SOME PROPERTIES OF DUAL OF BANACH LATTCES

Kazem Haghnejad Azar¹ & Mina Matin Tazekand^{2*}

^{1,2}Department of Mathematics, University of Mohaghegh Ardabili, Ardabil, Iran.

(Received on: 07-07-13; Revised & Accepted on: 31-08-13)

ABSTRACT

In this note, we want to study some properties of dual of Banach lattices and some relationship between Banach lattice and its topoplogical dual.

2010 Mathematics Subject Classification: Primary 46A40, 46B40, 46B42.

Key words: Banach lattice, AM-space, AL-space, KB-space.

1. INTRODUCTION

Let (E,τ) is a topological space. The dual topological E' of E is the vector space consisting of all linear and τ –continuous functional on E. A Banach lattice is a Banach space $(E,\|.\|)$ such that E is a vector lattice and its norm satisfies the following property: for each x, $y \in E$ such that $|x| \le |y|$, we have $||x|| \le ||y||$. As an example, l^1 , l^∞ , c_0 are Banach lattice.

If E is a Banach lattice, its topological dual E', endowed with the dual norm, is also a Banach lattice.

Definition 1.1: A Banach lattice E is said to be an AM-space if for each x, $y \in E$ such that $\inf(x, y) = 0$ we have $||x + y|| = \max\{||x||, ||y||\}$. As an example, l^{∞} is an AM-space.

Definition 1.2: A Banach lattice E is said to be an AL-space if for each x, $y \in E^+$ such that $\inf(x, y) = 0$ we have ||x + y|| = ||x|| + ||y||. As an example, l^1 is an AL-space.

Theorem 1.3: A Banach lattice E is an AL-space (resp. an AM-space) if and only if E' is an AM-space (resp. an AL-space).

Proof: We show first that if E is an AL-space, then E' is an AM-space. To this end, assume that E is an AL-space, and let $x' \wedge y' = 0$ in E'. Put $m = \max \{ \|x'\|, \|y'\| \}$, and note that $m \le \|x' + y'\|$ holds triviality. Now let $\varepsilon > 0$. Choose some $x \in E^+$ with $\|x\| = 1$ and $\|x' + y'\| \le (x' + y')(x) + \varepsilon$. Since $x' \wedge y'(x) = 0$, there exist $u, v \in E^+$ with u+v=x and $x'(u) + y'(v) < \varepsilon$. From $(u - v \wedge u) \wedge (v - v \wedge u) = 0$, $0 \le u + v - 2(u \wedge v) \le x$, and the fact that E is an AL-space, it follows that

$$||u - v \wedge u|| + ||v - v \wedge u|| = ||u + v - 2(u \wedge v)|| \le ||x|| \le 1,$$

And so

$$||x' + y'|| \le x'(x) + y'(y) + \varepsilon = x'(v) + y'(u) + x'(u) + y'(v) + \varepsilon \le x'(v) + y'(u) + 2\varepsilon \le x'(v - v \wedge u) + y'(u - v \wedge u) + 3\varepsilon \le m (||v - v \wedge u|| + ||u - v \wedge u||) + 3\varepsilon \le m + 3\varepsilon.$$

Since $\varepsilon > 0$ is arbitrary, $||x' + y'|| \le m$ also holds, and hence

$$||x' \vee y'|| = ||x' + y'|| = \max\{||x'||, ||y'||\}$$
, as desired.

Corresponding author: Mina Matin Tazekand^{2*}
^{1.2}Department of Mathematics, University of Mohaghegh Ardabili, Ardabil, Iran.

Kazem Haghnejad Azar¹ & Mina Matin Tazekand^{2*}/Some Properties Of Dual Of Banach Lattces/IJMA- 4(9), Sept.-2013.

Next we show that the topological dual of an AM-space is an AL-space. To this end let E be an AM-space, let $x' \wedge y' = 0$ in E', and let $\varepsilon > 0$. By Lemma 12.21 of [1] there exist x, $y \in U$ with

$$x \wedge y = 0$$
, $||x'|| \le x'(x) + \varepsilon$, $||y'|| \le y'(y) + \varepsilon$.

Now since E is an AM-space, we have $||x + y|| \max\{||x||, ||y||\} \le 1$, and so

$$||x'|| + ||y'|| \le x'(x+y) + y'(x+y) + 2\varepsilon \le ||x'+y'|| ||x+y|| + 2\varepsilon$$

$$\leq \left\|x' + y'\right\| + 2\varepsilon \leq \left\|x'\right\| + \left\|y'\right\| + 2\varepsilon$$

holds for all $\varepsilon > 0$. Therefore, ||x' + y'|| = ||x'|| + ||y'|| holds. Thus, E' is an AL-space.

To complete the proof, note that if E' is an AL-space, then E'' is an AM-space, and hence the closed sublattice E of E'' is likewise an AM-space. A similar observation is true E' is an AM-space.

2. MAIN RESULT

Definition 2.1: A norm $\|.\|$ of a Banach lattice E is order continuous if for each net (x_{α}) such that $x_{\alpha} \downarrow 0$ in E, the net (x_{α}) converges to 0 for the norm $\|.\|$. As an example, every L_P -space E has order continuous norm.

Definition 2.2: A Banach lattice E is said to be a KB-space whenever every increasing norm bounded sequence of E⁺ is norm convergent. As an example, each AL-space is a KB-space.

Theorem 2.3: The topological dual E' of a Banach lattice E is a KB-space if and only if E' has order continuous norm.

Proof: Assume that E' has order continuous norm and that $0 \le x'_n \uparrow$ holds in E' with sup $\{\|x'_n\|\} < \infty$. Then $x'(x) = \lim_n x'_n(x)$ exists in \mathbb{R} for each $x \in E^+$, and moreover this formula defines a positive linear functional on E. Since $x'_n \uparrow x'$ holds in E', we see that $\{x'_n\}$ is a norm convergent sequence.

Conversely, obvious.

Definition 2.4: A weak Cauchy sequence $\{x_n\}$ in a Banach space X is said to satisfy property (u) whenever there exists a sequence $\{y_n\}$ of X such that

a.
$$\sum_{n=1}^{\infty} |x'(y_n)| < \infty$$
 holds for all $x' \in X'$; and

b.
$$x_n - \sum_{i=1}^n y_i \stackrel{w}{\rightarrow} 0.$$

If every weak Cauchy sequence in a Banach space X satisfies property (u), then X itself is said to have property (u).

Theorem 2.5: Let Banach lattice E is a σ – *dedekind* complete with order continuous norm. Then, E has property (u).

Proof: Let $\{x_n\}$ be a weak Cauchy sequence of E. Then $x_n \stackrel{w^*}{\to} x^n$ holds in E^n . Consider the element $x = \sum_{n=1}^{\infty} 2^{-n} |x_n| \in E^n$, and let B denote the band generated by x in E^n . From Theorem 13.14 of [1], it follows that $x^n \in B$. Now let $v_n = (x^n)^+ \wedge nx$ and $u_n = (x^n)^- \wedge nx$, $u_n = 1,2,...$ Since $u_n, v_n \in [0,nx]$ and E is an ideal of E^n , we see that $\{v_n\}$ and $\{u_n\}$ are both sequence of E^n . In addition, since $v_n \uparrow (x^n)^+$ and $u_n \uparrow (x^n)^-$, we see that

Some properties of dual of Banach lattices

$$v_n \stackrel{w^*}{\rightarrow} (x'')^+$$
 and $u_n \stackrel{w^*}{\rightarrow} (x'')^-$

hold in E'', and so x_n - $(v_n$ - $u_n) \stackrel{w}{\to} 0$ holds in E. Next, for each n put $y_n = (v_n - v_{n-1}) - (u_n - u_{n-1}) \in E$, and note that $\sum_{i=1}^n y_i = v_n - u_n$. Therefore, $x_n - \sum_{i=1}^n y_i \stackrel{w}{\to} 0$ holds in E. On the other hand, if $x' \in E'$, then for each k we have

$$\sum_{n=1}^{k} |x'(y_n)| \le \sum_{n=1}^{\infty} |x'| (v_n - v_{n-1}) + \sum_{n=1}^{k} |x'| (u_n - u_{n-1})$$

$$\leq |x'|(v_k) + |x'|(u_k) \leq |x''|(|x'|) < \infty,$$

and so $\sum_{n=1}^{\infty} |x'(y_n)| < \infty$ holds for each $x' \in E'$. Thus, E has property (u).

Definition 2.6: The Banach space X has the Dunford-pettis property whenever $x_n \stackrel{w}{\to} 0$ in X and $x_n' \stackrel{w}{\to} 0$ in X' imply $\lim_{n \to \infty} x_n' = 0$, and we say that an operator $T: X \to Y$ between two Banach space is a Dunford-pettis operators whenever $x_n \stackrel{w}{\to} 0$ in X implies $\lim_{n \to \infty} ||Tx_n|| = 0$.

Theorem 2.7: Every AL-space and every AM-space has the Dunford-pettis property.

Proof: Since the topological dual of an AL-space is an AM-space with unit, by Theorem 19.5 of [1] it is enough to establish the result when E is an AM-space with unit.

To this end, let E be an AM-space with unit e, let $x_n \stackrel{w}{\to} 0$ in E, and let $x_n' \stackrel{w}{\to} 0$ in E'. Pick some M > 0 such that $||x_n|| \le M$ holds for all n. Let $\varepsilon > 0$. Now the set $\{x_1', x_2', ...\}$ is a relatively weakly compact subset of E', and so by Theorem 13.10 of [1] there exists some $0 \le y' \in E'$ satisfying

$$\|(|x_n'|-y')^+\|<\varepsilon/M$$

for all n. Since the lattice operations of E are weakly sequentially continuous (see Theorem 12.30 of [1]), we have $|x_n| \stackrel{w}{\to} 0$, and thus there exists some k satisfying $y'(|x_n|) < \varepsilon$ for all $n \ge k$. In particular for $n \ge k$ we have

$$|x_{n}'(x_{n})| \le |x_{n}'|(|x_{n}|) = (|x_{n}'| - y')^{+}(|x_{n}|) + |x_{n}'| \wedge y'(|x_{n}|)$$

$$\le M. ||(|x_{n}'| - y')^{+}|| + y'(|x_{n}|) < M. \varepsilon/M + \varepsilon = 2\varepsilon,$$

which shows that $x_n^{'}(x_n) \to 0$ holds, as required.

Theorem 2.8: If the topological dual X' of a Banach space X has the Dunford-pettis property, then X itself has the Dunford-pettis property.

Proof: Let X' have the Dunford-pettis property, and consider two weakly compact operators $Z \xrightarrow{S} X \xrightarrow{T} Y$ (where Y and Z are Banach spaces). Taking adjoints we have $Y' \xrightarrow{T'} X' \xrightarrow{S'} Z'$ with S' and T' weakly compact. Since X' has the Dunford-pettis property, the Theorem 19.4 of [1] shows that S' is a Dunford-pettis operator, and so S'T' = (TS)' is a compact operator. Thus, TS is a compact operator, and by Theorem 19.3 of [1] the operator T must be a Dunford-pettis operator. Now by Theorem 19.4 the Banach space X must have the Dunford-pettis property.

3. CONCLUSION

Definition 3.1: A vector lattice E is said to have property (b) if $A \subset E$ is order bounded whenever A is order bounded in (E')'.

Definition 3.2: A continuous operator $T: E \to X$ from a Banach lattice into a Banach space is said to be b-weakly compact whenever T carries each b-order bounded subset of E into relatively weakly compact subset of X.

Definition 3.3: A continuous operator $T: E \to X$ from a Banach lattice into a Banach space is order weakly compact whenever T [0,x] is a relatively weakly compact subset of X for each $x \in E^+$.

In the following, we establish some properties of topological dual of Banach lattices and relationships between Banach lattice and its dual topological.

- i) We see that if E is a Banach lattice, its topological dual E' is also a Banach lattice.
- ii) A Banach lattice E is an AL-space (resp. an AM-space) if and only if E' is an AM-space (resp. an AL-space).
- iii) If Banach lattice E is KB-space, E' is not KB-space in general. As an example l^1 is KB-space but l^{∞} is not KB-space. If Banach lattice E' is KB-space, E is not KB-space in general. As an example l^1 is a KB-space but c_0 is not KB-space.
- iv) If Banach lattice E has order continuous norm, E' has not order continuous norm in general. As an example, l^1 has order continuous norm but $(l^1)' = l^\infty$ by Theorem 2.3 has not continuous norm.
- v) If Banach lattice E has property (u), E' has not property (u) in general. As an example, by Theorem 2.5 l^1 has property (u) but by example 14.8 of [1] l^{∞} has not property (u).
- vi) If Banach lattice E' has property (u), E has not property (u) in general. As an example $(c_0)'$ has property (u) but c_0 by Theorem 14.7 of [1] and example 14.8 of [1] has not property (u).
- vii) By Theorems 1.3 and 2.7 E is a AM-space (resp. AL-space) with of Duonford-pettice property if and only if E' is a AL-space (resp. AM-space) with property of Duonford-pettice.
- viii) By Theorem 2.8 if E' has the Dunford-pettis property then, E has the property Duonford-pettice property.

Kazem Haghnejad Azar¹ & Mina Matin Tazekand^{2*}/ Some Properties Of Dual Of Banach Lattces/IJMA- 4(9), Sept.-2013.

- ix) Every perfect vector lattice and therefore every topological dual has property (b).
- x) Recall from [3] if E and F are Banach lattices, then each b-weakly compact operator (order weakly compact operator) $T: E \to F$ admits a b-weakly compact (order weakly compact) adjoint T' if and only if E' or F' is a KB-space. (Theorems 3.1. and 3.3)

REFERENCES

- [1] Aliprantis, C.D., Burkinshow, O., Positive Operators, Academic Press. New York and London. (1985).
- [2] Alpay, S., Altin, B., Tonyali, C., On property (b) of vector lattices, Positivity. (2003), 135-139.
- [3] Aqzzouz, B., Elbour, A., Hmichane, J., The duality problem for the class of b-weakly compact operators, Positivity. In Press.

Source of support: Nil, Conflict of interest: None Declared