International Journal of Mathematical Archive-4(9), 2013, 132-133 Available online through www.ijma.info ISSN 2229-5046
 MAZUR-ULAM THEOREM AND TWO-ISOMETRIC MAPS

K. Hedayatian*
Department of Mathematics, College of Sciences, Shiraz University, Shiraz 71454, Iran.

(Received on: 18-08-13; Revised \& Accepted on: 11-09-13)

Abstract

A map f from the real normed space χ into itself is called a two-isometry if $\left\|f^{2}(x)-f^{2}(y)\right\|^{2}-2\|f(x)-f(y)\|^{2}+\|x-y\|^{2}=0$

for all x and y in χ. It is shown that every surjective two-isometry is affine, that is, $f((1-t) x+t y)=(1-t) f(x)+t f(y)$
for all x and y in χ and $0 \leq t \leq 1$.
2010 Mathematics Subject Classification: 47B99.
Keywords and Phrases: Mazur-Ulam Theorem; two-isometric Maps.

INTRODUCTION

Let χ be a real normed space. A map $f: \chi \rightarrow \chi$ is an isometry, if $\|f(x)-f(y)\|=\|x-y\|$ for all $x, y \in \chi$. It is called a two-isometry, if

$$
\begin{equation*}
\mid f^{2}(x)-f^{2}(y)\left\|^{2}-2\right\| f(x)-f(y)\left\|^{2}+\right\| x-y \|^{2}=0 \tag{1}
\end{equation*}
$$

for all $x, y \in \chi$. Also, f is an affine map, if

$$
f((1-t) x+t y)=(1-t) f(x)+t f(y)
$$

for all $x, y \in \chi$ and $0 \leq t \leq 1$. Observe that f is affine if and only if the map $T: \chi \rightarrow \chi$ defined by $T(x)=f(x)-f(0)$ is linear. The Mazur-Ulam theorem states that every bijective (equivalently, surjective) isometry is affine. This result was proved by Mazur and Ulam in [3]; their proof is also brought in the books [1] and [2]. A simple proof of this theorem is given in [4] which is based on the ideas in [5]. In this note we see that this theorem holds for surjective two-isometries. Let $\chi=\ell^{2}$ and $\left\{e_{n}: n \geq 0\right\}$ be the standard basis for χ. It is easily seen that the unilateral weighted shift S on χ defined by $S e_{n}=\sqrt{\frac{n+2}{n+1}} e_{n+1}$ is a two-isometry but not an isometry.

MAIN RESULTS

Theorem 1: Every surjective two-isometric map is an affine map.
Proof: Suppose that $f: \chi \rightarrow \chi$ is a two-isometry. Substituing x by $f^{k}(x)$ and y by $f^{k}(y)$ in (1) we get

$$
\left\|f^{k+2}(x)-f^{k+2}(y)\right\|^{2}-\left\|f^{k+1}(x)-f^{k+1}(y)\right\|^{2} \leq\left\|f^{k+1}(x)-f^{k+1}(y)\right\|^{2}-\left\|f^{k}(x)-f^{k}(y)\right\|^{2} .
$$

Corresponding author: K. Hedayatian*

Department of Mathematics, College of Sciences, Shiraz University, Shiraz 71454, Iran. E-mail: hedayati@shirazu.ac.ir

K. Hedayatian*/ Mazur-Ulam Theorem and Two-isometric Maps/IJMA- 4(9), Sept.-2013.

Therefore,

$$
\begin{aligned}
0 \leq\left\|f^{n}(x)-f^{n}(y)\right\|^{2} & =\sum_{k=1}^{n}\left[\left\|f^{k}(x)-f^{k}(y)\right\|^{2}-\left\|f^{k-1}(x)-f^{k-1}(y)\right\|^{2}\right]+\|x-y\|^{2} \\
& \leq n\left(\|f(x)-f(y)\|^{2}-\|x-y\|^{2}\right)+\|x-y\|^{2} \\
& =n\|f(x)-f(y)\|^{2}+(1-n)\|x-y\|^{2}
\end{aligned}
$$

which implies that $\frac{n-1}{n}\|x-y\|^{2} \leq\|f(x)-f(y)\|^{2}$. Now, let $n \rightarrow \infty$ to obtain
$\|f(x)-f(y)\| \geq\|x-y\|$
for all $x, y \in \chi$. Since f is one to one and surjective it follows from (1) that
$\left\|f^{-2}(x)-f^{-2}(y)\right\|^{2}-2\left\|f^{-1}(x)-f^{-1}(y)\right\|^{2}+\|x-y\|^{2}=0$
for all $x, y \in \chi$. Therefore, f^{-1} is a two-isometry and by the above argument
$\left\|f^{-1}(x)-f^{-1}(y)\right\| \geq\|x-y\|$
for all $x, y \in \chi$. Now (2) and (3) imply that f is an isometry and by the Mazur -Ulam theorem f is affine.
For $m \geq 1$, a map $f: \chi \rightarrow \chi$ is an m-isometry, if
$\sum_{k=0}^{m}(-1)^{k}\binom{m}{k}\left\|f^{m-k}(x)-f^{m-k}(y)\right\|^{2}=0$
for all $x, y \in \chi$. Observe that 1 -isometry is, indeed, an isometry and every $m-1$-isometry is an m-isometry. A natural question which arise runs as follows:

Question: Is every surjective m - isometric map an affine map?

ACKNOWLEDGMENTS

This research was in part supported by a grant from Shiraz University Research Council.

REFERENCES

[1] S. Banach, The’orie des ope' rations line'aires , Warsaw, 1932.
[2] Y. Benyamini, and J. Lindenstrauss, Geometric nonlinear functional analysis I, AMS Colloquim Publications 48, 2000.
[3] S. Mazur and S. Ulam, Sur les transformationes isome'triques d'espaces vectoriels norme's , C. R. Acad. Sci. Paris 194 (1932), 946-948.
[4] J.Väisälä , A proof of the Mazur-Ulam theorem, The American Mathematical Monthly, 110 (2003), 633-635.
[5] A. Vogt, Map which preserve equality of distance, Studia Math. 45 (1973), 43-48.
Source of support: Shiraz University Research Council, Iran, Conflict of interest: None Declared

