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ABSTRACT 
Let R be an alternative left s-unital ring. In this paper we show that if  𝑛𝑛 > 1,𝑚𝑚, 𝑟𝑟 are fixed non-negative integers and 
an alternative ring 𝑅𝑅 with unity 1 satisfies the polynomial identity (i) 𝑥𝑥[𝑥𝑥𝑛𝑛 ,𝑦𝑦] = 𝑦𝑦𝑟𝑟[𝑥𝑥,𝑦𝑦𝑚𝑚 ]𝑦𝑦 for all 𝑥𝑥,𝑦𝑦 in 𝑅𝑅, then 𝐶𝐶(𝑅𝑅) 
is nil and if 𝑅𝑅 is 𝑛𝑛-torsion free, then 𝑁𝑁(𝑅𝑅) ⊆ 𝑍𝑍(𝑅𝑅).  Also we show that an alternative left s-unital ring 𝑅𝑅 satisfying the 
polynomial identity (i) is commutative. 
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INTRODUCTION 
 
Abujabal and M.S. Khan [2] studied the commutativity of a left s-unital ring 𝑅𝑅 satisfying the polynomial identity 
𝑥𝑥𝑡𝑡[𝑥𝑥𝑛𝑛 ,𝑦𝑦]  =  𝑦𝑦𝑟𝑟[𝑥𝑥,𝑦𝑦𝑚𝑚 ]𝑦𝑦𝑠𝑠 , for all x, y in 𝑅𝑅. In this section, we prove that if n>1, m, r are fixed nonnegative integers and 
an alternative ring R with unity 1 satisfies the polynomial identity (i) 𝑥𝑥[𝑥𝑥𝑛𝑛 ,𝑦𝑦] = 𝑦𝑦𝑟𝑟 [𝑥𝑥,𝑦𝑦𝑚𝑚 ]𝑦𝑦 for all x, y in R, then C(R) 
is nil and if R is n-torsion free, then N(R) ⊆ Z(R). Also we show that an alternative left s-unital ring R satisfying the 
polynomial identity (i) is commutative. 
 
PRELIMINARIES 
 
Throughout this section 𝑅𝑅 denotes an alternative left s-unital ring, The center Z(R) of R is defined as Z(R) = {z∈R / [z, 
R] = 0} and a ring R is called a left (respectively right)  s-unital ring if x∈Rx( respectively x∈xR) for each x∈R. Further 
R is called s-unital if it is both left as well as right s-unital. i.e., if 𝑥𝑥 ∈ 𝑥𝑥𝑅𝑅 ∩ 𝑅𝑅𝑥𝑥 , for each x∈R. Here 𝐶𝐶(𝑅𝑅) the 
commutator ideal of 𝑅𝑅, 𝑁𝑁(𝑅𝑅) the set of all nilpotent elements of 𝑅𝑅, 𝑁𝑁 ′(𝑅𝑅) the set of all zero divisors in 𝑅𝑅, 𝐺𝐺𝐺𝐺(𝑝𝑝) the 
Galois field with 𝑝𝑝 elements and (𝐺𝐺𝐺𝐺(𝑝𝑝))2 the ring of all 2x2 matrices over 𝐺𝐺𝐺𝐺(𝑝𝑝). 
 
In order to prove our results, we shall require the following well-known results. 
 
Lemma 1: Let 𝑅𝑅 be a ring such that  �𝑥𝑥, [𝑥𝑥,𝑦𝑦]� = 0 for all 𝑥𝑥 and 𝑦𝑦 in 𝑅𝑅, then [𝑥𝑥𝑘𝑘 ,𝑦𝑦] = 𝑘𝑘𝑥𝑥𝑘𝑘−1[𝑥𝑥,𝑦𝑦] for any positive 
integer 𝑘𝑘. 
 
Proof: We prove this by induction on 𝑘𝑘.  
 
The identity [𝑥𝑥𝑘𝑘 ,𝑦𝑦] = 𝑘𝑘𝑥𝑥𝑘𝑘−1[𝑥𝑥,𝑦𝑦] is true for integer 𝑘𝑘 = 1. 
 
Suppose we assume that[𝑥𝑥𝑘𝑘 ,𝑦𝑦] = 𝑘𝑘𝑥𝑥𝑘𝑘−1[𝑥𝑥,𝑦𝑦]. 
 
Consider [𝑥𝑥𝑘𝑘+1,𝑦𝑦] = [𝑥𝑥𝑘𝑘𝑥𝑥,𝑦𝑦] 
                               = 𝑥𝑥𝑘𝑘 [𝑥𝑥,𝑦𝑦] + [𝑥𝑥𝑘𝑘 ,𝑦𝑦]𝑥𝑥 
                               = 𝑥𝑥𝑘𝑘 [𝑥𝑥,𝑦𝑦] + 𝑘𝑘𝑥𝑥𝑘𝑘−1[𝑥𝑥,𝑦𝑦]𝑥𝑥 
                               = 𝑥𝑥𝑘𝑘 [𝑥𝑥,𝑦𝑦] + 𝑘𝑘𝑥𝑥𝑘𝑘[𝑥𝑥,𝑦𝑦], since �𝑥𝑥, [𝑥𝑥,𝑦𝑦]� = 0. 
                               = (𝑘𝑘 + 1)𝑥𝑥𝑘𝑘 [𝑥𝑥,𝑦𝑦], for all 𝑘𝑘 > 1. 
 
Therefore by induction for all positive integers 𝑘𝑘, [𝑥𝑥𝑘𝑘 ,𝑦𝑦] = 𝑘𝑘𝑥𝑥𝑘𝑘−1[𝑥𝑥,𝑦𝑦]. 
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Lemma 2[2, Lemma 2]: Let R be a ring with unity 1, and let x and y be elements in R. If 𝑘𝑘𝑥𝑥𝑚𝑚 [𝑥𝑥,𝑦𝑦]  =  0 and 𝑘𝑘(𝑥𝑥 +
1)𝑚𝑚[𝑥𝑥,𝑦𝑦] = 0, for some integers 𝑚𝑚≥1 and 𝑘𝑘≥1, then necessarily 𝑘𝑘[𝑥𝑥,𝑦𝑦] = 0. 
 
Lemma 3[6, Lemma 3]: Let R be a ring with unity 1, and let x and y be elements in R. If (1 − 𝑦𝑦𝑘𝑘)𝑥𝑥 =  0, then 
(1 − 𝑦𝑦𝑘𝑘𝑚𝑚 )𝑥𝑥 =  0, for some integers 𝑘𝑘 > 0 and 𝑚𝑚 > 0. 
 
Lemma 4[1]: Let x and y be elements in a ring R. Suppose that there exists relatively prime positive integers m and n 
such that 𝑚𝑚[𝑥𝑥,𝑦𝑦]  =  0 and 𝑛𝑛[𝑥𝑥,𝑦𝑦]  =  0 then [𝑥𝑥,𝑦𝑦]  =  0. 
 
Lemma 5[3, Theorem 4(c)]: Let R be a ring with unity 1. Suppose that for each x in R there exists a pair n and m of 
relatively prime positive integers for which 𝑥𝑥𝑛𝑛 ∈ 𝑍𝑍(𝑅𝑅) and 𝑥𝑥𝑚𝑚 ∈ 𝑍𝑍(𝑅𝑅), then R is commutative. 
 
Lemma 6[4, Theorem 18]: Let R be a ring and let n>1 be an integer. Suppose that (𝑥𝑥𝑛𝑛 − 𝑥𝑥) ∈ 𝑍𝑍(𝑅𝑅), for all x in R, 
then R is commutative. 
 
Lemma 7[5] If for every x and y in a ring R we can find a polynomial px,y(t) with integral coefficients which depends 
on x and y such that  [x2 px,y(x) – x, y] = 0, then R is commutative. 

MAIN RESULTS 

Lemma 8: Let n>0, m and r be fixed non negative integers such that (r, n, m) ≠ (0, 1, 1) and let R be an alternative left 
s-unital ring satisfying the polynomial identity 
 
𝑥𝑥[𝑥𝑥𝑛𝑛 ,𝑦𝑦] = 𝑦𝑦𝑟𝑟 [𝑥𝑥,𝑦𝑦𝑚𝑚 ]𝑦𝑦, for all x, y in R,                                                                                            (1)        
 
then R is an s-unital ring. 
 
Proof: Let x and y be arbitrary elements in R. Suppose that R is an alternative s-unital ring. Then there exists an 
element e ∈ R such that ex = x and ey = y. By replacing x by e in (1), we get 
 
 𝑒𝑒[𝑒𝑒𝑛𝑛 ,𝑦𝑦] = 𝑦𝑦𝑟𝑟 [𝑒𝑒,𝑦𝑦𝑚𝑚 ]𝑦𝑦 
𝑒𝑒(𝑒𝑒𝑛𝑛𝑦𝑦 − 𝑦𝑦𝑒𝑒𝑛𝑛) = 𝑦𝑦𝑟𝑟(𝑒𝑒𝑦𝑦𝑚𝑚 − 𝑦𝑦𝑚𝑚𝑒𝑒)𝑦𝑦  

𝑒𝑒(𝑦𝑦 − 𝑦𝑦𝑒𝑒𝑛𝑛) = 𝑦𝑦𝑟𝑟(𝑦𝑦𝑚𝑚 − 𝑦𝑦𝑚𝑚𝑒𝑒)𝑦𝑦 

𝑒𝑒𝑦𝑦 − 𝑒𝑒𝑦𝑦𝑒𝑒𝑛𝑛 = (𝑦𝑦𝑟𝑟+𝑚𝑚 − 𝑦𝑦𝑟𝑟+𝑚𝑚𝑒𝑒)𝑦𝑦  
𝑦𝑦 − 𝑦𝑦𝑒𝑒𝑛𝑛 = 𝑦𝑦𝑟𝑟+𝑚𝑚+1 − 𝑦𝑦𝑟𝑟+𝑚𝑚𝑒𝑒𝑦𝑦 

𝑦𝑦 − 𝑦𝑦𝑒𝑒𝑛𝑛 = 𝑦𝑦𝑟𝑟+𝑚𝑚+1 − 𝑦𝑦𝑟𝑟+𝑚𝑚+1 

𝑦𝑦 − 𝑦𝑦𝑒𝑒𝑛𝑛 = 0. 
 
So, 𝑦𝑦 = 𝑦𝑦𝑒𝑒𝑛𝑛 ∈ 𝑦𝑦𝑅𝑅, for all y in R.  
 
Thus R is an s-unital ring.            
 
Lemma 9: Let n>0, r, m be fixed non-negative integers and let R be an alternative ring satisfying the polynomial 
identity 𝑥𝑥[𝑥𝑥𝑛𝑛 ,𝑦𝑦] = 𝑦𝑦𝑟𝑟[𝑥𝑥,𝑦𝑦𝑚𝑚 ]𝑦𝑦, for all x, y in R, then C(R) is nil. 
 

Proof: Let 
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n>0 except for r = 0, m = 1. 
 

In this later case we can choose 
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21ey . Hence Lemma 7 ensures that  

C(R) ⊆ N(R).                                                                 (2) 
 
Lemma 10: Let n>1, m and R be fixed non-negative integers and let R be an alternative ring with unity 1. Suppose that 
R satisfies the polynomial identity 𝑥𝑥[𝑥𝑥𝑛𝑛 ,𝑦𝑦] = 𝑦𝑦𝑟𝑟[𝑥𝑥,𝑦𝑦𝑚𝑚 ]𝑦𝑦, for all x, y in R. Further, if R is 𝑛𝑛-torsion free then N(R) ⊆ 
Z(R). 
 
Proof: Let a ∈ N(R) then there exists a positive integer 𝑝𝑝 such that   ak ∈ Z(R) for all k≥p and p minimal.               (3) 
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If  p = 1 then a ∈ Z(R). 
 
Now suppose that p>1 and b = ap-1. 
 
By replacing x by b in the polynomial identity, we get    
          
𝑏𝑏[𝑏𝑏𝑛𝑛 ,𝑦𝑦] =  𝑦𝑦𝑟𝑟 [𝑏𝑏,𝑦𝑦𝑚𝑚 ]𝑦𝑦 , for all x, y in R. 
 
By using (3) and the fact that (p-1)n ≥ p for n > 1,  
 

we get 𝑎𝑎𝑝𝑝−1�𝑎𝑎(𝑝𝑝−1)𝑛𝑛 ,𝑦𝑦� =  𝑦𝑦𝑟𝑟 [𝑎𝑎𝑝𝑝−1,𝑦𝑦𝑚𝑚 ]𝑦𝑦 

                                             =  𝑦𝑦𝑟𝑟[𝑏𝑏,𝑦𝑦𝑚𝑚 ]𝑦𝑦 = 0, for all y in R.                                               (4) 
 
By replacing x by 1+b in the polynomial identity, we get  
 
(1 + 𝑏𝑏)[(1 + 𝑏𝑏)𝑛𝑛 ,𝑦𝑦]  =  𝑦𝑦𝑟𝑟 [1 + 𝑏𝑏,𝑦𝑦𝑚𝑚 ]𝑦𝑦, for all y in R. 
 
As (1+b) is invertible and using (4), we get 
 
[(1 + 𝑏𝑏)𝑛𝑛 ,𝑦𝑦]  =  0, for all y in R.                                                  (5) 
 
By using (3) and (5), we get[(1 + 𝑏𝑏)𝑛𝑛 ,𝑦𝑦]  =  0. 
 
That is, [1 + 𝑛𝑛𝑏𝑏),𝑦𝑦]  =  0. 
 
So, 𝑛𝑛[𝑏𝑏,𝑦𝑦]  =  0, for all y in R. 
 
Since R is 𝑛𝑛-torsion free, we get [𝑏𝑏,𝑦𝑦]  =  0, for all y in R. 
 
So, b ∈ Z(R). 
 
That is, 𝑎𝑎 𝑝𝑝−1∈ 𝑍𝑍(𝑅𝑅). 
 
This contradicts the minimality of 𝑝𝑝. 
 
So we conclude that  𝑝𝑝 = 1 and hence a ∈ Z(R). 
 
Therefore, N(R) ⊆ Z(R).                                                   (6) 
 
Combining (2) and (6), we get 
 
C(R) ⊆ N(R) ⊆ Z(R).                                                                                                                                           (7) 
 
Theorem 1: Let n > 1, m, r be fixed non-negative integers and let R be an alternative left s-unital ring satisfying the 
polynomial identity  𝑥𝑥[𝑥𝑥𝑛𝑛 ,𝑦𝑦] = 𝑦𝑦𝑟𝑟 [𝑥𝑥,𝑦𝑦𝑚𝑚 ]𝑦𝑦, for all x, y in R. Further, if R is n-torsion free, then R is commutative. 
 
Proof: According to Lemma 8, R is an s-unital ring. 
 
Therefore, in view of proposition 1 of [7], it is sufficient to prove the theorem for R with unity. 
 
If m = 0, then (1) gives 𝑥𝑥[𝑥𝑥𝑛𝑛 ,𝑦𝑦]  =  0, for all x, y in R. 
 
Hence 𝑛𝑛𝑥𝑥𝑛𝑛[𝑥𝑥,𝑦𝑦]  =  0, for all x, y in R. 
 
By replacing x by x+1 and applying Lemma 2, we obtain n[x,y] = 0, for all x, y in R. 
 
Since 𝑅𝑅 is n-torsion free, we get [x, y] = 0, for all x, y in R.  
 
Therefore, R is commutative. 
 
Now, we consider m ≥ 1. Let q = (2n+1 – 2). Then from (1) we have 
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𝑞𝑞𝑥𝑥[𝑥𝑥𝑛𝑛 ,𝑦𝑦]  =  (2𝑛𝑛+1 –  2) 𝑥𝑥[𝑥𝑥𝑛𝑛 ,𝑦𝑦] 
                 =  2𝑛𝑛+1𝑥𝑥[𝑥𝑥𝑛𝑛 ,𝑦𝑦] –  2𝑥𝑥[𝑥𝑥𝑛𝑛 ,𝑦𝑦] 
                 =  (2𝑥𝑥) [(2𝑥𝑥)𝑛𝑛 ,𝑦𝑦] –  2𝑦𝑦𝑟𝑟 [𝑥𝑥,𝑦𝑦𝑚𝑚 ]𝑦𝑦 
                 =  (2𝑥𝑥) [(2𝑥𝑥)𝑛𝑛 ,𝑦𝑦] – 𝑦𝑦𝑟𝑟 [(2𝑥𝑥),𝑦𝑦𝑚𝑚 ]𝑦𝑦 
                 = 0. 
 
Therefore, 𝑞𝑞𝑥𝑥[𝑥𝑥𝑛𝑛 ,𝑦𝑦]  =  0. 
 
So, 𝑞𝑞𝑛𝑛𝑥𝑥𝑛𝑛[𝑥𝑥,𝑦𝑦]  =  0, for all x, y in R. 
 
By replacing qn by k and using Lemma 2, we obtain 𝑘𝑘[𝑥𝑥,𝑦𝑦]  =  0, for all x, y in R. 
 
Thus [𝑥𝑥𝑘𝑘 ,𝑦𝑦]  =  𝑘𝑘𝑥𝑥𝑘𝑘−1 [𝑥𝑥,𝑦𝑦]  =  0, for all x, y in R. 
 
So xk ∈ Z(R), for all x, y in R.                                    (8) 
 
Here we distinguish between the two cases. 
 
Case (a): Let m > 1. Then from (1) and (7) we have, 
 
𝑥𝑥[𝑥𝑥𝑛𝑛 ,𝑦𝑦]  =  𝑚𝑚[𝑥𝑥,𝑦𝑦]𝑦𝑦𝑟𝑟+𝑚𝑚  , for all x, y in R. 
 
By replacing y by 𝑦𝑦𝑚𝑚 , we get 𝑥𝑥[𝑥𝑥𝑛𝑛 ,𝑦𝑦𝑚𝑚 ]  =  𝑚𝑚[𝑥𝑥,𝑦𝑦𝑚𝑚 ]𝑦𝑦𝑚𝑚 (𝑟𝑟+𝑚𝑚 ). 
 
So, 𝑚𝑚𝑥𝑥[𝑥𝑥𝑛𝑛 ,𝑦𝑦]𝑦𝑦𝑚𝑚−1  =  𝑚𝑚[𝑥𝑥,𝑦𝑦𝑚𝑚 ]𝑦𝑦𝑚𝑚 (𝑟𝑟+𝑚𝑚 ), for all x, y in R. 
 
By using (1), we get    𝑚𝑚𝑦𝑦𝑟𝑟 [𝑥𝑥,𝑦𝑦𝑚𝑚 ]𝑦𝑦𝑚𝑚  =  𝑚𝑚[𝑥𝑥,𝑦𝑦𝑚𝑚 ]𝑦𝑦𝑚𝑚 (𝑟𝑟+𝑚𝑚 ). 

 
𝑚𝑚[𝑥𝑥,𝑦𝑦𝑚𝑚 ]𝑦𝑦𝑚𝑚+𝑟𝑟  –  𝑚𝑚[𝑥𝑥,𝑦𝑦𝑚𝑚 ]𝑦𝑦𝑚𝑚 (𝑟𝑟+𝑚𝑚 )  =  0. 
 
𝑚𝑚[𝑥𝑥,𝑦𝑦𝑚𝑚 ]𝑦𝑦𝑟𝑟+𝑚𝑚  (1– 𝑦𝑦 (𝑚𝑚−1)(𝑟𝑟+𝑚𝑚 ))  =  0, for all x, y in R. 
 
By using Lemma 3, we get 
 
𝑚𝑚[𝑥𝑥,𝑦𝑦𝑚𝑚 ]𝑦𝑦𝑟𝑟+𝑚𝑚  (1– 𝑦𝑦 𝑘𝑘(𝑚𝑚−1)(𝑟𝑟+𝑚𝑚 ))  =  0, for all x, y in R.                                               (9) 
 
Now by using (6) the polynomial identity (1) becomes  
 
𝑛𝑛𝑥𝑥𝑛𝑛[𝑥𝑥,𝑦𝑦]  =  𝑚𝑚𝑦𝑦𝑟𝑟+𝑚𝑚 [𝑥𝑥,𝑦𝑦]  =  𝑚𝑚[𝑥𝑥,𝑦𝑦]𝑦𝑦𝑟𝑟+𝑚𝑚 .                                              (10)     
       
It is well known that R is isomorphic to a subdirect sum of subdirectly irreducible rings Ri, i ∈ I, the Index set. Each Ri 
satisfies (1), (7), (8), (9) and (10) but not necessarily 𝑛𝑛-torsion free. 
 
We consider the ring Ri, i ∈ I. Let S be the intersection of all nonzero ideals of Ri, then S ≠ (0) and Sd = 0, for any 
central zero-divisor d. 
 
Let a ∈ N′(Ri), the set of all zero-divisors of  𝑅𝑅 then by using (9), we have 
 
𝑚𝑚[𝑥𝑥, 𝑎𝑎𝑚𝑚 ]𝑎𝑎𝑟𝑟+𝑚𝑚  (1– 𝑎𝑎 𝑘𝑘(𝑚𝑚−1)(𝑟𝑟+𝑚𝑚))  =  0, for all x  in Ri. 
 
Suppose 𝑚𝑚[𝑥𝑥, 𝑎𝑎𝑚𝑚 ]𝑎𝑎𝑟𝑟+𝑚𝑚 ≠ 0, for x in Ri.  
 
So, 𝑎𝑎 𝑘𝑘(𝑚𝑚−1)(𝑟𝑟+𝑚𝑚 ) and 1– 𝑎𝑎 𝑘𝑘(𝑚𝑚−1)(𝑟𝑟+𝑚𝑚) are central zerodvisors. 
 
That is, (0)  =  𝑆𝑆(1– 𝑎𝑎𝑘𝑘(𝑚𝑚−1)(𝑟𝑟+𝑚𝑚))  =  𝑆𝑆 ≠ (0), which is a contradiction. 
 
Therefore 𝑚𝑚[𝑥𝑥, 𝑎𝑎𝑚𝑚 ]𝑎𝑎𝑟𝑟+𝑚𝑚 = 0, for all x in Ri.                                               (11) 
 
From (10) and (11), we have  𝑛𝑛𝑥𝑥𝑛𝑛[𝑥𝑥, 𝑎𝑎𝑚𝑚 ]  =  𝑚𝑚[𝑥𝑥, 𝑎𝑎𝑚𝑚 ]𝑎𝑎𝑚𝑚 (𝑟𝑟+𝑚𝑚 )  =  0. 
 
Therefore by Lemma 2, we get 𝑛𝑛[𝑥𝑥, 𝑎𝑎𝑚𝑚 ]  =  0,  for all x in Ri. 
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Hence 𝑛𝑛𝑚𝑚[𝑥𝑥, 𝑎𝑎]𝑎𝑎𝑚𝑚−1  =  0, for all for x in Ri   
 
Now by Lemma 1, we have 𝑛𝑛2𝑥𝑥𝑛𝑛 [𝑥𝑥, 𝑎𝑎]  =  𝑛𝑛(𝑛𝑛𝑥𝑥𝑛𝑛[𝑥𝑥, 𝑎𝑎]) 
 
                                                                 =  𝑛𝑛𝑚𝑚[𝑥𝑥, 𝑎𝑎]𝑎𝑎𝑟𝑟+𝑚𝑚 ,for all x in Ri. 
 
By replacing x by x+1 and applying Lemma 2, we get 𝑛𝑛2[𝑥𝑥, 𝑎𝑎]  =  0, for all x in Ri. But �𝑥𝑥𝑛𝑛2 , 𝑎𝑎� = 𝑛𝑛2𝑥𝑥𝑛𝑛2−1[𝑥𝑥, 𝑎𝑎].  
 
Therefore �𝑥𝑥𝑛𝑛2 , 𝑎𝑎� = 0 , for all x in Ri. and a in N′(Ri).                                             (12) 
 
Let c ∈ Z(Ri). Then by (1), we have  
 
(𝑐𝑐𝑛𝑛+1 –  𝑐𝑐)𝑥𝑥[𝑥𝑥𝑛𝑛 ,𝑦𝑦] =  𝑐𝑐𝑛𝑛+1 𝑥𝑥[𝑥𝑥𝑛𝑛 ,𝑦𝑦] –  𝑐𝑐𝑥𝑥[𝑥𝑥𝑛𝑛 ,𝑦𝑦]. 
                                = (𝑐𝑐𝑥𝑥) [(𝑐𝑐𝑥𝑥)𝑛𝑛 ,𝑦𝑦] –  𝑐𝑐𝑦𝑦𝑟𝑟[𝑥𝑥,𝑦𝑦𝑛𝑛 ]𝑦𝑦. 
                                = (𝑐𝑐𝑥𝑥)[(𝑐𝑐𝑥𝑥)𝑛𝑛 ,𝑦𝑦] – 𝑦𝑦𝑟𝑟 [(𝑐𝑐𝑥𝑥),𝑦𝑦𝑚𝑚 ]𝑦𝑦. 
                                = 0, for all x, y in Ri. 
 
By applying Lemma 1, we obtain 𝑛𝑛(𝑐𝑐𝑛𝑛+1 –  𝑐𝑐)𝑥𝑥𝑛𝑛[𝑥𝑥𝑛𝑛 ,𝑦𝑦]  =  0, for all  x, y in Ri. 
 
By using Lemma 2, we obtain 𝑛𝑛(𝑐𝑐𝑛𝑛+1 –  𝑐𝑐)[𝑥𝑥,𝑦𝑦]  =  0 which implies 
 
(𝑐𝑐𝑛𝑛+1 –  𝑐𝑐)[𝑥𝑥𝑛𝑛 ,𝑦𝑦]  =  0, for all x, y in Ri and c ∈ Z (Ri).                                               (13) 
 
In particular, by (8), we have 
 
(𝑦𝑦𝑘𝑘(𝑛𝑛+1) – 𝑦𝑦𝑘𝑘)[𝑥𝑥𝑛𝑛 ,𝑦𝑦]  =  0, for all x, y in Ri                                                            (14) 
 
Consider y ∈ Ri. If [𝑥𝑥𝑛𝑛 ,𝑦𝑦]  =  0 then clearly �𝑥𝑥𝑛𝑛2 ,𝑦𝑦𝑗𝑗 − 𝑦𝑦� = 0, for all positive integers j and x in Ri.  
 
If �𝑥𝑥𝑛𝑛2 ,𝑦𝑦� ≠ 0 then [𝑥𝑥𝑛𝑛 ,𝑦𝑦] ≠ 0. For  [𝑥𝑥𝑛𝑛 ,𝑦𝑦]  =  0 implies that �𝑥𝑥𝑛𝑛2 ,𝑦𝑦� = 0, which is a contradiction. 
 
Since [𝑥𝑥𝑛𝑛 ,𝑦𝑦] ≠ 0, then by (14), (𝑦𝑦𝑘𝑘(𝑛𝑛+1) – 𝑦𝑦𝑘𝑘) is a zerodivisor.  
 
Therefore (𝑦𝑦𝑘𝑘𝑛𝑛+1 –  𝑦𝑦) is also a zerodivisor. 
 
Hence by (12), �𝑥𝑥𝑛𝑛2 ,𝑦𝑦𝑘𝑘𝑛𝑛+1 –  𝑦𝑦� = 0, for all x, y in Ri.                                             (15) 
 
As each Ri satisfies (15), the original ring R also satisfies (15). But R is 𝑛𝑛-torsion free. Therefore combining (15) with 
Lemma 1, we finally obtain�𝑥𝑥,𝑦𝑦𝑘𝑘𝑛𝑛+1 –  𝑦𝑦� = 0, for all x, y in R. 
 
Thus R is commutative by Lemma 6. 
 
Case (b): Let m = 1, Then we get 𝑥𝑥[𝑥𝑥𝑛𝑛 ,𝑦𝑦]  =  𝑦𝑦𝑟𝑟 [𝑥𝑥,𝑦𝑦]𝑦𝑦, for all x, y in R. 
 
Thus 𝑛𝑛𝑥𝑥𝑛𝑛[𝑥𝑥,𝑦𝑦]  =  [𝑥𝑥,𝑦𝑦]𝑦𝑦𝑟𝑟+1, for all x, y in R.                                              (16) 
 
By replacing x by xn in (16), we get   
 
𝑛𝑛𝑥𝑥𝑛𝑛2 [𝑥𝑥𝑛𝑛 ,𝑦𝑦] =  [𝑥𝑥𝑛𝑛 ,𝑦𝑦]𝑦𝑦𝑟𝑟+1 
                    =  𝑛𝑛𝑥𝑥𝑛𝑛−1[𝑥𝑥,𝑦𝑦]𝑦𝑦𝑟𝑟+1 

                    =  𝑛𝑛𝑥𝑥𝑛𝑛[𝑥𝑥𝑛𝑛 ,𝑦𝑦], for all x, y in R. 
 
Therefore,  𝑛𝑛�1 – 𝑥𝑥(𝑛𝑛−1)𝑛𝑛�𝑥𝑥𝑛𝑛[𝑥𝑥𝑛𝑛 ,𝑦𝑦] = 0, for all x, y in R. 
 
By using Lemma 3, we get 
 
𝑛𝑛(1 – 𝑥𝑥𝑘𝑘(𝑛𝑛−1)𝑛𝑛)𝑥𝑥𝑛𝑛[𝑥𝑥𝑛𝑛 ,𝑦𝑦]  =  0, for all x, y in R.                                              (17) 
 
As in case (a), if a ∈ N′(Ri) then by (17), we obtain  
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𝑛𝑛(1 – 𝑎𝑎𝑘𝑘(𝑛𝑛−1)𝑛𝑛)𝑎𝑎𝑛𝑛 [𝑎𝑎𝑛𝑛 ,𝑦𝑦]  =  0, for all  y ∈ Ri. 
 
By similar argument as in case (a), we can prove that  
 
𝑛𝑛𝑎𝑎𝑛𝑛 [𝑎𝑎𝑛𝑛 ,𝑦𝑦]  =  0, for all  y ∈ Ri.                                                (18) 
 
Now we have [𝑎𝑎𝑛𝑛 ,𝑦𝑦]𝑦𝑦𝑟𝑟+1  =  𝑛𝑛𝑎𝑎𝑛𝑛2 [𝑎𝑎𝑛𝑛 ,𝑦𝑦]  =  0. 
 
By using Lemma 2, we get [𝑎𝑎𝑛𝑛 ,𝑦𝑦]  =  0, for all y in Ri. 
 
Therefore, [𝑎𝑎,𝑦𝑦]𝑦𝑦𝑟𝑟+1 =  𝑎𝑎[𝑎𝑎𝑛𝑛 ,𝑦𝑦]  =  0. 
 
So [𝑎𝑎,𝑦𝑦]  =  0, for all y in Ri and a ∈ N′(Ri).                                               (19) 
 
If c ∈ Z(Ri), then as in case (a), we obtain (𝑐𝑐𝑛𝑛+1 − 𝑐𝑐) [𝑥𝑥,𝑦𝑦]  =  0, for all  x, y in Ri.  
 
In particular by (8), we have (𝑥𝑥𝑘𝑘(𝑛𝑛+1)  −  𝑥𝑥𝑘𝑘) [𝑥𝑥,𝑦𝑦]  =  0, for all x, y in Ri.  
 
If [𝑥𝑥,𝑦𝑦]  =  0 for all x, y in Ri, then R satisfies [𝑥𝑥,𝑦𝑦]  =  0, for all x, y in R. Therefore, R is commutative. 
 
Now if for each x, y in Ri, [𝑥𝑥,𝑦𝑦] ≠ 0 then (𝑥𝑥𝑘𝑘𝑛𝑛+1  −  𝑥𝑥)∈ 𝑁𝑁′(𝑅𝑅𝑖𝑖) and hence  (𝑥𝑥𝑘𝑘𝑛𝑛+1  −  𝑥𝑥)∈ 𝑁𝑁′(𝑅𝑅) . 
 
But the identity (19) is satisfied by the original ring R.  
 
Therefore, (𝑥𝑥𝑘𝑘𝑛𝑛+1 –  𝑥𝑥,𝑦𝑦)  =  0, for all x, y in R. 
 
Hence R is commutative by Lemma 6.       
 
In Theorem 1, 𝑛𝑛-torsion free property is essential. Consider the following example : 
 

Example: Let 𝐴𝐴 = �
0 1 0
0 0 0
0 0 0

�, 𝐵𝐵 = �
0 0 1
0 0 0
0 0 0

�, 𝐶𝐶 = �
0 0 0
0 0 1
0 0 0

� be the elements of the ring of all 3x3 matrices 

over 𝑍𝑍2, the ring of integers mod 2.  If R is the ring generated by the matrices 𝐴𝐴, 𝐵𝐵, 𝐶𝐶, then using Dooroh construction 
with 𝑍𝑍2, we obtain with unity 1.  Then 𝑅𝑅 is not commutative and satisfies [𝑥𝑥2,𝑦𝑦] = [𝑥𝑥,𝑦𝑦2], for all 𝑥𝑥,𝑦𝑦 in 𝑅𝑅.   
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