International Journal of Mathematical Archive-4(9), 2013, 89-91

IMA Available online through www.ijma.info ISSN 2229-5046
ON NONCYCLIC VECTORS FOR CERTAIN BACKWARD SHIFTS

K. Hedayatian*
Department of Mathematics, College of Sciences, Shiraz University, Shiraz 71454, Iran.

(Received on: 27-06-13; Revised \& Accepted on: 11-09-13)

Abstract

Let $\{\beta(n)\}_{n}$ be a sequence of positive numbers with $\beta(0)=1$, and let $p>1$. By the space $H^{p}(\beta)$, we mean the set of all formal power series $f(z)=\sum_{n=0}^{\infty} \hat{f}(n) z^{n}$ for which $\sum_{n=0}^{\infty}|\hat{f}(n)|^{p} \beta(n)^{p}<\infty$. We give some sufficient conditions under which the set of noncyclic vectors for the backward shift operator on $H^{p}(\beta)$ is a countable union of nowhere dense sets.

2010 Mathematics Subject Classification: 47A16, $47 B 37$.
Keywords and Phrases: Noncyclic vectors; backward shift.

INTRODUCTION

Let x be a vector in a Banach space X, and T be an operator on X. The orbit of x under T is defined by $\operatorname{orb}(T, x)=\left\{T^{n} x: n=0,1,2, \ldots\right\}$.

We recall that a vector x in a separable Banach space X is cyclic for an operator T on X if the closed linear span of $\operatorname{orb}(T, x)$ is equal to X. Let $\{\beta(n)\}_{n}$ be a sequence of positive numbers with $\beta(0)=1$, and take $1<p<\infty$. Consider the space of all sequences $f=\{\hat{f}(n)\}_{n=0}^{\infty}$ such that

$$
\|f\|^{p}=\|f\|_{\beta}^{p}=\sum_{n=0}^{\infty}|\hat{f}(n)|^{p} \beta(n)^{p}<\infty .
$$

The notation $f(z)=\sum_{n=0}^{\infty} \hat{f}(n) z^{n}$, which is called a formal power series, shall be used whether or not the series converges for any value of z. Denote $H^{p}(\beta)$ the spaces with the norm $\|\cdot\|_{\beta}$. Furthermor, the dual of $H^{p}(\beta)$ is $H^{q}\left(\beta^{p / q}\right)$ where q is the conjugate exponent of p and $\beta^{p / q}=\left\{\beta(n)^{p / q}\right\}_{n}$. Where $p=2$, the Hardy, Bergman and Dirichlet spaces can be viewed in this way, respectively, by considering $\beta(n)=1, \beta(n)=(n+1)^{-1 / 2}$ and $\beta(n)=(n+1)^{1 / 2}$. For more information on the space $H^{p}(\beta)$ one can see [1]-[5].

Let $\hat{f}_{k}(n)=\delta_{n_{k}}$. So $f_{k}(z)=z^{k}$ and then $\left\{f_{k}\right\}_{k}$ is a basis such that $\left\|f_{k}\right\|=\beta(k)$. Now consider M_{z}, the operator of multiplication by z on $H^{p}(\beta)$, given by $\left(M_{z} f\right)(\xi)=\xi f(\xi)$. Clearly, M_{z} shifts the basis $\left\{f_{k}\right\}_{k}$. The operator M_{z} is bounded on $H^{p}(\beta)$ if and only if $\sup _{n} \beta(n+1) / \beta(n)<\infty$. In fact, in [2] it is shown that $\left\|M_{z}^{n}\right\|=\sup _{k}(n+k) / \beta(k)$. We define the weighted backward shif \widetilde{B} on $H^{p}(\beta)$

Corresponding author: K. Hedayatian*
Department of Mathematics, College of Sciences, Shiraz University, Shiraz 71454, Iran.
E-mail: hedayati@shirazu.ac.ir

$\widetilde{B}\left(\sum_{n=0}^{\infty} \hat{f}(n) z^{n}\right)=\sum_{n=0}^{\infty} \hat{f}(n+1)\left(\frac{\beta(n+1)}{\beta(n)}\right)^{2} z^{n}$.
A vector $x \in X$ is called a supercyclic vector for a bounded operator on a Banach space X if the set of all scalar multiples of the elements of $\operatorname{orb}(T, x)$ is dense in X. Note that for an operator T, every supercylic vector is a cyclic vector.

Noncyclic Vectors

The author, has given, in [2], conditions for the supercyclicity of a vector f in $H^{p}(\beta)$, for the operator \tilde{B}. we will show that under the same conditions the set of all noncyclic vectors for \widetilde{B} is not so large. First we bring a lemma.

Lemma 1: If $\sup _{n} \frac{\beta(n)}{\beta(n-1)}<\infty$, then the operator \tilde{B} is bounded on $H^{p}(\beta)$. Indeed, $\|\tilde{B}\|=\sup _{n} \frac{\beta(n)}{\beta(n-1)}$.
Proof: For every $f \in H^{p}(\beta)$, we have

$$
\begin{aligned}
\|\widetilde{B} f\|_{p}^{p} & =\sum_{n=0}^{\infty}\left|(\tilde{B} f)^{\wedge}(n)\right|^{p} \beta(n)^{p} \\
& =\sum_{n=0}^{\infty}\left|\hat{f}(n+1) \frac{\beta(n+1)^{2}}{\beta(n)^{2}}\right|^{p} \beta(n)^{p} \\
& =\sum_{n=1}^{\infty}|\hat{f}(n)|^{p}\left(\frac{\beta(n)}{\beta(n-1)}\right)^{2 p} \beta(n-1)^{p} \\
& \leq \sup _{n}\left(\frac{\beta(n)}{\beta(n-1)}\right)^{p} \sum_{n=1}^{\infty}|\hat{f}(n)|^{p} \beta(n)^{p} \\
& \leq \sup _{n}\left(\frac{\beta(n)}{\beta(n-1)}\right)^{p}\|f\|_{p}^{p} .
\end{aligned}
$$

Thus, \widetilde{B} is a bounded operator and $\|\widetilde{B}\| \leq \sup _{n} \beta(n) / \beta(n-1)$. On the other hand,

$$
\widetilde{B}\left(z^{n}\right)=(\beta(n) / \beta(n-1))^{2} z^{n-1},
$$

which implies that $(\beta(n) / \beta(n-1))^{2}\left\|z^{n-1}\right\| \leq\|\tilde{B}\|\left\|z^{n}\right\|$.
Hence $\sup _{n} \beta(n) / \beta(n-1) \leq\|\widetilde{B}\|$ and the result holds.
In the following theorem, we give some sufficient conditions under which the set of noncyclic vectors for the backward shift operator \widetilde{B} on $H^{p}(\beta)$ is a countable union of nowhere dense sets.

Theorem 1: Suppose that $\beta(i+1) \beta(i-1) \leq \beta(i)^{2} \leq 1$ for all $i \geq 1$, and $\{\beta(i) / \beta(i-1)\}_{i=1}^{\infty} \in \ell^{p}$. Then the set of all noncyclic vectors for \widetilde{B} is a countable union of nowhere dense sets.

Proof: Let $f(z)=\sum_{i=0}^{\infty} \hat{f}(i) z^{i}$ be in $H^{p}(\beta)$. It is shown [2, Theorem 3.1] that if $f(z)$ is not a polynomial then it is a supercyclic vector, and so a cyclic vector, for \widetilde{B}. On the other hand, if $f(z)$ is a polynomial then $(\widetilde{B})^{n} f=0$ for a sufficiently large n, which implies that $f(z)$ is not cyclic for \widetilde{B}. Therefore, the set of noncyclic vectors for \widetilde{B}

K. Hedayatian*/ On Noncyclic Vectors for Certain Backward Shifts/IJMA- 4(9), Sept.-2013.

is the set of polynomials which we denote by P. Suppose that $f(z)=\sum_{i=0}^{m} \hat{f}(i) z^{i}$ is a polynomial with $\hat{f}(m) \neq 0$ and put $M=\vee\left\{(\tilde{B})^{k} f: k \geq 0\right\}$.

Now, an easy computation shows that
$\left((\tilde{B})^{n} f\right)(z)=\sum_{i=0}^{m-n} \hat{f}(i+n) \frac{\beta(i+n)^{2}}{\beta(i)^{2}} z^{i}, \quad 0 \leq n \leq m$.
So the equality $\left((\tilde{B})^{m} f\right)(z)=\hat{f}(m) \beta(m)^{2}$ states that M contains the constants. Moreover, since
$\left((\tilde{B})^{m-1} f\right)(z)=\hat{f}(m-1) \beta(m-1)^{2}+\hat{f}(m)\left(\beta(m)^{2} / \beta(1)^{2}\right) z$,
We see that $z \in M$. Continuing this process, we obtain $z^{i} \in M ; i=0,1, \ldots, m$.

Hence $M_{m}=\vee\left\{z^{i} ; 0 \leq i \leq m\right\} \subseteq M$. On the other hand, it is clear that $M \subseteq M_{m}$. So $M=M_{m}$.
Let $\left\{p_{i}(z)\right\}_{i=1}^{\infty}$ be a countable dense subset of polynomials where coefficients have rational coordinates. Clearly, for every integer $m \geq 0$, there is a polynomial $p_{i}(z)$ of degree m; so the above argument shows that $\mathrm{P}=\bigcup_{i=1}^{\infty} N_{i}$, where $\left.N_{i}=\vee\{\widetilde{B})^{k} p_{i}: k \geq 0\right\}$. If we show that each N_{i} is nowhere dense, the proof will be over. If g_{i} is an interior point of N_{i} then there is an $\varepsilon_{i}>0$ such that $\left\{g \in H^{p}(\beta):\left\|g-g_{i}\right\|_{\beta}<\varepsilon_{i}\right\}$ is a subset of N_{i}. Therefore, if $\|g\|_{\beta}<\varepsilon_{i}$ and $g+g_{i} \in N_{i}$ we conclude that $g \in N_{i}$. Hence, $N_{i}=H^{p}(\beta)$ which is a contradiction.

Example 1: Consider $\beta(1)$ as a fixed number in the interval $(0,1)$, and let $\beta(i)=\beta(1) /(i-1)$!, $i>1$. If $p=2$ then we can use Theorem 1.

ACKNOWLEDGMENTS

This research was in part supported by a grant from Shiraz University Research Council.

REFERENCES

[1] K. Hedayatian, On the reflexivity of the multiplication operator on Banach spaces of formal Laurent series, Int. J. Math. 18(3) (2007) 231-234.
[2] K. Hedayatian, On cyclicity in the space $H^{p}(\beta)$, Taiwanese J. Math. 8(3) (2004), 429-442.
[3] K. Seddighi, K. Hedayatian, and B. Yousefi, Operators acting on Certain Banach spaces of analytic functions, Internat. J. Math. \& Math. Sci. 18 (1995), 107-110.
[4] A. L. Shields, Weighted shift operators and analytic function theory, Math. Surveys., Vol. 13, Amer. Math. Soc., Providence, 1974.
[5] B. Yousefi, Bounded analytic structure of the Banach space of formal power series, Rend. Circ. Mat. Palermo, serie II, TomoLi (2002), 403-410.

Source of support: Shiraz University Research Council, Iran, Conflict of interest: None Declared

