
International Journal of Mathematical Archive-4(8), 2013, 56-66 

 Available online through www.ijma.info ISSN 2229 – 5046 

International Journal of Mathematical Archive- 4(8), August – 2013                                                                                                            56 

 
Wave Propagation at Micropolar Elastic/Fluid Saturated Porous Solid Interface 

 
Neelam Kumari* 

 
Assistant Professor, Department of Mathematics, Ch. Devi Lal University, Sirsa, 125055, India 

 
(Received on: 21-06-13; Revised & Accepted on: 31-07-13) 

 
 

ABSTRACT 
The present paper is concerned with the reflection and transmission of longitudinal wave from a plane surface 
separating a micropolar elastic solid half space and a fluid saturated porous half space. Longitudinal wave impinge 
obliquely at the interface. Amplitude ratios of various reflected and transmitted waves are obtained and computed 
numerically for a specific model and results obtained are depicted graphically with angle of incidence of incident wave 
and material properties of half spaces.  It is found that these amplitude ratios depend on angle of incidence of the 
incident wave. A particular case of reflection at free surface of micro polar elastic solid has been deduced and 
discussed with the help of graphs. A special case when fluid saturated porous half space reduced to empty porous solid 
has also been deduced and discussed from the present investigation.     
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1. INTRODUCTION 
 
Most of natural and man-made materials, including engineering, geological and biological media, possess a 
microstructure. The ordinary classical theory of elasticity fails owing to the microstructure of the material. To 
overcome this problem Suhubi and Eringen (1964), Eringen and Suhubi (1964) developed a theory in which they 
considered the microstructure of the material and they showed that the motion in a granular structure material is 
characterized not by a displacement vector but also by a rotation vector. Gautheir (1982) found aluminum-epoxy 
composite to be a micropolar material and investigated the values of relevant parameters based on a specimen of an 
aluminum-epoxy composite. Many problems of waves and vibrations have been discussed in micropolar elastic solid 
by several researchers. Some of them are Parfitt and Eringen (1969), Tomar and Gogna (1992), Tomar and Kumar 
(1995), Singh and Kumar (2007) etc. 
 
In the case of bodies with definite internal structure i.e. sand, fissured rocks, cemented sandstones, limestone’s and 
other sediments permeated by groundwater or oil (i.e. for porous materials), the existing theories needs to be upgraded. 
Bowen (1980) and de Boer and Ehlers (1990a, 1990b) developed an interesting theory for porous medium having all 
constituents to be incompressible. There are sufficient reasons for considering the fluid saturated porous constituents as 
incompressible. For example, consider the composition of soil in which the solid constituents as well as liquid 
constituents which are generally water or oils are incompressible. Therefore, the assumption of incompressible 
constituents meets the properties appearing the in many branches of engineering.  . 
 
Based on this theory, many researchers like de Boer and Liu (1994, 1995), de Boer and Liu (1996), Liu (1999), Yan 
et.al. (1999), Kumar and Hundal (2003), de Boer and Didwania (2004), Tajuddin and Hussaini (2006), Kumar et.al. 
(2011) etc. studied some problems of wave propagation in fluid saturated porous media.  
 
Using the theory of de Boer and Ehlers (1990) for fluid saturated porous medium and Eringen (1968) for micro polar 
elastic solid, the reflection and transmission phenomenon of longitudinal wave at an interface between micropolar 
elastic solid half space and fluid saturated porous half space is studied. The reflection coefficient of reflected waves at 
the free surface of micropolar elastic solid half space have also been obtained as a particular case. A special case when 
fluid saturated porous half space reduced to empty porous solid has been deduced and discussed with the help of 
graphs.  
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2. BASIC EQUATIONS AND CONSTITUTIVE RELATIONS 
 
For medium 𝐌𝐌𝟏𝟏  (micropolar elastic solid) 
 
The equation of motion in micropolar elastic medium are given by Eringen (1968) as 
 

(c1
2 + c3

2)∇2ϕ = ∂2ϕ
∂t2 ,                                                                                                                                      (1) 

 

(c2
2 + c3

2)∇2U��⃗ + c3
2∇× Φ��⃗ = ∂2U��⃗

∂t2 ,                                                                                                                            (2) 
 

(c4
2∇2 − 2ω0

2)Φ��⃗ + ω0
2∇× U��⃗ = ∂2Φ��⃗

∂t2 ,                                                                                                                       (3) 
 
where 
c1

2 = λ+2μ
ρ

,     c2
2 = μ

ρ
 ,     c3

2 = κ
ρ

,     c4
2 = γ

ρj
,     ω0

2 = κ
ρj

,                                                                                   (4) 

 
Parfitt and Eringen (1969) have shown that eq. (1) corresponds to longitudinal wave propagating with velocityV1, given 
by V1

2 = c1
2 + c3

2, and eqs. (2)- (3) are coupled equations in vector potentials U��⃗  and Φ��⃗  and these correspond to 
coupled transverse and micro-rotation waves. If ω2

ω02 > 2,  there exist two sets of coupled-wave propagating with 
velocities 1/λ1  and 1/λ2; where 
 
 λ1

2 = 1
2
�B − √B2 − 4C�,    λ2

2 = 1
2
�B + √B2 − 4C�,                                                                                                      (5) 

 
where 
 

B =
q(p − 2)

ω2 +
1

(c2
2 + c3

2) +
1

c4
2 ,       C = �

1
c4

2 −
2q
ω2�

1
(c2

2 + c3
2),    

 
p = κ

μ+κ
,    q = κ

γ
.                                                                                                                                                             (6) 

 
We consider a two dimensional problem by taking the following components of displacement and micro rotation as  
 
u�⃗ = (u. 0. w),       Φ��⃗ = (0,Φ2, 0),                                                                                                                                                        (7) 
 
where 
 

u =
∂ϕ
∂x

−
∂ψ
∂z

,      w =
∂ϕ
∂z

+
∂ψ
∂x

,                                                                                                                                                         (8) 
 
and components of stresses as  

tzz = (λ + 2μ + κ)
∂2ϕ
∂z2 + λ

∂2ϕ
∂x2 + (2μ + κ)

∂2ψ
∂x ∂z

,                                                                                                                       (9) 
 
 tzx = (2μ + κ) ∂2ϕ

∂x ∂z
− (μ + κ) ∂

2ψ
∂z2 + μ ∂2ψ

∂x2 − κΦ2,                                                                                                                      (10)    
 
mzy = γ ∂Φ2

∂z
.                                                                                                                                                                                         (11)    

 
For medium 𝐌𝐌𝟐𝟐(fluid saturated incompressible porous half space) 
 
Following de Boer and Ehlers (1990b), the governing equations in a fluid-saturated incompressible porous medium are  
 
div(ηS 𝐱̇𝐱S + ηF 𝐱̇𝐱F) = 0.                                                                                                                                                                      (12) 

 
div𝐓𝐓𝐄𝐄𝐒𝐒 − ηS  grad p + ρS (𝐛𝐛 − 𝐱̈𝐱s) − 𝐏𝐏𝐄𝐄𝐅𝐅 = 0,                                                                                                                                 (13) 

 
div𝐓𝐓𝐄𝐄𝐅𝐅 − ηF  grad p + ρF (𝐛𝐛 − 𝐱̈𝐱F) + 𝐏𝐏𝐄𝐄𝐅𝐅 = 0,                                                                                                                                (14) 
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where  𝐱̇𝐱i and 𝐱̈𝐱i  (i = S, F) denote the velocities and accelerations, respectively of solid (S) and fluid (F) phases of the 
porous aggregate and p is the effective pore pressure of the incompressible pore fluid.  ρS  and ρFare the densities of the 
solid and fluid phases respectively and b is  the body force per unit volume. 𝐓𝐓𝐄𝐄𝐒𝐒 and  𝐓𝐓𝐄𝐄𝐅𝐅    are the  effective stress in the 
solid  and fluid phases  respectively, 𝐏𝐏𝐄𝐄𝐅𝐅 is the effective quantity of momentum supply and  ηS  and ηF  are the volume 
fractions satisfying 
 
 ηS + ηF = 1.                                                                                                                                                                                        (15) 
 
If  𝐮𝐮S  and 𝐮𝐮F  are the displacement vectors for solid and fluid phases, then 
 
 ẋS = 𝐮̇𝐮S ,    𝐱̈𝐱s = 𝐮̈𝐮s ,    𝐱̇𝐱F = 𝐮̇𝐮F,     𝐱̈𝐱F = 𝐮̈𝐮F.                                                                                                                                   (16) 
 
The constitutive equations for linear isotropic, elastic incompressible porous medium are given by de Boer, Ehlers and 
Liu (1993) as 
 
 𝐓𝐓𝐄𝐄𝐒𝐒 = 2μS𝐄𝐄S + λS(ES. 𝐈𝐈)𝐈𝐈,                                                                                                                                                                 (17) 
 
 𝐓𝐓𝐄𝐄𝐅𝐅 = 0,                                                                                                                                                                                                 (18) 
 
 𝐏𝐏𝐄𝐄𝐅𝐅 = −𝐒𝐒v (𝐮̇𝐮F − 𝐮̇𝐮S),                                                                                                                                                                         (19) 
 
where λS   and μS  are the macroscopic Lame’s parameters of the porous solid and  𝐄𝐄S  is the linearized Langrangian 
strain tensor defined as  
 

𝐄𝐄S =
1
2

(grad 𝐮𝐮S + gradT𝐮𝐮S),                                                                                                                                                           (20) 
 
In the case of isotropic permeability, the tensor 𝐒𝐒v  describing the coupled interaction between the solid and fluid is 
given by de Boer and Ehlers (1990b) as 
 

𝐒𝐒v =
(ηF )2γFR

KF 𝐈𝐈,                                                                                                                                                                                   (21) 
 
where  γFR  is the specific weight of the fluid  and KF  is the Darcy’s permeability coefficient of the porous medium. 
 
Making the use of (16) in equations (12)-(1 4), and with the help of (17)-(20), we obtain 
 
div(ηS 𝐮̇𝐮S + ηF 𝐮̇𝐮F) = 0,                                                                                                                                                                      (22) 
 
�λS + μS�grad div 𝐮𝐮S + μSdiv grad 𝐮𝐮S − ηS grad p + ρS (𝐛𝐛 − 𝐮̈𝐮s) + Sv (𝐮̇𝐮F − 𝐮̇𝐮S ) = 0,                                                    (23) 
 
− ηFgrad p + ρF (𝐛𝐛 − 𝐮̈𝐮F) − Sv (𝐮̇𝐮F − 𝐮̇𝐮S) = 0.                                                                                                                           (24) 
 
For the two dimensional problem, we assume the displacement vector 𝐮𝐮i   (i = F, S) as  
 
 𝐮𝐮i = (ui, 0, wi)     where     i = F, S.                                                                                                                                               (25)  
 
Equations (22) - (24) with the help of eq. (25) in  absence of body forces take the form  
 

 ηS �
∂2uS

∂x ∂t
+
∂2wS

∂z ∂t
� + ηF �

∂2uF

∂x ∂t
+
∂2wF

∂z ∂t
� = 0,                                                                                                                              (26) 

 

 ηF ∂p
∂x

+ ρF ∂
2uF

∂t2 + Sv �
∂uF

∂t
−
∂uS

∂t
� = 0,                                                                                                                                       (27) 

 

 ηF ∂p
∂z

+ ρF ∂
2wF

∂t2 + Sv �
∂wF

∂t
−
∂wS

∂t
� = 0,                                                                                                                                    (28) 

 

�λS + μS�
∂θS

∂x
+ μS∇2uS − ηS ∂p

∂x
− ρS ∂

2uS

∂t2 + Sv �
∂uF

∂t
−
∂uS

∂t
� = 0,                                                                                       (29) 
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�λS + μS�
∂θS

∂z
+ μS∇2wS − ηS ∂p

∂z
− ρS ∂

2wS

∂t2 + Sv �
∂wF

∂t
−
∂wS

∂t
� = 0,                                                                                  (30) 

 
where  
 

 θS =
∂(uS)
∂x

+
∂(wS)
∂z

,                                                                                                                                                                        (31) 
 
and 
 

∇2=
∂2

∂x2 +
∂2

∂z2 .                                                                                                                                                                                   (32) 
 
Also, tzz

S   and  tzx
S   the normal and tangential stresses in the solid phase are as under 

 

 tzz
S = λS �

∂uS

∂x
+
∂wS

∂z
� + 2μS ∂wS

∂z
,                                                                                                                                             (33) 

 

 tzx
S = μS �

∂uS

∂z
+
∂wS

∂x
� .                                                                                                                                                                  (34) 

 
The displacement components uj and wj  are related to the dimensional potential ϕj  and ψj  as  
 

 uj =
∂ϕj

∂x
+
∂ψj

∂z
,   wj =

∂ϕj

∂z
−
∂ψj

∂x
,       j = S, F.                                                                                                                            (35) 

 
Using eq. (35) in equations (26)-(30), we obtain the following equations determining  ϕS ,   ϕF,   ψS  ,   ψF and  p  as: 
 

∇2ϕS −
1

C1
2
∂2ϕS

∂t2 −
Sv

�λS + 2μS�(ηF)2

∂ϕS

∂t
= 0,                                                                                                                             (36) 

 

ϕF = −
ηS

ηF ϕ
S ,                                                                                                                                                                                        (37) 

 

μS∇2ψS − ρS ∂
2ψS

∂t2 + Sv �
∂ψF

∂t
−
∂ψS

∂t
� = 0,                                                                                                                                    (38) 

 

ρF ∂
2ψF

∂t2 + Sv �
∂ψF

∂t
−
∂ψS

∂t
� = 0,                                                                                                                                                       (39) 

 

(ηF)2p − ηSρF ∂
2ϕS

∂t2 − Sv
∂ϕS

∂t
= 0,                                                                                                                                                  (40) 

 
where 
 

 C1  = � �ηF�
2
�λS +2μS�

�ηF �
2
ρS +�ηS �

2
ρF

.                                                                                                                                                                      (41)    

 
Assuming the solution of the system of equations (36) - (40) in the form 
 
�ϕS , ϕF,ψS ,ψF, p� = �ϕ1

S , ϕ1
F,ψ1

S ,ψ1
F, p1� exp(iωt) ,                                                                                                               (42)  

 
where ω is the complex circular frequency. 
 
Making the use of (42) in equations (36)-(40), we obtain 
 

�∇2 +
ω2

C1
2 −

iωSv

�λS + 2μS�(ηF )2
� ϕ1

S = 0,                                                                                                                                        (43) 
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[μS∇2 + ρSω2 − iωSv ]ψ1

S = −iωSvψ1
F,                                                                                                                                        (44) 

 
[−ω2ρF + iωSv ]ψ1

F − iωSvψ1
S = 0,                                                                                                                                              (45) 

 
(ηF)2p1 + ηSρFω2ϕ1

S − iωSvϕ1
S = 0,                                                                                                                                           (46) 

 

 ϕ1
F = −

ηS

ηF ϕ1
S .                                                                                                                                                                                   (47) 

 
Equation (43) corresponds to longitudinal wave propagating with velocity V�1, given by 
 

 V�1
2 =

1
G1

,                                                                                                                                                                                             (48) 

where 

G1 = � 1
C1

2 −
iSv

ω�λS +2μS��ηF�
2� .                                                                                                                                                              (49) 

 
From equation (44) and (45), we obtain 
 

�∇2 +
ω2

V2
2�ψ1

S = 0,                                                                                                                                                                            (50) 

 
Equation (50) corresponds to transverse wave propagating with velocityV�2, given by V�2

2 = 1/G2 
 
where 
 

G2 = �ρ
S

μS −
iSv
μSω

− Sv
2

μS �−ρSω2+iωSv �
� ,                                                                                                                                                    (51) 

 
3. FORMULATION OF THE PROBLEM  
 
Consider a two dimensional problem by taking the z-axis pointing into the lower half-space and the plane interface z=0 
separating the uniform micropolar elastic solid half spaceM1 [z>0] and fluid saturated porous half space M2 [z<0]. A 
longitudinal wave propagating through a medium M1  and incident at the plane z=0 and making an angle θ0  with 
normal to the surface. Corresponding to incident longitudinal wave, we get three reflected waves in the medium M1   
and two transmitted waves in medium M2. See fig.1 
 

 
 

Fig.1: Geometry of the problem. 
 

In medium 𝐌𝐌𝟏𝟏  
 
ϕ = B0 exp{ik0 (x sinθ0 – z cosθ0 ) + iω1 t} + B1 exp{ik0 (x sinθ1 + z cosθ1 ) + iω1 t},                                                  (52) 
 
ψ = B2 exp{iδ1(x sinθ2 + z cosθ2 ) + iω2 t} + B3 exp{iδ2(x sinθ3 + z cosθ3 ) + iω3 t},                                                 (53) 



Neelam Kumari*/ Wave propagation at micropolar elastic/fluid saturated porous solid interface / IJMA- 4(8), August-2013. 

© 2013, IJMA. All Rights Reserved                                                                                                                                                                       61   

 
Φ2 = EB2 exp{iδ1(x sinθ2 + z cosθ2 ) + iω2 t} + FB3 exp{iδ2(x sinθ3 + z cosθ3 ) + iω3 t},                                         (54) 
 
where 
 

E =
δ1

2�δ1
2− ω2

�c22+c32�+pq�

deno .
,                                                                                                                                                                  (55)      

 

F =
δ2

2 �δ2
2 − ω2

(c2
2 + c3

2) + pq�

deno.
,                                                                                                                                                (56) 

 
and  

deno. = p�2q −
ω2

c4
2� ,    δ1

2 = λ1
2ω2,   δ2

2 = λ2
2ω2 .                                                                                                              (57) 

 
In medium 𝐌𝐌𝟐𝟐 
 
�ϕS , ϕF, p� = {1, m1, m2}�A1 exp�ik�1�x sinθ1– z cosθ1� + iω1t��,                                                                                           (58) 
 
{ψS  ,ψF} = {1, m3}�A2 exp�ik�2�x sinθ2– z cosθ2� + iω2t��,                                                                                                    (59) 
 
where 

m1 = −
ηS

ηF ,    m2 = − �
ηSω1

2ρF − iω1Sv

(ηF )2 � ,    m3 =
iω2Sv

iω2Sv − ω2
2ρF

,                                                                                      (60) 

 
and B0 , B1 , B2 , B3  are amplitudes of incident P-wave, reflected P-wave, reflected coupled transverse and reflected 
micro-rotation waves respectively. Also  A1  and  A2 are amplitudes of transverse P-wave and SV-wave, respectively 
and to be determined from boundary conditions.  
 
4. BOUNDARY CONDITIONS 
 
The appropriate boundary conditions are the continuity of displacement, micro rotation and stresses at the interface 
separating media M1 and M2. Mathematically, these boundary conditions  at  z=0 can be expressed as: 
 
tzz = tzz

S − p, tzx = tzx
S  ,    mzy = 0,   u = uS,   w = wS,                                                                                                (61) 

 
In order to satisfy the boundary conditions, the extension of the Snell’s law will be 
 

 
sinθ0

V0
=

sinθ1

V1
=

sinθ2

λ1
−1 =

sinθ3

λ2
−1 =

sinθ1

V�1
=

sinθ2

V�2
,                                                                                                                     (62) 

 
For longitudinal wave, 
 
V0 = V1,    θ0 = θ1,                                                                                                                                                                              (63) 
 
Also 
 
k0V1 = δ1λ1

−1 = δ2λ2
−1 = k�1V�1 = k�2V�2 = ω,    at  z = 0                                                                                                           (64) 

 
Making the use of potentials given by equations (52)-(54) and (58)-(59) in the boundary conditions given by (61) and 
using (62)-(64), we get a system of five non homogeneous which can be written as  
 

 � aij

5

j=1

Zj = Yi,        (i = 1,2,3,4,5 )                                                                                                                                                  (65) 

 
Where 
 

Z1 =
B1

B0
,     Z2 =

B2

B0
,    Z3 =

B3

B0
,    Z4 =

A1

B0
,    Z5 =

A2

B0
,                                                                                                           (66) 
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where  Z1 to Z5  are the amplitude ratios of reflected longitudinal wave, reflected coupled-wave at an angle θ2, reflected 
coupled-wave at an angle θ3,refracted P-wave and refracted SV-wave, respectively. Also aij   and Yi   in non-dimensional 
form are as 
 

a11 = �λ
μ

+ D2cos2θ1� ,    a12 = D2  δ1
2

k0
2 sinθ2cosθ2,    a13 = D2sinθ3cosθ3  δ2

2

k0
2 ,       

a14 =
−k�1

2�λS + 2μScos2θ1� − m2

μ k0
2 ,    a15 =

−2μSk�2
2sinθ2cosθ2

μk0
2 ,     Y1 = −a11, 

a21 = D2sinθ1cosθ1,    a22 =
−δ1

2

k0
2 �(D1cos2θ2 − sin2θ2) −

κ
μ

E
δ1

2�, 

a23 =
−δ2

2

k0
2 �(D1cos2θ3 − sin2θ3) −

κ
μ

F
δ2

2� ,    a24 =
μSk�1

2sin2θ1

μk0
2 , 

a25 =
μSk�2

2�sin2θ2 − cos2θ2�
μk0

2 ,    Y2 = a21, 

a31 = sinθ1,    a32 = −
δ1

k0
cosθ2,    a33 = −

δ2

k0
cosθ3,    a34 = −

k�1

k0
sinθ1, 

a35 =
k�2

k0
cosθ2,    Y3 = −a31, 

a41 = cosθ1,    a42 =
δ1

k0
sinθ2,    a43 =

δ2

k0
sinθ3,     a44 =

k�1

k0
cosθ1, 

a45 =
k�2

k0
sinθ2,    Y4 = a41, 

a51 = 0,    a52 = cosθ2,    a53 =
Fδ2

Eδ1
cosθ3,    a54 = 0,     a55 = 0,    𝑌𝑌5 = 0.                                                                         (68) 

 
5. NUMERICAL RESULTS AND DISCUSSION 
 
The theoretical results obtained above indicate that the amplitude ratios Zi   (i = 1,2,3,4,5 ) depend on the angle of 
incidence of incident wave and elastic properties of half spaces. In order to study in more detail the behaviour of 
various amplitude ratios, we have computed them numerically for a particular model for which the values of  relevant 
elastic parameters are as follow 
 
In medium M1 , the physical constants for micropolar elastic solid are taken from Gauthier (1982) as   
 
λ = 7.59 × 1010  N/m2, μ = 1.89 × 1010  N/m2, κ = 1.49 × 108 N/m2, 
ρ = 2.19 × 103kg/m3,           γ = 2.68 × 104 N,                j = 1.96 × 10−6m2 ,   ω

2

ω02 = 2                                              (69)          
 
In mediumM2, the physical constants for fluid saturated incompressible porous medium are taken from de Boer, Ehlers 
and Liu (1993) as 
 
ηS = 0.67,      ηF = 0.33,     ρS = 1.34 Mg/m3,    ρF = 0.33 Mg/m3,     
λS = 5.5833 MN/m2,         KF = 0.01 m

s
,    γFR = 10.00KN/m3,    μS = 8.3750N/m2,                                                 (70) 

 
A computer programme in MATLAB has been developed to calculate the modulus of amplitude ratios of various 
reflected and transmitted waves for the particular model and to depict graphically. In figures (2) - (6) solid lines show 
the variations of amplitude ratios when medium-I is micropolar elastic solid and medium-II is incompressible fluid 
saturated porous medium (FS) whereas dashed lines show the variations of amplitude ratios when medium-II becomes 
incompressible empty porous solid (EPS). Figures (2) - (6) indicates there is almost negligible effect of pores fluid.  
 
Figures (7) - (9) shows the variation of the modulus of the amplitude ratios of various reflected waves at free surface of 
micropolar elastic solid (MES).In these figures solid lines show the variations of amplitude ratios when medium  is 
micropolar elastic solid. In all the figures (2)-(9) the amplitude ratios first increase to their maximum values and after 
getting maximum values there is monotonic fall.   
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Fig.2: Variation of the amplitude ratio |Z1| with angle of incidence of the incident longitudinal wave 
 

 
 

Fig.3: Variation of the amplitude ratio |Z2| with angle of incidence of the incident longitudinal wave 
 

 
 

Fig.4: Variation of the amplitude ratio |Z3| with angle of incidence of the incident longitudinal wave 
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Fig.5: Variation of the amplitude ratio |Z4| with angle of incidence of the incident longitudinal wave 
 

 
 

Fig.6: Variation of the amplitude ratio |Z5| with angle of incidence of the incident longitudinal wave 
 

 
 

Fig.7: Variation of the amplitude ratio |Z1| with angle of incidence of the incident longitudinal wave (free surface) 
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Fig.8: Variation of the amplitude ratio |Z1| with angle of incidence of the incident longitudinal wave (free surface) 
 

  
 

Fig.9: Variation of the amplitude ratio |Z3| with angle of incidence of the incident longitudinal wave (free surface) 
 
7. CONCLUSION 
 
In conclusion, a mathematical study of reflection and refraction coefficients at an interface separating micropolar 
elastic solid half space and fluid saturated incompressible porous half space is made when longitudinal wave is 
incident. It is observed that the amplitudes ratios of various reflected and refracted waves depend on the angle of   
incidence of the incident wave and material properties of half spaces. The effect of fluid filled in the pores of 
incompressible fluid saturated porous medium is not significant on the amplitudes ratios. The model presented in this 
paper is one of the more realistic forms of the earth models. It may be of some use in engineering, seismology and 
geophysics etc.  
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