ON NONCYCLIC VECTORS FOR CERTAIN BACKWARD SHIFTS

K. Hedayatian*

Department of Mathematics, College of Sciences, Shiraz University, Shiraz 71454, Iran.

(Received on: 27-06-13; Revised & Accepted on: 11-09-13)

ABSTRACT

Let $\{\beta(n)\}_n$ be a sequence of positive numbers with $\beta(0)=1$, and let p>1. By the space $H^p(\beta)$, we mean the set of all formal power series $f(z)=\sum_{n=0}^{\infty}\hat{f}(n)z^n$ for which $\sum_{n=0}^{\infty}|\hat{f}(n)|^p$ $\beta(n)^p<\infty$. We give some sufficient conditions under which the set of noncyclic vectors for the backward shift operator on $H^p(\beta)$ is a countable union of nowhere dense sets.

2010 Mathematics Subject Classification: 47A16, 47B37.

Keywords and Phrases: Noncyclic vectors; backward shift.

INTRODUCTION

Let x be a vector in a Banach space X, and T be an operator on X. The orbit of x under T is defined by $orb(T,x) = \{T^n x : n = 0,1,2,\ldots\}.$

We recall that a vector x in a separable Banach space X is cyclic for an operator T on X if the closed linear span of orb(T,x) is equal to X. Let $\{\beta(n)\}_n$ be a sequence of positive numbers with $\beta(0)=1$, and take $1 . Consider the space of all sequences <math>f=\{\hat{f}(n)\}_{n=0}^{\infty}$ such that

$$||f||^p = ||f||^p_{\beta} = \sum_{n=0}^{\infty} |\hat{f}(n)|^p \beta(n)^p < \infty.$$

The notation $f(z) = \sum_{n=0}^{\infty} \hat{f}(n)z^n$, which is called a formal power series, shall be used whether or not the series converges for any value of z. Denote $H^p(\beta)$ the spaces with the norm $\|.\|_{\beta}$. Furthermor, the dual of $H^p(\beta)$ is $H^q(\beta^{p/q})$ where q is the conjugate exponent of p and $\beta^{p/q} = \{\beta(n)^{p/q}\}_n$. Where p=2, the Hardy, Bergman and Dirichlet spaces can be viewed in this way, respectively, by considering $\beta(n) = 1$, $\beta(n) = (n+1)^{-1/2}$ and $\beta(n) = (n+1)^{1/2}$. For more information on the space $H^p(\beta)$ one can see [1]-[5].

Let $\hat{f}_k(n) = \delta_{n_k}$. So $f_k(z) = z^k$ and then $\{f_k\}_k$ is a basis such that $||f_k|| = \beta(k)$. Now consider M_z , the operator of multiplication by z on $H^p(\beta)$, given by $(M_z f)(\xi) = \xi f(\xi)$. Clearly, M_z shifts the basis $\{f_k\}_k$. The operator M_z is bounded on $H^p(\beta)$ if and only if $\sup_n \beta(n+1)/\beta(n) < \infty$. In fact, in [2] it is shown that $||M_z^n|| = \sup_k (n+k)/\beta(k)$. We define the weighted backward shif \widetilde{B} on $H^p(\beta)$

$$\widetilde{B}(\sum_{n=0}^{\infty}\widehat{f}(n)z^{n}) = \sum_{n=0}^{\infty}\widehat{f}(n+1)\left(\frac{\beta(n+1)}{\beta(n)}\right)^{2}z^{n}.$$

A vector $x \in X$ is called a *supercyclic vector* for a bounded operator on a Banach space X if the set of all scalar multiples of the elements of orb(T,x) is dense in X. Note that for an operator T, every supercylic vector is a cyclic vector.

Noncyclic Vectors

The author, has given, in [2], conditions for the supercyclicity of a vector f in $H^p(\beta)$, for the operator \tilde{B} , we will show that under the same conditions the set of all noncyclic vectors for \tilde{B} is not so large. First we bring a lemma.

Lemma 1: If
$$\sup_{n} \frac{\beta(n)}{\beta(n-1)} < \infty$$
, then the operator \widetilde{B} is bounded on $H^{p}(\beta)$. Indeed, $\|\widetilde{B}\| = \sup_{n} \frac{\beta(n)}{\beta(n-1)}$.

Proof: For every $f \in H^p(\beta)$, we have

$$\| \widetilde{B}f \|_{p}^{p} = \sum_{n=0}^{\infty} | (\widetilde{B}f)^{n}(n) |^{p} \beta(n)^{p}$$

$$= \sum_{n=0}^{\infty} | \widehat{f}(n+1) \frac{\beta(n+1)^{2}}{\beta(n)^{2}} |^{p} \beta(n)^{p}$$

$$= \sum_{n=1}^{\infty} | \widehat{f}(n) |^{p} (\frac{\beta(n)}{\beta(n-1)})^{2p} \beta(n-1)^{p}$$

$$\leq \sup_{n} (\frac{\beta(n)}{\beta(n-1)})^{p} \sum_{n=1}^{\infty} | \widehat{f}(n) |^{p} \beta(n)^{p}$$

$$\leq \sup_{n} (\frac{\beta(n)}{\beta(n-1)})^{p} \| f \|_{p}^{p}.$$

Thus, \widetilde{B} is a bounded operator and $\parallel\widetilde{B}\parallel \leq \sup_n \beta(n)/\beta(n-1)$. On the other hand,

$$\widetilde{B}(z^n) = (\beta(n)/\beta(n-1))^2 z^{n-1},$$

which implies that $(\beta(n)/\beta(n-1))^2 \parallel z^{n-1} \parallel \leq \parallel \tilde{B} \parallel \parallel z^n \parallel$.

Hence $\sup_{n} \beta(n)/\beta(n-1) \le ||\widetilde{B}||$ and the result holds.

In the following theorem, we give some sufficient conditions under which the set of noncyclic vectors for the backward shift operator \tilde{B} on $H^p(\beta)$ is a countable union of nowhere dense sets.

Theorem 1: Suppose that $\beta(i+1)\beta(i-1) \leq \beta(i)^2 \leq 1$ for all $i \geq 1$, and $\{\beta(i)/\beta(i-1)\}_{i=1}^{\infty} \in \ell^p$. Then the set of all noncyclic vectors for \widetilde{B} is a countable union of nowhere dense sets.

Proof: Let $f(z) = \sum_{i=0}^{\infty} \hat{f}(i)z^i$ be in $H^p(\beta)$. It is shown [2, Theorem 3.1] that if f(z) is not a polynomial then it is a supercyclic vector, and so a cyclic vector, for \tilde{B} . On the other hand, if f(z) is a polynomial then $(\tilde{B})^n f = 0$ for a sufficiently large n, which implies that f(z) is not cyclic for \tilde{B} . Therefore, the set of noncyclic vectors for \tilde{B}

is the set of polynomials which we denote by P. Suppose that $f(z) = \sum_{i=0}^{m} \hat{f}(i)z^{i}$ is a polynomial with $\hat{f}(m) \neq 0$ and put $M = \bigvee \{(\tilde{B})^{k} f : k \geq 0\}$.

Now, an easy computation shows that

$$((\tilde{B})^n f)(z) = \sum_{i=0}^{m-n} \hat{f}(i+n) \frac{\beta(i+n)^2}{\beta(i)^2} z^i, \quad 0 \le n \le m.$$

So the equality $((\tilde{B})^m f)(z) = \hat{f}(m)\beta(m)^2$ states that M contains the constants. Moreover, since

$$((\tilde{B})^{m-1} f)(z) = \hat{f}(m-1)\beta(m-1)^2 + \hat{f}(m)(\beta(m)^2 / \beta(1)^2)z,$$

We see that $z \in M$. Continuing this process, we obtain $z^i \in M$; i = 0,1,...,m.

Hence $M_m = \bigvee \{z^i; \ 0 \le i \le m\} \subseteq M$. On the other hand, it is clear that $M \subseteq M_m$. So $M = M_m$.

Let $\{p_i(z)\}_{i=1}^{\infty}$ be a countable dense subset of polynomials where coefficients have rational coordinates. Clearly, for every integer $m \geq 0$, there is a polynomial $p_i(z)$ of degree m; so the above argument shows that $P = \bigcup_{i=1}^{\infty} N_i$, where $N_i = \vee \{\widetilde{B}\}^k p_i : k \geq 0\}$. If we show that each N_i is nowhere dense, the proof will be over. If g_i is an interior point of N_i then there is an $\varepsilon_i > 0$ such that $\{g \in H^p(\beta) : \|g - g_i\|_{\beta} < \varepsilon_i\}$ is a subset of N_i . Therefore, if $\|g\|_{\beta} < \varepsilon_i$ and $g + g_i \in N_i$ we conclude that $g \in N_i$. Hence, $N_i = H^p(\beta)$ which is a contradiction.

Example 1: Consider $\beta(1)$ as a fixed number in the interval (0,1), and let $\beta(i) = \beta(1)/(i-1)!$, i > 1. If p = 2 then we can use Theorem 1.

ACKNOWLEDGMENTS

This research was in part supported by a grant from Shiraz University Research Council.

REFERENCES

- [1] K. Hedayatian, On the reflexivity of the multiplication operator on Banach spaces of formal Laurent series, *Int. J. Math.* 18(3) (2007) 231-234.
- [2] K. Hedayatian, On cyclicity in the space $H^p(\beta)$, Taiwanese J. Math. 8(3) (2004), 429-442.
- [3] K. Seddighi, K. Hedayatian, and B. Yousefi, Operators acting on Certain Banach spaces of analytic functions, *Internat. J. Math. & Math. Sci.* 18 (1995), 107-110.
- [4] A. L. Shields, Weighted shift operators and analytic function theory, Math. Surveys., Vol. 13, Amer. Math. Soc., Providence, 1974.
- [5] B. Yousefi, Bounded analytic structure of the Banach space of formal power series, *Rend. Circ. Mat. Palermo, serie* II, TomoLi (2002), 403-410.

Source of support: Shiraz University Research Council, Iran, Conflict of interest: None Declared