG 92c, pp.372-373] have shown that the transform 𝑓𝑓 → 𝑉𝑉𝑔𝑔𝑓𝑓 is a linear mapping from the 
Hilbert space 𝐿𝐿2(𝑅𝑅𝑑𝑑) into the space of bounded and continuous functions on 𝐻𝐻𝑑𝑑, intertwining property  
 
 𝑉𝑉𝑔𝑔(𝜋𝜋(ℎ)𝑓𝑓) = 𝐿𝐿ℎ(𝑉𝑉𝑔𝑔𝑓𝑓),  ∀ ℎ ∈ 𝐻𝐻𝑑𝑑 , (4.1) 
   
holds true, 𝐿𝐿ℎ  being the left translation operator on 𝐻𝐻𝑑𝑑  and  
 
 𝑉𝑉𝑔𝑔𝑓𝑓 ∗ 𝑉𝑉𝑔𝑔𝑔𝑔 = 𝑉𝑉𝑔𝑔𝑓𝑓,  ∀ 𝑓𝑓 ∈ 𝐿𝐿2(𝑅𝑅𝑑𝑑) and ∥ 𝑔𝑔 ∥2= 1. (4.2) 
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We define a class of analyzing vectors  
 
  𝐴𝐴𝑤𝑤1 (𝑅𝑅𝑑𝑑) = {𝑔𝑔 ∈ 𝐿𝐿2(𝑅𝑅𝑑𝑑): 𝑉𝑉𝑔𝑔𝑔𝑔 ∈ 𝐿𝐿𝑤𝑤1 (𝐻𝐻𝑑𝑑)}, 1 ≤ 𝑝𝑝 ≤ 2. (4.3) 
 
On the lines of Feichtinger and Gr𝑜̈𝑜chenig [FG 89], for a fixed non-zero 𝑔𝑔 ∈ 𝐴𝐴𝑤𝑤1 (𝑅𝑅𝑑𝑑), we define  
 
 𝐻𝐻𝑤𝑤

𝑝𝑝 (𝑅𝑅𝑑𝑑) = {𝑓𝑓: 𝑓𝑓 ∈ 𝐿𝐿2(𝑅𝑅𝑑𝑑), 𝑉𝑉𝑔𝑔𝑓𝑓 ∈ 𝐿𝐿𝑤𝑤
𝑝𝑝 (𝐻𝐻𝑑𝑑)} (4.4) 

   
and endow it with the norm  
 ∥ 𝑓𝑓|𝐻𝐻𝑤𝑤

𝑝𝑝 (𝑅𝑅𝑑𝑑) ∥=∥ 𝑉𝑉𝑔𝑔𝑓𝑓|𝐿𝐿𝑤𝑤
𝑝𝑝 (𝑀𝑀𝑑𝑑) ∥ ,1 ≤ 𝑝𝑝 ≤ 2. (4.5) 

 
It can be easily verified that 𝐻𝐻𝑤𝑤

𝑝𝑝 (𝑅𝑅𝑑𝑑) is independent of the choicely of 𝑔𝑔 and complete under the norm defined by (4.5). 
These spaces were, originally, introduced by Feichtinger in (cf. [Fei 80]), who named them as modulation spaces. 
 
By virtue of the above definitions, it is clear that the embeddings  
 

𝐻𝐻𝑤𝑤
𝑝𝑝 (𝑅𝑅𝑑𝑑) ↪ 𝐿𝐿2(𝑅𝑅𝑑𝑑) ↪ 𝑀𝑀𝑤𝑤

𝑝𝑝∼(𝑅𝑅𝑑𝑑),  1 ≤ 𝑝𝑝 ≤ 2. 
 
are continuous, where 𝐻𝐻𝑤𝑤

𝑝𝑝∼(𝑅𝑅𝑑𝑑) is the space of all continuous conjugate linear functionals on the Banach Space 
𝐻𝐻𝑤𝑤
𝑝𝑝 (𝑅𝑅𝑑𝑑). 

 
Since the inner product on 𝐿𝐿2(𝑅𝑅𝑑𝑑) × 𝐿𝐿2(𝑅𝑅𝑑𝑑) extends to a sesquilinear form on 𝐻𝐻𝑤𝑤

𝑝𝑝 (𝑅𝑅𝑑𝑑) × 𝐻𝐻𝑤𝑤
𝑝𝑝∼(𝑅𝑅𝑑𝑑), the extended 

Gabor transform takes the form  
 
𝑉𝑉𝑔𝑔𝑓𝑓(ℎ) =< 𝑓𝑓, 𝜋𝜋(ℎ)𝑔𝑔 >, for all 𝑔𝑔 ∈ 𝐻𝐻𝑤𝑤

𝑝𝑝 (𝑅𝑅𝑑𝑑),  𝑓𝑓 ∈ 𝐻𝐻𝑤𝑤
𝑝𝑝∼(𝑅𝑅𝑑𝑑), ℎ ∈ 𝐻𝐻𝑑𝑑  and 1 ≤ 𝑝𝑝 ≤ 2. 

 
In case 𝑝𝑝 = 1 and 𝑤𝑤 = 1, the space 𝐻𝐻𝑤𝑤

𝑝𝑝 (𝑅𝑅𝑑𝑑) reduces to the well known Feichtinger algebra 𝑆𝑆0(𝑅𝑅𝑑𝑑) of test functions on 
𝑅𝑅𝑑𝑑 .  
 
5. ATOMIC CHARACTERIZATION 
 
We denote by 𝑊𝑊(𝐶𝐶0, 𝐿𝐿𝑤𝑤1 )(𝐻𝐻𝑑𝑑) the Wiener amalgam space with the local and global components 𝐶𝐶0(𝐻𝐻𝑑𝑑) and 𝐿𝐿𝑤𝑤1 (𝐻𝐻𝑑𝑑), 
where 𝐶𝐶0(𝐻𝐻𝑑𝑑) is the space of all continuous functions on 𝐻𝐻𝑑𝑑  vanishing at infinitely. 
 
We suppose that 𝑇𝑇 is the convolution operator on 𝐿𝐿𝑤𝑤

𝑝𝑝 (𝐻𝐻𝑑𝑑) such that  
 

 𝑇𝑇 𝐹𝐹 =  𝐹𝐹 ∗ 𝐺𝐺;  ∀ 𝐹𝐹, 𝐺𝐺 ∈ 𝐿𝐿𝑤𝑤
𝑝𝑝 (𝐻𝐻𝑑𝑑), 

 
where  𝐹𝐹 = 𝑉𝑉𝑔𝑔𝑓𝑓 and 𝐺𝐺 = 𝑉𝑉𝑔𝑔𝑔𝑔. 
 
We suppose that 𝑋𝑋 = (ℎ𝑖𝑖)𝑖𝑖∈𝐼𝐼  is a relatively separated and 𝑈𝑈-dense family in 𝐻𝐻𝑑𝑑 . Also, let Ψ = (𝜓𝜓𝑖𝑖(ℎ))𝑖𝑖∈𝐼𝐼 be a bounded 
uniform partition of unity of size 𝑈𝑈 (U-BUPU). Now, on the lines of Feichtinger and Gr𝑜̈𝑜chenig [FG 89a, p.329], we 
define the approximation operator  
 

  𝑇𝑇Ψ:  𝐹𝐹 ⟶� <
𝑖𝑖∈𝐼𝐼

𝜓𝜓𝑖𝑖 ,  𝐹𝐹 > 𝐿𝐿ℎ𝑖𝑖𝐺𝐺,  (5.1) 

which is composed of a coefficient mapping  
𝐹𝐹 ⟶< 𝜓𝜓𝑖𝑖,  𝐹𝐹 >𝑖𝑖∈𝐼𝐼  

 
and a convolution operator  

(𝜆𝜆𝑖𝑖)𝑖𝑖∈𝐼𝐼 ⟶�𝜆𝜆𝑖𝑖
𝑖𝑖∈𝐼𝐼

𝐿𝐿ℎ𝑖𝑖𝐺𝐺 = (�𝜆𝜆𝑖𝑖
𝑖𝑖∈𝐼𝐼

𝛿𝛿ℎ𝑖𝑖) ∗ 𝐺𝐺, 

where 𝛿𝛿ℎ𝑖𝑖  is the point measure at ℎ𝑖𝑖 . 
 
Using the above approximation operator, we obtain an atomic characterization of the space 𝐻𝐻𝑤𝑤

𝑝𝑝 (𝑅𝑅𝑑𝑑). 
 
Precisely, we prove the following:   
 
Theorem 5.1: If 𝑔𝑔 ∈ 𝐴𝐴𝑤𝑤1 (𝑅𝑅𝑑𝑑) and 𝐺𝐺 ∈ 𝑊𝑊(𝐶𝐶0, 𝐿𝐿𝑤𝑤1 )(𝐻𝐻𝑑𝑑) and ∥ 𝐺𝐺𝑈𝑈# ∥< 1, then there exists a neighborhood 𝑈𝑈 of the 
identity in 𝐻𝐻𝑑𝑑  and a constant 𝑐𝑐 > 0, both depending on 𝐻𝐻𝑑𝑑 , such that for every U-dense and relatively separated 
family 𝑋𝑋 = (ℎ𝑖𝑖)𝑖𝑖∈𝐼𝐼 in 𝐻𝐻𝑑𝑑  any 𝑓𝑓 ∈ 𝐻𝐻𝑤𝑤

𝑝𝑝 (𝑅𝑅𝑑𝑑),  1 ≤ 𝑝𝑝 ≤ 2, can be expressed in the form  
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 𝑓𝑓 = �𝛼𝛼𝑖𝑖
𝑖𝑖∈𝐼𝐼

(𝑓𝑓) 𝜋𝜋(ℎ𝑖𝑖) 𝑔𝑔,  (5.2) 

 
 𝑤𝑤𝑤𝑤𝑤𝑤ℎ  ∥ 𝛼𝛼𝑖𝑖|𝑙𝑙𝑤𝑤

𝑝𝑝 (𝐼𝐼) ∥≤ 𝑐𝑐 ∥ 𝑓𝑓|𝐻𝐻𝑤𝑤
𝑝𝑝 ∥, (5.3) 

   
where 𝐺𝐺𝑈𝑈# is the modules of the continuity of 𝐺𝐺 with respect to the norm ∥. ∥1,𝑤𝑤 , 𝛼𝛼𝑖𝑖(𝑓𝑓) =< 𝜓𝜓𝑖𝑖 , 𝑇𝑇𝜓𝜓−1𝑉𝑉𝑔𝑔𝑓𝑓 > and the series 
in (5.2) is absolutely convergent in the norm topology of 𝐻𝐻𝑤𝑤

𝑝𝑝 (𝑅𝑅𝑑𝑑).  
 
6. NECESSARY LEMMAS 
 
We shall use the following lemmas in the proof of Theorem 5.1:  
 
Lemma 6.1: If 𝐺𝐺 ∈ 𝑊𝑊(𝐶𝐶0 𝐿𝐿𝑤𝑤1 )(𝐻𝐻𝑑𝑑),  𝑋𝑋 = (ℎ𝑖𝑖)𝑖𝑖∈𝐼𝐼 is a U-dense and relatively separated family in 𝐻𝐻𝑑𝑑  and Λ = (𝜆𝜆𝑖𝑖)𝑖𝑖∈𝐼𝐼 is 
defined by  

𝜆𝜆𝑖𝑖 =< 𝜓𝜓𝑖𝑖 , 𝐹𝐹 >𝑖𝑖∈𝐼𝐼,   𝐹𝐹 ∈ 𝐿𝐿𝑤𝑤
𝑝𝑝 (𝐻𝐻𝑑𝑑), then 𝐹𝐹 = �𝜆𝜆𝑖𝑖

𝑖𝑖∈𝐼𝐼

𝐿𝐿𝑥𝑥𝑖𝑖𝐺𝐺 ∈ 𝐿𝐿𝑤𝑤
𝑝𝑝 (𝐻𝐻𝑑𝑑) 

 
If and only if Λ ∈ 𝑙𝑙𝑤𝑤

𝑝𝑝 (𝐼𝐼). Also, there exists a positive constant C such that  
 

∥ 𝐹𝐹 ∥𝑝𝑝,𝑤𝑤≤ 𝐶𝐶 ∥ Λ ∥𝑝𝑝,𝑤𝑤 . 
 
Proof: Since 𝑤𝑤 is a submultiplicative weight function on 𝐻𝐻𝑑𝑑, we have  
 

𝑤𝑤𝑝𝑝(ℎ𝑖𝑖) ≤ 𝐶𝐶0 𝑤𝑤𝑝𝑝 (𝑔𝑔), 
 
where 𝐶𝐶0 = sup𝑘𝑘∈𝑈𝑈0 𝑤𝑤

𝑝𝑝 (𝑘𝑘),  𝑔𝑔 ∈ ℎ𝑖𝑖𝑈𝑈0, 𝐶𝐶0 is a positive constant and 𝑈𝑈0 ⊆ 𝑈𝑈 is a neighborhood of the identity in 𝐻𝐻𝑑𝑑 . 
 
Hence we see that  

| < 𝜓𝜓𝑖𝑖, 𝐹𝐹 > |𝑝𝑝𝑤𝑤𝑝𝑝(ℎ𝑖𝑖) ≤ 𝐶𝐶0 max | 𝜓𝜓𝑖𝑖|𝑝𝑝  ∥ 𝐹𝐹 ∥𝑝𝑝,𝑤𝑤 . 
 

⇒∥ Λ ∥𝑝𝑝,𝑤𝑤≤ 𝐶𝐶 ∥ 𝐹𝐹 ∥𝑝𝑝,𝑤𝑤 , 
 
𝐶𝐶 being a positive constant not necessarily the same at each occurrence. 
 
Conversely, we have  
 
∥ �𝜆𝜆𝑖𝑖

𝑖𝑖∈𝐼𝐼

𝐿𝐿𝑥𝑥𝑖𝑖𝐺𝐺 ∥𝑝𝑝,𝑤𝑤≤�|
𝑖𝑖∈𝐼𝐼

𝜆𝜆𝑖𝑖|  ∥ 𝐿𝐿ℎ𝑖𝑖𝐺𝐺 ∥𝑝𝑝,𝑤𝑤  

 ≤ 𝐶𝐶�|
𝑖𝑖∈𝐼𝐼

𝜆𝜆𝑖𝑖|𝑤𝑤𝑝𝑝(ℎ𝑖𝑖) ∥ 𝐺𝐺|𝑊𝑊(𝐶𝐶0, 𝐿𝐿𝑤𝑤1 ) ∥. 

 
Hence the lemma holds true. 
 
Lemma 6.2: The set of operators {𝑇𝑇𝜓𝜓}, when 𝜓𝜓 runs through the family of 𝑈𝑈0 -BUPUS, acts uniformly bounded on 
𝐿𝐿𝑤𝑤
𝑝𝑝 (𝐻𝐻𝑑𝑑).  

 
Proof Let 𝐹𝐹 ∈ 𝐿𝐿𝑤𝑤

𝑝𝑝 (𝐻𝐻𝑑𝑑).  Then we have  
 

∥ 𝑇𝑇𝜓𝜓𝐹𝐹 ∥𝑝𝑝,𝑤𝑤=∥� <
𝑖𝑖∈𝐼𝐼

𝜓𝜓𝑖𝑖 , 𝐹𝐹 > 𝐿𝐿ℎ𝑖𝑖𝐺𝐺 ∥𝑝𝑝,𝑤𝑤  

=∥� <
𝑖𝑖∈𝐼𝐼

𝜓𝜓𝑖𝑖 , 𝐹𝐹 > 𝛿𝛿ℎ𝑖𝑖 ∗ 𝐺𝐺 ∥𝑝𝑝,𝑤𝑤  

≤∥ � <
𝑖𝑖∈𝐼𝐼

𝜓𝜓𝑖𝑖 , 𝐹𝐹 > 𝛿𝛿ℎ𝑖𝑖 ∥𝑝𝑝,𝑤𝑤 ∥ 𝐺𝐺|𝐿𝐿𝑤𝑤1 ∥ 

 
                                                                            ≤ 𝐶𝐶 ∥ 𝐹𝐹 ∥𝑝𝑝,𝑤𝑤  ∥ 𝐺𝐺|𝑊𝑊(𝐶𝐶0, 𝐿𝐿𝑤𝑤1 ) ∥≤ 𝐶𝐶 ∥ 𝐹𝐹 ∥𝑝𝑝,𝑤𝑤  

 
                                                                            ≤ 𝐶𝐶 ∥ Λ ∥𝑝𝑝,𝑤𝑤 by  lemma  6.1. 
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Lemma 6.3: If {𝑇𝑇𝜓𝜓} is a net of U-BAPU’s, then  

lim
𝜓𝜓→∞

||| 𝑇𝑇𝜓𝜓 − 𝑇𝑇|||𝑝𝑝,𝑤𝑤 = 0. 

 
Proof: Let 𝐹𝐹 ∈ 𝐿𝐿𝑤𝑤

𝑝𝑝 (𝐺𝐺). Then, as in [FG 89, p.331], we have  
 

∥ 𝑇𝑇𝜓𝜓𝐹𝐹 − 𝑇𝑇𝑇𝑇 ∥𝑝𝑝,𝑤𝑤=∥ �(
𝑖𝑖∈𝐼𝐼

< 𝜓𝜓𝑖𝑖, 𝐹𝐹 > 𝛿𝛿ℎ𝑖𝑖 − 𝐹𝐹𝜓𝜓𝑖𝑖) ∗ 𝐺𝐺 ∥𝑝𝑝,𝑤𝑤  

≤� ∥
𝑖𝑖∈𝐼𝐼

(< 𝜓𝜓𝑖𝑖, 𝐹𝐹 >)𝛿𝛿ℎ𝑖𝑖 − 𝐹𝐹𝜓𝜓𝑖𝑖∗𝐺𝐺 ∥𝑝𝑝,𝑤𝑤  

≤� ∥
𝑖𝑖∈𝐼𝐼

� (
ℎ𝑖𝑖𝑈𝑈

𝐿𝐿ℎ𝑖𝑖𝐺𝐺 − 𝐿𝐿𝑔𝑔𝐺𝐺)∗𝐹𝐹(𝑔𝑔)𝜓𝜓𝑖𝑖(𝑔𝑔)𝑑𝑑𝑑𝑑 ∥𝑝𝑝,𝑤𝑤  

≤� ∥
𝑖𝑖∈𝐼𝐼

� (
ℎ𝑖𝑖𝑈𝑈

𝐿𝐿ℎ𝑖𝑖𝐺𝐺 − 𝐿𝐿𝑔𝑔𝐺𝐺) ∥1,𝑤𝑤 ∥ 𝐹𝐹(𝑔𝑔)𝜓𝜓𝑖𝑖(𝑔𝑔) ∥𝑝𝑝,𝑤𝑤  

≤�sup
𝑢𝑢∈𝑈𝑈

∥
𝑖𝑖∈𝐼𝐼

𝐿𝐿ℎ𝑖𝑖𝐺𝐺 − 𝐿𝐿𝑢𝑢𝐺𝐺 ∥1,𝑤𝑤 ∥ 𝐹𝐹(𝑔𝑔)𝜓𝜓𝑖𝑖(𝑔𝑔) ∥𝑝𝑝,𝑤𝑤  

≤ 𝐶𝐶 sup
𝑢𝑢∈𝑈𝑈

∥𝐺𝐺 − 𝐿𝐿𝑢𝑢𝐺𝐺 ∥1,𝑤𝑤 ∥ 𝐹𝐹 ∥𝑝𝑝,𝑤𝑤 . 

≤ 𝐶𝐶𝜔𝜔𝑈𝑈(𝐺𝐺) ⋅∥ 𝐹𝐹 ∥𝑝𝑝,𝑤𝑤 , 
 
where 𝜔𝜔𝑈𝑈(𝐺𝐺) = sup𝑢𝑢∈𝑈𝑈 ∥𝐺𝐺 − 𝐿𝐿𝑢𝑢𝐺𝐺 ∥1,𝑤𝑤  is the modulus of continuity of 𝐺𝐺 with respect to the norm ∥⋅∥1,𝑤𝑤 . Finally, 
choosing 𝑈𝑈 sufficiently small, we obtain  
 

∥ |𝑇𝑇𝜓𝜓 − 𝑇𝑇 ∥ |𝑝𝑝,𝑤𝑤 ≤ 𝐶𝐶  𝜔𝜔𝑈𝑈(𝐺𝐺)   ⟶ 0 as 𝑈𝑈 → {𝑒𝑒}. 
 
7. PROOF OF THEOREM 5.1 
 
We write 𝐹𝐹 = 𝑉𝑉𝑔𝑔𝑓𝑓 and 𝐺𝐺 = 𝑉𝑉𝑔𝑔𝑔𝑔, which imply that  

𝐺𝐺 ∗ 𝐺𝐺 = 𝐺𝐺 
 
∥ 𝐹𝐹 ∗ 𝐺𝐺 ∥𝑝𝑝,𝑤𝑤≤∥ 𝐹𝐹 ∥𝑝𝑝,𝑤𝑤 ⋅∥ 𝐺𝐺 ∥1,𝑤𝑤  

 
                            ≤ 𝐶𝐶 ∥ 𝐹𝐹 ∥𝑝𝑝,𝑤𝑤 ⋅∥ 𝐺𝐺 ∥1,𝑤𝑤 , 

 
𝐶𝐶 being a positive constant not necessarily the same at each occurrence  
 
Also, on account of the relation (4.2), 𝐹𝐹 ∈ 𝐿𝐿𝑤𝑤

𝑝𝑝 (𝐻𝐻𝑑𝑑) ∗ 𝐺𝐺(𝐻𝐻𝑑𝑑) if and only if 𝐹𝐹 = 𝑉𝑉𝑔𝑔𝑓𝑓 for a function 𝑓𝑓 ∈ 𝐻𝐻𝑤𝑤
𝑝𝑝 (𝑅𝑅𝑑𝑑). 

 
Thus the convolution 𝐿𝐿𝑤𝑤

𝑝𝑝 (𝐻𝐻)𝑑𝑑 ∗ 𝐺𝐺(𝐻𝐻𝑑𝑑) is a bounded projection from 𝐿𝐿𝑤𝑤
𝑝𝑝 (𝐻𝐻𝑑𝑑) onto the closed subspace 𝐿𝐿𝑤𝑤

𝑝𝑝 (𝐻𝐻𝑑𝑑) ∗
𝐺𝐺(𝐻𝐻𝑑𝑑). 
 
Since 𝑇𝑇𝑇𝑇 = 𝐹𝐹 ∗ 𝐺𝐺, the operator 𝑇𝑇 acts as identity operator on 𝐿𝐿𝑤𝑤

𝑝𝑝 ∗ 𝐺𝐺. Hence, by Lemma 6.3, there exists a net {𝑇𝑇𝜓𝜓} of 
U-BUPU’s, which is norm convergent to 𝑇𝑇 and we have  
 

lim
𝜓𝜓→∞

||| (𝑇𝑇𝜓𝜓 − 𝑇𝑇)|𝐿𝐿𝑤𝑤
𝑝𝑝 (𝐻𝐻𝑑𝑑) ∗ 𝐺𝐺 ||| = 0. 

 
Thus as in [FG 88, p.58], we may choose 𝑎𝑎 > 0 such that  
 

|||(𝑇𝑇 − 𝑇𝑇𝜓𝜓)|𝐿𝐿𝑤𝑤
𝑝𝑝 ∗ 𝐺𝐺  ||| < 𝑎𝑎 < 1,. 

 
in a sufficiently small neighborhood 𝑈𝑈 of 𝑒𝑒 in 𝐻𝐻𝑑𝑑 . Hence, on account of Neuman’s series, we have  
 
                                                                                    𝑇𝑇𝜓𝜓−1 ||| ≤ (1 − 𝑎𝑎)−1. 
Thus, finally, we see that  

𝑉𝑉𝑔𝑔𝑓𝑓 = 𝐹𝐹 
 

                        = 𝑇𝑇𝜓𝜓�𝑇𝑇𝜓𝜓−1𝐹𝐹� 

                                               = � <
𝑖𝑖∈𝐼𝐼

𝜓𝜓𝑖𝑖𝑇𝑇𝜓𝜓−1𝐹𝐹 > 𝐿𝐿ℎ𝑖𝑖𝐺𝐺. 
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⇒ 𝑓𝑓 = � <

𝑖𝑖∈𝐼𝐼

𝜓𝜓𝑖𝑖 , 𝑇𝑇𝜓𝜓−1𝐹𝐹 > 𝑉𝑉𝑔𝑔−1�𝐿𝐿ℎ𝑖𝑖𝐺𝐺� 

                                                                  = ∑ <𝑖𝑖∈𝐼𝐼 𝜓𝜓𝑖𝑖 , 𝑇𝑇𝜓𝜓−1𝑉𝑉𝑔𝑔𝑓𝑓 > 𝜋𝜋(ℎ𝑖𝑖)𝑔𝑔      (by   4.1)                     

                                                                           = ∑ 𝛼𝛼𝑖𝑖𝑖𝑖∈𝐼𝐼 𝜋𝜋(ℎ𝑖𝑖)𝑔𝑔, where 𝛼𝛼𝑖𝑖 =< 𝜓𝜓𝑖𝑖, 𝑇𝑇𝜓𝜓−1𝑉𝑉𝑔𝑔𝑓𝑓 >. 

Next, Since 𝑇𝑇𝜓𝜓−1𝐹𝐹 ∈ 𝐿𝐿𝑤𝑤
𝑝𝑝 ∗ 𝐺𝐺, we have  

∥ 𝛼𝛼𝑖𝑖|𝑙𝑙𝑤𝑤
𝑝𝑝 (𝐼𝐼) ∥= (�|

𝑖𝑖∈𝐼𝐼

𝛼𝛼𝑖𝑖|𝑝𝑝𝑤𝑤𝑝𝑝(ℎ𝑖𝑖))1/𝑝𝑝  

= (�|
𝑖𝑖∈𝐼𝐼

< 𝜓𝜓𝑖𝑖 , 𝑇𝑇𝜓𝜓−1𝐹𝐹 > |𝑝𝑝𝑤𝑤𝑝𝑝(ℎ𝑖𝑖))1/𝑝𝑝  

≤ 𝐶𝐶�|
𝑖𝑖∈𝐼𝐼

< 𝜓𝜓𝑖𝑖, 𝑇𝑇Ψ−1𝐹𝐹 𝑤𝑤(ℎ𝑖𝑖) > |𝑝𝑝  

= 𝐶𝐶 ∥ 𝑇𝑇𝜓𝜓−1𝐹𝐹 ∥𝑝𝑝,𝑤𝑤  
≤ 𝐶𝐶 ∥ 𝑓𝑓 ∥ 𝐻𝐻𝑤𝑤

𝑝𝑝 (𝑅𝑅𝑑𝑑) ∥. 
 
This completes the proof of the theorem. 
 
8. GABOR MULTIPLIERS ON 𝑯𝑯𝒘𝒘

𝒑𝒑 (𝑹𝑹𝒅𝒅) 
 
Feichtinger, in a very recent paper [Fei 02], has initiated the study of Gabor multipliers on the spaces 𝐿𝐿2(𝑅𝑅𝑑𝑑), 𝑆𝑆0(𝑅𝑅𝑑𝑑) 
and 𝑆𝑆 ′0(𝑅𝑅𝑑𝑑). In this section, using the concept of Heisenberg group, we study Gabor multiplier for the spaces 
𝐿𝐿2(𝑅𝑅𝑑𝑑), 𝐻𝐻𝑤𝑤

𝑝𝑝 (𝑅𝑅𝑑𝑑) and 𝐻𝐻𝑤𝑤
𝑝𝑝∼(𝑅𝑅𝑑𝑑).  

 
Definition 8.1: If 𝑔𝑔, ℎ are any two function in 𝐿𝐿2(𝑅𝑅𝑑𝑑)and Λ is a lattice in 𝐻𝐻𝑑𝑑, then a complex-valued sequence 
(𝑚𝑚𝜆𝜆)𝜆𝜆∈Λ is called a Gabor multipliers associated with the triple (𝑔𝑔, ℎ,Λ) provided  
 

 𝐺𝐺𝑚𝑚(𝑓𝑓) ≡ 𝐺𝐺𝑔𝑔,ℎ,Λ,𝑚𝑚 = �𝑚𝑚
𝜆𝜆∈Λ

(𝜆𝜆)𝛼𝛼𝜆𝜆(𝑓𝑓, 𝑔𝑔)𝜋𝜋(𝜆𝜆)ℎ. (8.1) 

 
In case ℎ = 𝑔𝑔, we simply write  

𝐺𝐺𝑚𝑚(𝑓𝑓) ≡ 𝐺𝐺𝑔𝑔,Λ,𝑚𝑚 (𝑓𝑓). 
 
We prove the following:  
 
Theorem 8.1: Let Λ be a lattice in 𝐻𝐻𝑑𝑑 ,𝑚𝑚 = {𝑚𝑚(𝜆𝜆)}𝜆𝜆∈Λ and the linear operator 𝐺𝐺𝑚𝑚  is defined by (8.1). Then the 
following results holds true:  
 
(i)   If 𝑓𝑓, 𝑔𝑔 ∈ 𝐿𝐿2(𝑅𝑅𝑑𝑑),  ℎ ∈ 𝐻𝐻𝑤𝑤

𝑝𝑝 (𝑅𝑅𝑑𝑑) and 𝑚𝑚 ∈ 𝑙𝑙∞(Λ), then 𝐺𝐺𝑚𝑚 ∈ £(𝐿𝐿2(𝑅𝑅𝑑𝑑)) with  
 
 |||𝐺𝐺𝑚𝑚 |£(𝐿𝐿2(𝑅𝑅𝑑𝑑))||| ≤ 𝐶𝐶Λ ∥ ℎ|𝐻𝐻𝑤𝑤

𝑝𝑝 ∥ ∥ 𝑚𝑚|𝑙𝑙∞ ∥∥ 𝑔𝑔 ∥2, (8.2) 
   
            𝐶𝐶Λ being a positive constant depending on Λ and 1 ≤ 𝑝𝑝 ≤ 2.  
 
(ii) For 𝑔𝑔, ℎ ∈ 𝐻𝐻𝑤𝑤

𝑝𝑝 (𝑅𝑅𝑑𝑑),  and 𝑚𝑚 ∈ 𝑙𝑙1(Λ), we have  
𝐺𝐺𝑚𝑚 ∈ £(𝐻𝐻𝑤𝑤

𝑝𝑝 (𝑅𝑅𝑑𝑑)) with 
 
 |||𝐺𝐺𝑚𝑚|𝐻𝐻𝑤𝑤

𝑝𝑝 (𝑅𝑅𝑑𝑑)||| ≤ 𝐶𝐶Λ ∥ ℎ|𝐻𝐻𝑤𝑤
𝑝𝑝 ∥∥ 𝑔𝑔|𝐻𝐻𝑤𝑤

𝑝𝑝 ∥∥ 𝑚𝑚|𝑙𝑙1(Λ) ∥. (8.3) 
 
(iii)  If 𝑔𝑔 ∈ 𝐻𝐻𝑤𝑤

𝑝𝑝 (𝑅𝑅𝑑𝑑); 𝑓𝑓, ℎ ∈ 𝐻𝐻𝑤𝑤
𝑝𝑝∼(𝑅𝑅𝑑𝑑) and 𝑚𝑚 ∈ 𝑙𝑙1(Λ), then  𝐺𝐺𝑚𝑚 ∈ £(𝐻𝐻𝑤𝑤

𝑝𝑝∼(𝑅𝑅𝑑𝑑)) with  
 
 |||𝐺𝐺𝑚𝑚|£(𝐻𝐻𝑤𝑤

𝑝𝑝∼(𝑅𝑅𝑑𝑑))||| ≤ 𝐶𝐶Λ ∥ 𝑔𝑔|𝐻𝐻𝑤𝑤
𝑝𝑝 ∥ ∥ ℎ|𝐻𝐻𝑤𝑤

𝑝𝑝∼ ∥ ∥ 𝑚𝑚|𝑙𝑙1(Λ) ∥. (8.4) 
   
Proof: (i) By virtue of the relation (5.2), we have  
 
                                              |𝐺𝐺𝑚𝑚𝑓𝑓| = ∑ 𝛼𝛼𝜆𝜆𝜆𝜆∈Λ (𝑓𝑓)𝑚𝑚(𝜆𝜆)𝜋𝜋(𝜆𝜆)ℎ 
 
                                                         = ∑ <𝜆𝜆∈Λ 𝜓𝜓𝜆𝜆, 𝑇𝑇𝜓𝜓−1𝑉𝑉𝑔𝑔𝑓𝑓(𝜆𝜆) > 𝑚𝑚(𝜆𝜆)𝜋𝜋(𝜆𝜆)ℎ 
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≤ sup

𝜆𝜆∈Λ
<𝜓𝜓𝜆𝜆, 𝑇𝑇𝜓𝜓−1𝑉𝑉𝑔𝑔𝑓𝑓(𝜆𝜆) > �|

𝜆𝜆∈Λ

𝜋𝜋(𝜆𝜆)ℎ|  |𝑚𝑚(𝜆𝜆)|. 

≤ 𝐶𝐶 ∥ 𝑓𝑓 ∥2∥ 𝑔𝑔 ∥2. ∥ ℎ|𝐻𝐻𝑤𝑤
𝑝𝑝 (𝑅𝑅𝑑𝑑) ∥. ∥ 𝑚𝑚|𝑙𝑙∞(Λ) ∥, 

 
⇒ 𝐺𝐺𝑚𝑚 ∈ £(𝐿𝐿2(𝑅𝑅𝑑𝑑)) and the inequality in (8.2) follows.  
 
(ii) We have  

|𝐺𝐺𝑚𝑚𝑓𝑓| = � <
𝜆𝜆∈Λ

𝜓𝜓𝜆𝜆, 𝑇𝑇𝜓𝜓−1𝑉𝑉𝑔𝑔𝑓𝑓(𝜆𝜆) > 𝑚𝑚(𝜆𝜆)𝜋𝜋(𝜆𝜆)ℎ 

≤ sup
𝜆𝜆∈Λ

<𝜓𝜓𝜆𝜆, 𝑇𝑇𝜓𝜓−1𝑉𝑉𝑔𝑔𝑓𝑓(𝜆𝜆) > � |
𝜆𝜆∈Λ

𝑚𝑚(𝜆𝜆)|  ∥ 𝜋𝜋(𝜆𝜆)ℎ|𝐻𝐻𝑤𝑤
𝑝𝑝 ∥ 

≤ 𝐶𝐶 ∥ 𝑔𝑔|𝐻𝐻𝑤𝑤
𝑝𝑝 ∥∥ 𝑓𝑓|𝐻𝐻𝑤𝑤

𝑝𝑝∼ ∥∥ 𝑚𝑚|𝑙𝑙1(Λ) ∥ ∥ ℎ ∥𝐻𝐻𝑤𝑤𝑝𝑝 . 
 
⇒ 𝐺𝐺𝑚𝑚 ∈ £(𝐻𝐻𝑤𝑤

𝑝𝑝 (𝑅𝑅𝑑𝑑)) and the inequality in (8.3) holds true, for 𝐻𝐻𝑤𝑤
𝑝𝑝 ↪ 𝐻𝐻𝑤𝑤

𝑝𝑝∼.  
 
(iii) As above, we have  

|𝐺𝐺𝑚𝑚𝑓𝑓| ≤ sup
𝜆𝜆∈Λ

<𝜓𝜓𝜆𝜆, 𝑇𝑇𝜓𝜓−1𝑉𝑉𝑔𝑔𝑓𝑓(𝜆𝜆) > �|
𝜆𝜆∈Λ

𝑚𝑚(𝜆𝜆). |𝜋𝜋(𝜆𝜆)ℎ| 

≤ 𝐶𝐶 ∥ 𝑔𝑔|𝐻𝐻𝑤𝑤
𝑝𝑝 ∥∥ 𝑓𝑓|𝐻𝐻𝑤𝑤

𝑝𝑝∼ ∥ ∥ 𝑚𝑚|𝑙𝑙1(Λ) ∥∥ ℎ|𝐻𝐻𝑤𝑤
𝑝𝑝∼ ∥. 

 
⇒ 𝐺𝐺𝑚𝑚 ∈ £(𝐻𝐻𝑤𝑤

𝑝𝑝∼(𝑅𝑅𝑑𝑑)) and the inequality in (8.4) follows.  
 
This completes the proof of the theorem. 
 
9. COMPACTNESS OF GABOR MULTIPLIERS 
 
It is well known that any operator in 𝐿𝐿(𝑋𝑋) is compact provided it maps norm bounded subsets of 𝑋𝑋 to compact subsets. 
In this section we prove the following theorem on the compactness of Gabor multipliers:  
 
Theorem 9.1: If 𝑔𝑔, ℎ ∈ 𝐻𝐻𝑤𝑤

𝑝𝑝 (𝑅𝑅𝑑𝑑), then 𝐺𝐺𝑚𝑚  is a compact operator on 𝐿𝐿2(𝑅𝑅𝑑𝑑) and 𝐻𝐻𝑤𝑤
𝑝𝑝 (𝑅𝑅𝑑𝑑) for 𝑚𝑚(𝛾𝛾) → 0 as 𝛾𝛾 → ∞. 

 
This theorem provides an extension to the corresponding results of Feichtinger [Fei 02, Theorem 4.7 (iv)] for 𝑔𝑔 = ℎ 
and 𝑔𝑔 ∈ 𝑆𝑆0(𝑅𝑅𝑑𝑑). 
 
We shall use the following lemma in the proof of our theorem, which is an extension of an analogous result by D𝑜̈𝑜rfler, 
Feichtinger and Gr𝑜̈𝑜chenig [DFG 03, Theorem 2] on a d-dimensional Euclidean space:  
 
Lemma 9.2: A closed and bounded set 𝑆𝑆 ⊆ 𝐿𝐿2(𝑅𝑅𝑑𝑑) is compact if and only the set {𝑉𝑉𝑔𝑔𝑓𝑓: 𝑓𝑓 ∈ 𝑆𝑆} is tight in 𝐿𝐿2(𝐻𝐻𝑑𝑑).  
 
Proof of the lemma: We suppose that 𝑆𝑆 ⊆ 𝐿𝐿2(𝑅𝑅𝑑𝑑) is compact. This ensures that there exists a finite number of 
functions 𝑓𝑓1, 𝑓𝑓2, . . . . . . , 𝑓𝑓𝑗𝑗 , say, such that  

min
𝑗𝑗=1,2,3...,𝑛𝑛

∥ 𝑓𝑓 − 𝑓𝑓𝑗𝑗 ∥< 𝜖𝜖/2, ∀ 𝑓𝑓 ∈ 𝑆𝑆. 
 
Next, since 𝑉𝑉𝑔𝑔𝑓𝑓𝑗𝑗 ∈ 𝐿𝐿2(𝐻𝐻𝑑𝑑); 𝑗𝑗 = 1,2, . . . , 𝑛𝑛 there exists a compact set 𝑈𝑈 ⊆ 𝐻𝐻𝑑𝑑  such that  

� |
𝑈𝑈𝑐𝑐

𝑉𝑉𝑔𝑔𝑓𝑓𝑗𝑗 |2𝑑𝑑𝑑𝑑 < 𝜖𝜖2/4; ∀ 𝛾𝛾 ∈ 𝐻𝐻𝑑𝑑 , 

 
𝑈𝑈𝑐𝑐  being the complementary set of 𝑈𝑈 in 𝐻𝐻𝑑𝑑 . Hence, for each 𝑓𝑓 ∈ 𝑆𝑆, we have  
 

�� |
𝑈𝑈𝑐𝑐

𝑉𝑉𝑔𝑔𝑓𝑓|2𝑑𝑑𝑑𝑑�
1/2

≤ min
𝑗𝑗=1,2,3...,𝑛𝑛

[ �� |
𝑈𝑈𝑐𝑐

𝑉𝑉𝑔𝑔(𝑓𝑓 − 𝑓𝑓𝑗𝑗 )(𝛾𝛾)|2𝑑𝑑𝑑𝑑�
1/2

�� |
𝑈𝑈𝑐𝑐

𝑉𝑉𝑔𝑔𝑓𝑓𝑗𝑗 (𝛾𝛾)|2𝑑𝑑𝑑𝑑�
1/2

] 

≤ min
𝑗𝑗=1,2,3...,𝑛𝑛

∥ 𝑓𝑓 − 𝑓𝑓𝑗𝑗 ∥2+ 𝜖𝜖/2 

< 𝜖𝜖. 
 
Conversely, we suppose that the set {𝑉𝑉𝑔𝑔𝑓𝑓: 𝑓𝑓 ∈ 𝑆𝑆} is tight in 𝐿𝐿2(𝐻𝐻𝑑𝑑). Hence, for any 𝜖𝜖 > 0, we can find a compact set 
𝑈𝑈 ⊆ 𝐻𝐻𝑑𝑑  such that  
 

 � (
𝑈𝑈𝑐𝑐

|𝑉𝑉𝑔𝑔𝑓𝑓(𝛾𝛾)|2𝑑𝑑𝛾𝛾) < 𝜖𝜖2, ∀ 𝑓𝑓 ∈ 𝑆𝑆. (9.1) 
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Let {𝑓𝑓𝑛𝑛} be a sequence of functions in 𝑆𝑆. Since 𝑆𝑆 is bounded in 𝐿𝐿2(𝑅𝑅𝑑𝑑), it is weakly compact in 𝐿𝐿2(𝑅𝑅𝑑𝑑).  
 
Now, putting 𝑘𝑘 = 𝜋𝜋(𝛾𝛾)𝑔𝑔, we obtain  
 
 𝑉𝑉𝑔𝑔𝑓𝑓𝑗𝑗 (𝛾𝛾) → 𝑉𝑉𝑔𝑔𝑓𝑓(𝛾𝛾), ∀ 𝛾𝛾 ∈ 𝐻𝐻𝑑𝑑 . (9.2) 
 
Now, applying Cauchy - Schwarz inequality, we get  
 

|𝑉𝑉𝑔𝑔(𝑓𝑓 − 𝑓𝑓𝑗𝑗 )(𝛾𝛾)| ≤∥ 𝑓𝑓 − 𝑓𝑓𝑗𝑗 ∥2 
≤ sup

𝑗𝑗
∥ 𝑓𝑓𝑗𝑗 ∥2 +∥ 𝑓𝑓 ∥2 

≤ 𝐶𝐶, 
 
where 𝐶𝐶 is a positive constant not necessarily the same at each occurrence. 
 
Thus the restriction of |𝑉𝑉𝑔𝑔(𝑓𝑓 − 𝑓𝑓𝑗𝑗 )|2 to 𝑈𝑈 is dominated by 𝐶𝐶2𝜒𝜒𝑈𝑈 ∈ 𝐿𝐿2(𝑅𝑅𝑑𝑑), where 𝜒𝜒𝑈𝑈  is the characteristic function of 𝑈𝑈.  
 
Hence, using (9.2) and the dominated convergence theorem, we obtain  
 

 � |
𝑈𝑈𝑐𝑐

𝑉𝑉𝑔𝑔(𝑓𝑓 − 𝑓𝑓𝑗𝑗 )(𝛾𝛾)|2𝑑𝑑𝑑𝑑 → 0  as  𝑗𝑗 → ∞. (9.3) 

 
Finally, combining (9.1) and (9.3), we have  

lim
𝑗𝑗→∞

∥ 𝑓𝑓 − 𝑓𝑓𝑗𝑗 ∥2= lim
𝑗𝑗→∞

∥ 𝑉𝑉𝑔𝑔�𝑓𝑓 − 𝑓𝑓𝑗𝑗 � ∥2 

≤ lim
𝑗𝑗→∞

�� |
𝑈𝑈
𝑉𝑉𝑔𝑔�𝑓𝑓 − 𝑓𝑓𝑗𝑗 �(𝛾𝛾)|2𝑑𝑑𝑑𝑑�

1/2

 

+ lim
𝑗𝑗→∞

�� |
𝑈𝑈𝑐𝑐

𝑉𝑉𝑔𝑔�𝑓𝑓 − 𝑓𝑓𝑗𝑗 �(𝛾𝛾)|2𝑑𝑑𝑑𝑑�
1/2

 

≤ 2𝜖𝜖. 
 
Choosing 𝜖𝜖 → 0, we see that  

lim
𝑗𝑗→∞

∥ 𝑓𝑓 − 𝑓𝑓𝑗𝑗 ∥2= 0. 
 
⟹ Every sequence {𝑓𝑓𝑛𝑛} in 𝑆𝑆 has a convergent subsequence.  
 
⟹ 𝑆𝑆 is compact. 
 
Proof of theorem 9.1: On account of the above lemma 𝐻𝐻𝑤𝑤

𝑝𝑝 (𝑅𝑅𝑑𝑑) is a compact subset of 𝐿𝐿2(𝑅𝑅𝑑𝑑). Hence on account of 
Theorem 8.1 (i), any operator 𝐺𝐺𝑚𝑚 ∈ £2(𝑅𝑅𝑑𝑑) has norm bounded from 𝐿𝐿2(𝑅𝑅𝑑𝑑) onto 𝐻𝐻𝑤𝑤

𝑝𝑝 (𝑅𝑅𝑑𝑑) for all 𝑚𝑚(𝛾𝛾) → 0 as 𝛾𝛾 → ∞.  
 
⟹  𝐺𝐺𝑚𝑚  is compact on 𝐿𝐿2(𝑅𝑅𝑑𝑑). 
 
Also, from Theorem 8.1(ii), we see that any 𝐺𝐺𝑚𝑚 ∈ £(𝐻𝐻𝑤𝑤

𝑝𝑝 (𝑅𝑅𝑑𝑑)) is compact.  
 
This compete the proof of the theorem. 
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