## MAZUR-ULAM THEOREM AND TWO-ISOMETRIC MAPS

# K. Hedayatian\*

Department of Mathematics, College of Sciences, Shiraz University, Shiraz 71454, Iran.

(Received on: 18-08-13; Revised & Accepted on: 11-09-13)

#### ABSTRACT

 $oldsymbol{A}$  map f from the real normed space  $\,\chi\,$  into itself is called a two-isometry if

$$||f^{2}(x)-f^{2}(y)||^{2}-2||f(x)-f(y)||^{2}+||x-y||^{2}=0$$

for all x and y in  $\chi$ . It is shown that every surjective two-isometry is affine, that is,

$$f((1-t)x + ty) = (1-t)f(x) + tf(y)$$

for all x and y in  $\chi$  and  $0 \le t \le 1$ .

2010 Mathematics Subject Classification: 47B99.

Keywords and Phrases: Mazur-Ulam Theorem; two-isometric Maps.

#### INTRODUCTION

Let  $\chi$  be a real normed space. A map  $f: \chi \to \chi$  is an isometry, if ||f(x) - f(y)|| = ||x - y|| for all  $x, y \in \chi$ . It is called a two-isometry, if

$$|f^{2}(x) - f^{2}(y)|^{2} - 2||f(x) - f(y)||^{2} + ||x - y||^{2} = 0$$
 (1)

for all  $x, y \in \chi$  . Also, f is an affine map, if

$$f((1-t)x + ty) = (1-t)f(x) + tf(y)$$

for all  $x,y\in\chi$  and  $0\le t\le 1$ . Observe that f is affine if and only if the map  $T:\chi\to\chi$  defined by T(x)=f(x)-f(0) is linear. The Mazur-Ulam theorem states that every bijective (equivalently, surjective) isometry is affine. This result was proved by Mazur and Ulam in [3]; their proof is also brought in the books [1] and [2]. A simple proof of this theorem is given in [4] which is based on the ideas in [5]. In this note we see that this theorem holds for surjective two-isometries. Let  $\chi=\ell^2$  and  $\{e_n:n\ge 0\}$  be the standard basis for  $\chi$ . It is easily seen that

the unilateral weighted shift S on  $\chi$  defined by  $Se_n = \sqrt{\frac{n+2}{n+1}} e_{n+1}$  is a two-isometry but not an isometry.

### MAIN RESULTS

**Theorem 1:** Every surjective two-isometric map is an affine map.

**Proof:** Suppose that  $f: \chi \to \chi$  is a two-isometry. Substituting x by  $f^k(x)$  and y by  $f^k(y)$  in (1) we get

$$||f^{k+2}(x) - f^{k+2}(y)||^2 - ||f^{k+1}(x) - f^{k+1}(y)||^2 \le ||f^{k+1}(x) - f^{k+1}(y)||^2 - ||f^{k}(x) - f^{k}(y)||^2.$$

Corresponding author: K. Hedayatian\*
Department of Mathematics, College of Sciences, Shiraz University, Shiraz 71454, Iran.
E-mail: hedayati@shirazu.ac.ir

Therefore.

$$0 \le ||f^{n}(x) - f^{n}(y)||^{2} = \sum_{k=1}^{n} [||f^{k}(x) - f^{k}(y)||^{2} - ||f^{k-1}(x) - f^{k-1}(y)||^{2}] + ||x - y||^{2}$$

$$\le n(||f(x) - f(y)||^{2} - ||x - y||^{2}) + ||x - y||^{2}$$

$$= n ||f(x) - f(y)||^{2} + (1 - n)||x - y||^{2}$$

which implies that 
$$\frac{n-1}{n} ||x-y||^2 \le ||f(x)-f(y)||^2$$
. Now, let  $n \to \infty$  to obtain  $||f(x)-f(y)|| \ge ||x-y||$  (2)

for all  $x, y \in \chi$ . Since f is one to one and surjective it follows from (1) that

$$||f^{-2}(x) - f^{-2}(y)||^2 - 2||f^{-1}(x) - f^{-1}(y)||^2 + ||x - y||^2 = 0$$

for all  $x, y \in \chi$ . Therefore,  $f^{-1}$  is a two-isometry and by the above argument

$$|| f^{-1}(x) - f^{-1}(y) || \ge || x - y ||$$
(3)

for all  $x, y \in \chi$ . Now (2) and (3) imply that f is an isometry and by the Mazur-Ulam theorem f is affine.

For  $m \ge 1$ , a map  $f: \chi \to \chi$  is an m-isometry, if

$$\sum_{k=0}^{m} (-1)^{k} \binom{m}{k} \| f^{m-k}(x) - f^{m-k}(y) \|^{2} = 0$$

for all  $x, y \in \chi$ . Observe that 1-isometry is, indeed, an isometry and every m-1 - isometry is an m-isometry. A natural question which arise runs as follows:

**Question:** Is every surjective m - isometric map an affine map?

#### **ACKNOWLEDGMENTS**

This research was in part supported by a grant from Shiraz University Research Council.

## REFERENCES

- [1] S. Banach, The'orie des *ope'rations line'aires*, Warsaw, 1932.
- [2] Y. Benyamini, and J. Lindenstrauss, *Geometric nonlinear functional analysis I*, AMS Colloquim Publications 48, 2000.
- [3] S. Mazur and S. Ulam, Sur les transformationes isome'triques d'espaces vectoriels norme's, C. R. Acad. Sci. Paris 194 (1932), 946-948.
- [4] J. Väisälä, A proof of the Mazur-Ulam theorem, The American Mathematical Monthly, 110 (2003), 633-635.
- [5] A. Vogt, Map which preserve equality of distance, Studia Math. 45 (1973), 43-48.

Source of support: Shiraz University Research Council, Iran, Conflict of interest: None Declared