COMMUTATIVITY OF ALTERNATIVE LEFT s-UNITAL RINGS WITH $x[x^n, y] = y^r[x, y^m]y$

Y. S. Kalyan Chakravarthy* & K Suvarna

Department of Mathematics, S. K. University, Ananthapuramu-515003, India

(Received on: 30-06-13; Revised & Accepted on: 23-07-13)

ABSTRACT

Let R be an alternative left s-unital ring. In this paper we show that if n > 1, m, r are fixed non-negative integers and an alternative ring R with unity 1 satisfies the polynomial identity (i) $x[x^n, y] = y^r[x, y^m]y$ for all x, y in R, then C(R) is nil and if R is n-torsion free, then $N(R) \subseteq Z(R)$. Also we show that an alternative left s-unital ring R satisfying the polynomial identity (i) is commutative.

AMS Mathematics Subject Classification: 17.

Key words: Alternative ring, s-unital ring, center.

INTRODUCTION

Abujabal and M.S. Khan [2] studied the commutativity of a left s-unital ring R satisfying the polynomial identity $x^t[x^n,y] = y^r[x,y^m]y^s$, for all x, y in R. In this section, we prove that if n>1, m, r are fixed nonnegative integers and an alternative ring R with unity 1 satisfies the polynomial identity (i) $x[x^n,y] = y^r[x,y^m]y$ for all x, y in R, then C(R) is nil and if R is n-torsion free, then $N(R) \subseteq Z(R)$. Also we show that an alternative left s-unital ring R satisfying the polynomial identity (i) is commutative.

PRELIMINARIES

Throughout this section R denotes an alternative left s-unital ring, The center Z(R) of R is defined as $Z(R) = \{z \in R \mid [z, R] = 0\}$ and a ring R is called a left (respectively right) s-unital ring if $x \in Rx$ (respectively $x \in xR$) for each $x \in R$. Further R is called s-unital if it is both left as well as right s-unital. i.e., if $x \in xR \cap Rx$, for each $x \in R$. Here C(R) the commutator ideal of R, N(R) the set of all nilpotent elements of R, N'(R) the set of all zero divisors in R, GF(p) the Galois field with P elements and $GF(p)_2$ the ring of all P0 and P1 are centered as P2.

In order to prove our results, we shall require the following well-known results.

Lemma 1: Let *R* be a ring such that [x, [x, y]] = 0 for all *x* and *y* in *R*, then $[x^k, y] = kx^{k-1}[x, y]$ for any positive integer *k*.

Proof: We prove this by induction on k.

The identity $[x^k, y] = kx^{k-1}[x, y]$ is true for integer k = 1.

Suppose we assume that $[x^k, y] = kx^{k-1}[x, y]$.

Consider
$$[x^{k+1}, y] = [x^k x, y]$$

 $= x^k [x, y] + [x^k, y] x$
 $= x^k [x, y] + kx^{k-1} [x, y] x$
 $= x^k [x, y] + kx^k [x, y], \text{ since } [x, [x, y]] = 0.$
 $= (k+1)x^k [x, y], \text{ for all } k > 1.$

Therefore by induction for all positive integers k, $[x^k, y] = kx^{k-1}[x, y]$.

Lemma 2[2, Lemma 2]: Let R be a ring with unity 1, and let x and y be elements in R. If $kx^m[x,y] = 0$ and k(x + 1)m[x,y] = 0, for some integers $m \ge 1$ and $k \ge 1$, then necessarily k[x,y] = 0.

Lemma 3[6, Lemma 3]: Let R be a ring with unity 1, and let x and y be elements in R. If $(1 - y^k)x = 0$, then $(1 - y^{km})x = 0$, for some integers k > 0 and m > 0.

Lemma 4[1]: Let x and y be elements in a ring R. Suppose that there exists relatively prime positive integers m and n such that m[x, y] = 0 and n[x, y] = 0 then [x, y] = 0.

Lemma 5[3, Theorem 4(c)]: Let R be a ring with unity 1. Suppose that for each x in R there exists a pair n and m of relatively prime positive integers for which $x^n \in Z(R)$ and $x^m \in Z(R)$, then R is commutative.

Lemma 6[4, Theorem 18]: Let R be a ring and let n>1 be an integer. Suppose that $(x^n-x) \in Z(R)$, for all x in R, then R is commutative.

Lemma 7[5] If for every x and y in a ring R we can find a polynomial $p_{x,y}(t)$ with integral coefficients which depends on x and y such that $[x^2 p_{x,y}(x) - x, y] = 0$, then R is commutative.

MAIN RESULTS

Lemma 8: Let n>0, m and r be fixed non negative integers such that $(r, n, m) \neq (0, 1, 1)$ and let R be an alternative left s-unital ring satisfying the polynomial identity

$$x[x^n, y] = y^r[x, y^m]y, \text{ for all } x, y \text{ in } R,$$
(1)

then *R* is an s-unital ring.

Proof: Let x and y be arbitrary elements in R. Suppose that R is an alternative s-unital ring. Then there exists an element $e \in R$ such that ex = x and ey = y. By replacing x by e in (1), we get

$$e[e^{n}, y] = y^{r}[e, y^{m}]y$$

$$e(e^{n}y - ye^{n}) = y^{r}(ey^{m} - y^{m}e)y$$

$$e(y - ye^{n}) = y^{r}(y^{m} - y^{m}e)y$$

$$ey - eye^{n} = (y^{r+m} - y^{r+m}e)y$$

$$y - ye^{n} = y^{r+m+1} - y^{r+m}ey$$

$$y - ye^{n} = y^{r+m+1} - y^{r+m+1}$$

$$y - ye^{n} = 0.$$

So, $y = ye^n \in yR$, for all y in R.

Thus *R* is an s-unital ring.

Lemma 9: Let n>0, r, m be fixed non-negative integers and let R be an alternative ring satisfying the polynomial identity $x[x^n, y] = y^r[x, y^m]y$, for all x, y in R, then C(R) is nil.

Proof: Let $x = e_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ and $y = e_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. Then x and y fail to satisfy the polynomial identity whenever n > 0 except for r = 0, m = 1.

In this later case we can choose
$$x = e_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
 and $y = e_{21} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$. Hence Lemma 7 ensures that $C(R) \subseteq N(R)$.

Lemma 10: Let n>1, m and R be fixed non-negative integers and let R be an alternative ring with unity 1. Suppose that R satisfies the polynomial identity $x[x^n, y] = y^r[x, y^m]y$, for all x, y in R. Further, if R is n-torsion free then $N(R) \subseteq Z(R)$.

Proof: Let $a \in N(R)$ then there exists a positive integer p such that $a^k \in Z(R)$ for all $k \ge p$ and p minimal. (3)

If p = 1 then $a \in Z(R)$.

Now suppose that p>1 and $b=a^{p-1}$.

By replacing x by b in the polynomial identity, we get

 $b[b^n, y] = y^r[b, y^m]y$, for all x, y in R.

By using (3) and the fact that $(p-1)n \ge p$ for n > 1,

we get
$$a^{p-1}[a^{(p-1)n}, y] = y^r[a^{p-1}, y^m]y$$

= $y^r[b, y^m]y = 0$, for all y in R. (4)

By replacing x by 1+b in the polynomial identity, we get

$$(1+b)[(1+b)^n, y] = y^r[1+b, y^m]y$$
, for all y in R.

As (1+b) is invertible and using (4), we get

$$[(1+b)^n, y] = 0$$
, for all y in R. (5)

By using (3) and (5), we get $[(1+b)^n, y] = 0$.

That is, [1 + nb), y] = 0.

So, n[b, y] = 0, for all y in R.

Since R is *n*-torsion free, we get [b, y] = 0, for all y in R.

So, $b \in Z(R)$.

That is, $a^{p-1} \in Z(R)$.

This contradicts the minimality of p.

So we conclude that p = 1 and hence $a \in Z(R)$.

Therefore,
$$N(R) \subseteq Z(R)$$
. (6)

Combining (2) and (6), we get

$$C(R) \subseteq N(R) \subseteq Z(R)$$
. (7)

Theorem 1: Let n > 1, m, r be fixed non-negative integers and let R be an alternative left s-unital ring satisfying the polynomial identity $x[x^n, y] = y^r[x, y^m]y$, for all x, y in R. Further, if R is n-torsion free, then R is commutative.

Proof: According to Lemma 8, *R* is an s-unital ring.

Therefore, in view of proposition 1 of [7], it is sufficient to prove the theorem for R with unity.

If m = 0, then (1) gives $x[x^n, y] = 0$, for all x, y in R.

Hence $nx^n[x, y] = 0$, for all x, y in R.

By replacing x by x+1 and applying Lemma 2, we obtain n[x,y] = 0, for all x, y in R.

Since R is n-torsion free, we get [x, y] = 0, for all x, y in R.

Therefore, R is commutative.

Now, we consider $m \ge 1$. Let $q = (2^{n+1} - 2)$. Then from (1) we have

$$qx[x^{n}, y] = (2^{n+1} - 2) x[x^{n}, y]$$

$$= 2^{n+1}x[x^{n}, y] - 2x[x^{n}, y]$$

$$= (2x) [(2x)^{n}, y] - 2y^{r}[x, y^{m}]y$$

$$= (2x) [(2x)^{n}, y] - y^{r}[(2x), y^{m}]y$$

$$= 0$$

Therefore, $qx[x^n, y] = 0$.

So, $qnx^n[x, y] = 0$, for all x, y in R.

By replacing qn by k and using Lemma 2, we obtain k[x, y] = 0, for all x, y in R.

Thus $[x^k, y] = kx^{k-1} [x, y] = 0$, for all x, y in R.

So
$$x^k \in Z(R)$$
, for all x, y in R . (8)

Here we distinguish between the two cases.

Case (a): Let m > 1. Then from (1) and (7) we have,

$$x[x^n, y] = m[x, y]y^{r+m}$$
, for all x, y in R .

By replacing y by y^m , we get $x[x^n, y^m] = m[x, y^m]y^{m(r+m)}$.

So, $mx[x^n, y]y^{m-1} = m[x, y^m]y^{m(r+m)}$, for all x, y in R.

By using (1), we get $my^r[x, y^m]y^m = m[x, y^m]y^{m(r+m)}$.

$$m[x, y^m]y^{m+r} - m[x, y^m]y^{m(r+m)} = 0.$$

$$m[x, y^m]y^{r+m} (1-y^{(m-1)(r+m)}) = 0$$
, for all x, y in R.

By using Lemma 3, we get

$$m[x, y^m]y^{r+m} (1-y^{k(m-1)(r+m)}) = 0$$
, for all x, y in R . (9)

Now by using (6) the polynomial identity (1) becomes

$$nx^{n}[x,y] = my^{r+m}[x,y] = m[x,y]y^{r+m}.$$
(10)

It is well known that R is isomorphic to a subdirect sum of subdirectly irreducible rings R_i , $i \in I$, the Index set. Each R_i satisfies (1), (7), (8), (9) and (10) but not necessarily n-torsion free.

We consider the ring R_i , $i \in I$. Let S be the intersection of all nonzero ideals of R_i , then $S \neq (0)$ and Sd = 0, for any central zero-divisor d.

Let $a \in N'(R_i)$, the set of all zero-divisors of R then by using (9), we have

$$m[x, a^m]a^{r+m} (1-a^{k(m-1)(r+m)}) = 0$$
, for all x in R_i .

Suppose $m[x, a^m]a^{r+m} \neq 0$, for x in R_i .

So, $a^{k(m-1)(r+m)}$ and 1- $a^{k(m-1)(r+m)}$ are central zerodvisors.

That is, $(0) = S(1 - a^{k(m-1)(r+m)}) = S \neq (0)$, which is a contradiction.

Therefore
$$m[x, a^m]a^{r+m} = 0$$
, for all x in R_i . (11)

From (10) and (11), we have $nx^n[x, a^m] = m[x, a^m]a^{m(r+m)} = 0$.

Therefore by Lemma 2, we get $n[x, a^m] = 0$, for all x in R_i .

Hence $nm[x, a]a^{m-1} = 0$, for all for x in R_i

Now by Lemma 1, we have $n^2x^n[x,a] = n(nx^n[x,a])$

=
$$nm[x, a]a^{r+m}$$
, for all x in R_i .

By replacing x by x+1 and applying Lemma 2, we get $n^2[x,a] = 0$, for all x in R_i . But $[x^{n^2},a] = n^2 x^{n^2-1}[x,a]$.

Therefore
$$[x^{n^2}, a] = 0$$
, for all x in R_i and a in $N'(R_i)$. (12)

Let $c \in Z(R_i)$. Then by (1), we have

$$(c^{n+1} - c)x[x^n, y] = c^{n+1} x[x^n, y] - cx[x^n, y].$$

= $(cx) [(cx)^n, y] - cy^r [x, y^n]y.$
= $(cx) [(cx)^n, y] - y^r [(cx), y^m]y.$
= $(cx) [(cx)^n, y] - y^r [(cx), y^m]y.$

By applying Lemma 1, we obtain $n(c^{n+1} - c)x^n[x^n, y] = 0$, for all x, y in R_i .

By using Lemma 2, we obtain $n(c^{n+1} - c)[x, y] = 0$ which implies

$$(c^{n+1} - c)[x^n, y] = 0$$
, for all x, y in R_i and $c \in Z(R_i)$. (13)

In particular, by (8), we have

$$(y^{k(n+1)} - y^k)[x^n, y] = 0, \text{ for all } x, y \text{ in } R_i$$
(14)

Consider $y \in R_i$. If $[x^n, y] = 0$ then clearly $[x^{n^2}, y^j - y] = 0$, for all positive integers j and x in R_i .

If $[x^{n^2}, y] \neq 0$ then $[x^n, y] \neq 0$. For $[x^n, y] = 0$ implies that $[x^{n^2}, y] = 0$, which is a contradiction.

Since $[x^n, y] \neq 0$, then by (14), $(y^{k(n+1)} - y^k)$ is a zerodivisor.

Therefore $(y^{kn+1} - y)$ is also a zerodivisor.

Hence by (12),
$$[x^{n^2}, y^{kn+1} - y] = 0$$
, for all x, y in R_i . (15)

As each R_i satisfies (15), the original ring R also satisfies (15). But R is n-torsion free. Therefore combining (15) with Lemma 1, we finally obtain $[x, y^{kn+1} - y] = 0$, for all x, y in R.

Thus *R* is commutative by Lemma 6.

Case (b): Let m = 1, Then we get $x[x^n, y] = y^r[x, y]y$, for all x, y in R.

Thus
$$nx^n[x,y] = [x,y]y^{r+1}$$
, for all x, y in R . (16)

By replacing x by x^n in (16), we get

$$nx^{n^{2}}[x^{n}, y] = [x^{n}, y]y^{r+1}$$

$$= nx^{n-1}[x, y]y^{r+1}$$

$$= nx^{n}[x^{n}, y], \text{ for all } x, y \text{ in } R.$$

Therefore, $n(1-x^{(n-1)n})x^n[x^n,y]=0$, for all x, y in R.

By using Lemma 3, we get

$$n(1 - x^{k(n-1)n})x^n[x^n, y] = 0, \text{ for all } x, y \text{ in } R.$$
(17)

As in case (a), if $a \in N'(R_i)$ then by (17), we obtain

$$n(1 - a^{k(n-1)n})a^n[a^n, y] = 0$$
, for all $y \in R_i$.

By similar argument as in case (a), we can prove that

$$n\alpha^n[\alpha^n, y] = 0$$
, for all $y \in R_i$. (18)

Now we have $[a^n, y]y^{r+1} = na^{n^2}[a^n, y] = 0$.

By using Lemma 2, we get $[a^n, y] = 0$, for all y in R_i .

Therefore, $[a, y]y^{r+1} = a[a^n, y] = 0$.

So
$$[a, y] = 0$$
, for all y in R_i and $a \in N'(R_i)$. (19)

If $c \in Z(R_i)$, then as in case (a), we obtain $(c^{n+1} - c)[x, y] = 0$, for all x, y in R_i .

In particular by (8), we have $(x^{k(n+1)} - x^k)[x, y] = 0$, for all x, y in R_i .

If [x, y] = 0 for all x, y in R_i , then R satisfies [x, y] = 0, for all x, y in R. Therefore, R is commutative.

Now if for each x, y in R_i , $[x, y] \neq 0$ then $(x^{kn+1} - x) \in N'(R_i)$ and hence $(x^{kn+1} - x) \in N'(R)$.

But the identity (19) is satisfied by the original ring R.

Therefore, $(x^{kn+1} - x, y) = 0$, for all x, y in R.

Hence *R* is commutative by Lemma 6.

In Theorem 1, *n*-torsion free property is essential. Consider the following example :

Example: Let $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, $C = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ be the elements of the ring of all 3x3 matrices over Z_2 , the ring of integers mod 2. If R is the ring generated by the matrices A, B, C, then using Dooroh construction with Z_2 , we obtain with unity 1. Then R is not commutative and satisfies $[x^2, y] = [x, y^2]$, for all x, y in R.

REFERENCES

- [1] Abujabal, H.A.S. and Khan, M.S., On commutativity of s-unital rings. J. Korean Math. Soc., 28(1991), no.2, pp. 293-308.
- [2] Bell, H.E., On commutativity theorems of Herstein. Arch. Math., 24(1973), pp.34-38.
- [3] Bell, H.E., On the power map and ring commutativity. Canad. Math. Bull., 21(1978), pp.399-404.
- [4] Quadri, M.A. and Khan, M.A., A commutativity theorem for left s-unital rings. Bull. Inst. Math. Acad. Sinica., 15(1987), pp.323-327.
- [5] Herstein, I.N., A generalization of a theorem of Jacobson", Amer. J. Math., 73(1951), pp.756-762.
- [6] Herstein, I.N., The structure of certain class of rings. Amer. J. Math., 75(1953), pp.864-871.
- [7] Hirano, Y., Kobayash, Y. and Tominaga, H., Some polynomial identities and commutativity of s-unital rings, Math. J. Okayama Univ., 24(1982), pp.7-13.

Source of support: Nil, Conflict of interest: None Declared