International Journal of Mathematical Archive-4(8), 2013, 241-246
 IMA Available online through www.ijma.info ISSN 2229-5046

COMMUTATIVITY OF ALTERNATIVE LEFT s-UNITAL RINGS
 WITH $x\left[x^{n}, y\right]=y^{r}\left[x, y^{m}\right] y$

Y. S. Kalyan Chakravarthy* \& K Suvarna
Department of Mathematics, S. K. University, Ananthapuramu-515003, India

(Received on: 30-06-13; Revised \& Accepted on: 23-07-13)

Abstract

Let R be an alternative left s-unital ring. In this paper we show that if $n>1, m, r$ are fixed non-negative integers and an alternative ring R with unity 1 satisfies the polynomial identity (i) $x\left[x^{n}, y\right]=y^{r}\left[x, y^{m}\right] y$ for all x, y in R, then $C(R)$ is nil and if R is n-torsion free, then $N(R) \subseteq Z(R)$. Also we show that an alternative left s-unital ring R satisfying the polynomial identity (i) is commutative.

AMS Mathematics Subject Classification: 17.
Key words: Alternative ring, s-unital ring, center.

INTRODUCTION

Abujabal and M.S. Khan [2] studied the commutativity of a left s-unital ring R satisfying the polynomial identity $x^{t}\left[x^{n}, y\right]=y^{r}\left[x, y^{m}\right] y^{s}$, for all x, y in R. In this section, we prove that if $n>1, m, r$ are fixed nonnegative integers and an alternative ring R with unity 1 satisfies the polynomial identity (i) $x\left[x^{n}, y\right]=y^{r}\left[x, y^{m}\right] y$ for all x, y in R, then $C(R)$ is nil and if R is n-torsion free, then $N(R) \subseteq Z(R)$. Also we show that an alternative left s-unital ring R satisfying the polynomial identity (i) is commutative.

PRELIMINARIES

Throughout this section R denotes an alternative left s-unital ring, The center $Z(R)$ of R is defined as $Z(R)=\{z \in R /[z$, $R]=0\}$ and a ring R is called a left (respectively right) s-unital ring if $x \in R x$ (respectively $x \in x R$) for each $x \in R$. Further R is called s-unital if it is both left as well as right s-unital. i.e., if $x \in x R \cap R x$, for each $x \in R$. Here $C(R)$ the commutator ideal of $R, N(R)$ the set of all nilpotent elements of $R, N^{\prime}(R)$ the set of all zero divisors in $R, G F(p)$ the Galois field with p elements and $(G F(p))_{2}$ the ring of all 2 x 2 matrices over $G F(p)$.

In order to prove our results, we shall require the following well-known results.
Lemma 1: Let R be a ring such that $[x,[x, y]]=0$ for all x and y in R, then $\left[x^{k}, y\right]=k x^{k-1}[x, y]$ for any positive integer k.

Proof: We prove this by induction on k.
The identity $\left[x^{k}, y\right]=k x^{k-1}[x, y]$ is true for integer $k=1$.
Suppose we assume that $\left[x^{k}, y\right]=k x^{k-1}[x, y]$.

$$
\begin{aligned}
\text { Consider }\left[x^{k+1}, y\right] & =\left[x^{k} x, y\right] \\
& =x^{k}[x, y]+\left[x^{k}, y\right] x \\
& =x^{k}[x, y]+k x^{k-1}[x, y] x \\
& =x^{k}[x, y]+k x^{k}[x, y], \text { since }[x,[x, y]]=0 . \\
& =(k+1) x^{k}[x, y], \text { for all } k>1 .
\end{aligned}
$$

Therefore by induction for all positive integers $k,\left[x^{k}, y\right]=k x^{k-1}[x, y]$.

Lemma 2[2, Lemma 2]: Let R be a ring with unity 1, and let x and y be elements in R. If $k x^{m}[x, y]=0$ and $k(x+$ 1) $m[x, y]=0$, for some integers $m \geq 1$ and $k \geq 1$, then necessarily $k[x, y]=0$.

Lemma 3[6, Lemma 3]: Let R be a ring with unity 1 , and let x and y be elements in R. If $\left(1-y^{k}\right) x=0$, then $\left(1-y^{k m}\right) x=0$, for some integers $k>0$ and $m>0$.

Lemma 4[1]: Let x and y be elements in a ring R. Suppose that there exists relatively prime positive integers m and n such that $m[x, y]=0$ and $n[x, y]=0$ then $[x, y]=0$.

Lemma 5[3, Theorem 4(c)]: Let R be a ring with unity 1 . Suppose that for each x in R there exists a pair n and m of relatively prime positive integers for which $x^{n} \in Z(R)$ and $x^{m} \in Z(R)$, then R is commutative.

Lemma 6[4, Theorem 18]: Let R be a ring and let $n>1$ be an integer. Suppose that ($\left.x^{n}-x\right) \in Z(R)$, for all x in R, then R is commutative.

Lemma 7[5] If for every x and y in a ring R we can find a polynomial $p_{x, y}(t)$ with integral coefficients which depends on x and y such that $\left[x^{2} p_{x, y}(x)-x, y\right]=0$, then R is commutative.

MAIN RESULTS

Lemma 8: Let $n>0, m$ and r be fixed non negative integers such that $(r, n, m) \neq(0,1,1)$ and let R be an alternative left s-unital ring satisfying the polynomial identity
$x\left[x^{n}, y\right]=y^{r}\left[x, y^{m}\right] y$, for all x, y in R,
then R is an s-unital ring.
Proof: Let x and y be arbitrary elements in R. Suppose that R is an alternative s-unital ring. Then there exists an element $e \in R$ such that $e x=x$ and ey $=y$. By replacing x by e in (1), we get
$e\left[e^{n}, y\right]=y^{r}\left[e, y^{m}\right] y$
$e\left(e^{n} y-y e^{n}\right)=y^{r}\left(e y^{m}-y^{m} e\right) y$
$e\left(y-y e^{n}\right)=y^{r}\left(y^{m}-y^{m} e\right) y$
$e y-e y e^{n}=\left(y^{r+m}-y^{r+m} e\right) y$
$y-y e^{n}=y^{r+m+1}-y^{r+m} e y$
$y-y e^{n}=y^{r+m+1}-y^{r+m+1}$
$y-y e^{n}=0$.
So, $y=y e^{n} \in y R$, for all y in R.
Thus R is an s-unital ring.
Lemma 9: Let $n>0, r, m$ be fixed non-negative integers and let R be an alternative ring satisfying the polynomial identity $x\left[x^{n}, y\right]=y^{r}\left[x, y^{m}\right] y$, for all x, y in R, then $C(R)$ is nil.

Proof: Let $x=e_{11}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ and $y=e_{12}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$. Then x and y fail to satisfy the polynomial identity whenever $n>0$ except for $r=0, m=1$.

In this later case we can choose $x=e_{12}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ and $y=e_{21}=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$. Hence Lemma 7 ensures that $C(R) \subseteq N(R)$.

Lemma 10: Let $n>1, m$ and R be fixed non-negative integers and let R be an alternative ring with unity 1 . Suppose that R satisfies the polynomial identity $x\left[x^{n}, y\right]=y^{r}\left[x, y^{m}\right] y$, for all x, y in R. Further, if R is n-torsion free then $N(R) \subseteq$ $Z(R)$.

Proof: Let $a \in N(R)$ then there exists a positive integer p such that $a^{k} \in Z(R)$ for all $k \geq p$ and p minimal.

If $p=1$ then $a \in Z(R)$.
Now suppose that $p>1$ and $b=a^{p-1}$.
By replacing x by b in the polynomial identity, we get
$b\left[b^{n}, y\right]=y^{r}\left[b, y^{m}\right] y$, for all x, y in R.
By using (3) and the fact that ($p-1$) $n \geq p$ for $n>1$,

$$
\text { we get } \begin{align*}
a^{p-1}\left[a^{(p-1) n}, y\right] & =y^{r}\left[a^{p-1}, y^{m}\right] y \\
& =y^{r}\left[b, y^{m}\right] y=0 \text {, for all } y \text { in } R . \tag{4}
\end{align*}
$$

By replacing x by $1+b$ in the polynomial identity, we get
$(1+b)\left[(1+b)^{n}, y\right]=y^{r}\left[1+b, y^{m}\right] y$, for all y in R.
As (1+b) is invertible and using (4), we get
$\left[(1+b)^{n}, y\right]=0$, for all y in R.
By using (3) and (5), we get $\left[(1+b)^{n}, y\right]=0$.
That is, $[1+n b), y]=0$.
So, $n[b, y]=0$, for all y in R.
Since R is n-torsion free, we get $[b, y]=0$, for all y in R.
So, $b \in Z(R)$.
That is, $a^{p-1} \in Z(R)$.
This contradicts the minimality of p.
So we conclude that $p=1$ and hence $a \in Z(R)$.
Therefore, $N(R) \subseteq Z(R)$.
Combining (2) and (6), we get
$C(R) \subseteq N(R) \subseteq Z(R)$.
Theorem 1: Let $n>1, m, r$ be fixed non-negative integers and let R be an alternative left s-unital ring satisfying the polynomial identity $x\left[x^{n}, y\right]=y^{r}\left[x, y^{m}\right] y$, for all x, y in R. Further, if R is n-torsion free, then R is commutative.

Proof: According to Lemma 8, R is an s-unital ring.
Therefore, in view of proposition 1 of [7], it is sufficient to prove the theorem for R with unity.
If $m=0$, then (1) gives $x\left[x^{n}, y\right]=0$, for all x, y in R.
Hence $n x^{n}[x, y]=0$, for all x, y in R.
By replacing x by $x+1$ and applying Lemma 2, we obtain $n[x, y]=0$, for all x, y in R.
Since R is n-torsion free, we get $[x, y]=0$, for all x, y in R.
Therefore, R is commutative.
Now, we consider $m \geq 1$. Let $q=\left(2^{n+1}-2\right)$. Then from (1) we have

$$
\begin{aligned}
q x\left[x^{n}, y\right] & =\left(2^{n+1}-2\right) x\left[x^{n}, y\right] \\
& =2^{n+1} x\left[x^{n}, y\right]-2 x\left[x^{n}, y\right] \\
& =(2 x)\left[(2 x)^{n}, y\right]-2 y^{r}\left[x, y^{m}\right] y \\
& =(2 x)\left[(2 x)^{n}, y\right]-y^{r}\left[(2 x), y^{m}\right] y \\
& =0 .
\end{aligned}
$$

Therefore, $q x\left[x^{n}, y\right]=0$.
So, $q n x^{n}[x, y]=0$, for all x, y in R.
By replacing $q n$ by k and using Lemma 2 , we obtain $k[x, y]=0$, for all x, y in R.
Thus $\left[x^{k}, y\right]=k x^{k-1}[x, y]=0$, for all x, y in R.
So $x^{k} \in Z(\mathrm{R})$, for all x, y in R.
Here we distinguish between the two cases.
Case (a): Let $m>1$. Then from (1) and (7) we have,
$x\left[x^{n}, y\right]=m[x, y] y^{r+m}$, for all x, y in R.
By replacing y by y^{m}, we get $x\left[x^{n}, y^{m}\right]=m\left[x, y^{m}\right] y^{m(r+m)}$.
So, $m x\left[x^{n}, y\right] y^{m-1}=m\left[x, y^{m}\right] y^{m(r+m)}$, for all x, y in R.
By using (1), we get $m y^{r}\left[x, y^{m}\right] y^{m}=m\left[x, y^{m}\right] y^{m(r+m)}$.
$m\left[x, y^{m}\right] y^{m+r}-m\left[x, y^{m}\right] y^{m(r+m)}=0$.
$m\left[x, y^{m}\right] y^{r+m}\left(1-y^{(m-1)(r+m)}\right)=0$, for all x, y in R.
By using Lemma 3, we get
$m\left[x, y^{m}\right] y^{r+m}\left(1-y^{k(m-1)(r+m)}\right)=0$, for all x, y in R.
Now by using (6) the polynomial identity (1) becomes
$n x^{n}[x, y]=m y^{r+m}[x, y]=m[x, y] y^{r+m}$.
It is well known that R is isomorphic to a subdirect sum of subdirectly irreducible rings $R_{i, i} i \in I$, the Index set. Each R_{i} satisfies (1), (7), (8), (9) and (10) but not necessarily n-torsion free.

We consider the ring $R_{i}, i \in I$. Let S be the intersection of all nonzero ideals of R_{i}, then $S \neq(0)$ and $S d=0$, for any central zero-divisor d.

Let $a \in N^{\prime}\left(R_{i}\right)$, the set of all zero-divisors of R then by using (9), we have
$m\left[x, a^{m}\right] a^{r+m}\left(1-a^{k(m-1)(r+m)}\right)=0$, for all x in R_{i}.
Suppose $m\left[x, a^{m}\right] a^{r+m} \neq 0$, for x in R_{i}.
So, $a^{k(m-1)(r+m)}$ and $1-a^{k(m-1)(r+m)}$ are central zerodvisors.
That is, $(0)=S\left(1-a^{k(m-1)(r+m)}\right)=S \neq(0)$, which is a contradiction.
Therefore $m\left[x, a^{m}\right] a^{r+m}=0$, for all x in R_{i}.
From (10) and (11), we have $n x^{n}\left[x, a^{m}\right]=m\left[x, a^{m}\right] a^{m(r+m)}=0$.
Therefore by Lemma 2, we get $n\left[x, a^{m}\right]=0$, for all x in R_{i}.

Hence $n m[x, a] a^{m-1}=0$, for all for x in R_{i}
Now by Lemma 1, we have $n^{2} x^{n}[x, a]=n\left(n x^{n}[x, a]\right)$

$$
=n m[x, a] a^{r+m} \text {, for all } x \text { in } R_{i} .
$$

By replacing x by $x+1$ and applying Lemma 2, we get $n^{2}[x, a]=0$, for all x in R_{i}. But $\left[x^{n^{2}}, a\right]=n^{2} x^{n^{2}-1}[x, a]$.
Therefore $\left[x^{n^{2}}, a\right]=0$, for all x in R_{i}. and a in $N^{\prime}\left(R_{i}\right)$.
Let $c \in Z\left(R_{i}\right)$. Then by (1), we have

$$
\begin{aligned}
\left(c^{n+1}-c\right) x\left[x^{n}, y\right] & =c^{n+1} x\left[x^{n}, y\right]-c x\left[x^{n}, y\right] . \\
& =(c x)\left[(c x)^{n}, y\right]-c y^{r}\left[x, y^{n}\right] y . \\
& =(c x)\left[(c x)^{n}, y\right]-y^{r}\left[(c x), y^{m}\right] y . \\
& =0, \text { for all } x, y \text { in } R_{i} .
\end{aligned}
$$

By applying Lemma 1, we obtain $n\left(c^{n+1}-c\right) x^{n}\left[x^{n}, y\right]=0$, for all x, y in R_{i}.
By using Lemma 2, we obtain $n\left(c^{n+1}-c\right)[x, y]=0$ which implies
$\left(c^{n+1}-c\right)\left[x^{n}, y\right]=0$, for all x, y in R_{i} and $c \in Z\left(R_{i}\right)$.
In particular, by (8), we have
$\left(y^{k(n+1)}-y^{k}\right)\left[x^{n}, y\right]=0$, for all x, y in R_{i}
Consider $y \in R_{i}$. If $\left[x^{n}, y\right]=0$ then clearly $\left[x^{n^{2}}, y^{j}-y\right]=0$, for all positive integers j and x in R_{i}.
If $\left[x^{n^{2}}, y\right] \neq 0$ then $\left[x^{n}, y\right] \neq 0$. For $\left[x^{n}, y\right]=0$ implies that $\left[x^{n^{2}}, y\right]=0$, which is a contradiction.
Since $\left[x^{n}, y\right] \neq 0$, then by (14), $\left(y^{k(n+1)}-y^{k}\right)$ is a zerodivisor.
Therefore $\left(y^{k n+1}-y\right)$ is also a zerodivisor.
Hence by (12), $\left[x^{n^{2}}, y^{k n+1}-y\right]=0$, for all x, y in R_{i}.
As each R_{i} satisfies (15), the original ring R also satisfies (15). But R is n-torsion free. Therefore combining (15) with Lemma 1, we finally obtain $\left[x, y^{k n+1}-y\right]=0$, for all x, y in R.

Thus R is commutative by Lemma 6 .
Case (b): Let $m=1$, Then we get $x\left[x^{n}, y\right]=y^{r}[x, y] y$, for all x, y in R.
Thus $n x^{n}[x, y]=[x, y] y^{r+1}$, for all x, y in R.
By replacing x by x^{n} in (16), we get

$$
\begin{aligned}
n x^{n^{2}}\left[x^{n}, y\right] & =\left[x^{n}, y\right] y^{r+1} \\
& =n x^{n-1}[x, y] y^{r+1} \\
& =n x^{n}\left[x^{n}, y\right], \text { for all } x, y \text { in } R .
\end{aligned}
$$

Therefore, $n\left(1-x^{(n-1) n}\right) x^{n}\left[x^{n}, y\right]=0$, for all x, y in R.
By using Lemma 3, we get
$n\left(1-x^{k(n-1) n}\right) x^{n}\left[x^{n}, y\right]=0$, for all x, y in R.
As in case (a), if $a \in N^{\prime}\left(R_{i}\right)$ then by (17), we obtain
$n\left(1-a^{k(n-1) n}\right) a^{n}\left[a^{n}, y\right]=0$, for all $y \in R_{i}$.
By similar argument as in case (a), we can prove that
$n a^{n}\left[a^{n}, y\right]=0$, for all $y \in R_{i}$.
Now we have $\left[a^{n}, y\right] y^{r+1}=n a^{n^{2}}\left[a^{n}, y\right]=0$.
By using Lemma 2, we get $\left[a^{n}, y\right]=0$, for all y in R_{i}.
Therefore, $[a, y] y^{r+1}=a\left[a^{n}, y\right]=0$.
So $[a, y]=0$, for all y in R_{i} and $a \in N^{\prime}\left(R_{i}\right)$.
If $c \in Z\left(R_{i}\right)$, then as in case (a), we obtain $\left(c^{n+1}-c\right)[x, y]=0$, for all x, y in R_{i}.
In particular by (8), we have $\left(x^{k(n+1)}-x^{k}\right)[x, y]=0$, for all x, y in R_{i}.
If $[x, y]=0$ for all x, y in R_{i}, then R satisfies $[x, y]=0$, for all x, y in R. Therefore, R is commutative.
Now if for each x, y in $R_{i},[x, y] \neq 0$ then $\left(x^{k n+1}-x\right) \in N^{\prime}\left(R_{i}\right)$ and hence $\left(x^{k n+1}-x\right) \in N^{\prime}(R)$.
But the identity (19) is satisfied by the original ring R.
Therefore, $\left(x^{k n+1}-x, y\right)=0$, for all x, y in R.
Hence R is commutative by Lemma 6.
In Theorem 1, n-torsion free property is essential. Consider the following example :
Example: Let $A=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right), B=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right), C=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ be the elements of the ring of all 3×3 matrices over Z_{2}, the ring of integers mod 2. If R is the ring generated by the matrices A, B, C, then using Dooroh construction with Z_{2}, we obtain with unity 1 . Then R is not commutative and satisfies $\left[x^{2}, y\right]=\left[x, y^{2}\right]$, for all x, y in R.

REFERENCES

[1] Abujabal, H.A.S. and Khan, M.S., On commutativity of s-unital rings. J. Korean Math. Soc., 28(1991), no.2, pp. 293-308.
[2] Bell, H.E., On commutativity theorems of Herstein. Arch. Math., 24(1973), pp.34-38.
[3] Bell, H.E., On the power map and ring commutativity. Canad. Math. Bull., 21(1978), pp.399-404.
[4] Quadri, M.A. and Khan, M.A., A commutativity theorem for left s-unital rings. Bull. Inst. Math. Acad. Sinica., 15(1987), pp.323-327.
[5] Herstein, I.N., A generalization of a theorem of Jacobson", Amer. J. Math., 73(1951), pp.756-762.
[6] Herstein, I.N., The structure of certain class of rings. Amer. J. Math., 75(1953), pp.864-871.
[7] Hirano, Y., Kobayash, Y. and Tominaga, H., Some polynomial identities and commutativity of s-unital rings, Math. J. Okayama Univ., 24(1982), pp.7-13.

Source of support: Nil, Conflict of interest: None Declared

