International Journal of Mathematical Archive-4(10), 2013, 30-35 MAAvailable online through www.ijma.info ISSN 2229 - 5046

Čech w - Closed sets in closure spaces

I. Arockiarani Department of Mathematics, Nirmala College for Women, Coimbatore, india

D. Sasikala*

Department of Mathematics with Computer Applications, Nirmala College for Women, Coimbatore, India.

(Received on: 09-10-12; Revised & Accepted on: 29-11-12)

ABSTRACT

T he purpose of this paper is to define and study w- closed sets in closure spaces. We also introduce the concept of w - continuous functions and investigate their properties.

Key Words: w- closed sets, w - continuous maps, w- closed maps, T_w space.

AMS Classification: 54A05.

1. INTRODUCTION

Čech closure spaces were introduced by E. Čech [3] and then studied by many authors [4][5][7][8]. The concept of generalized closed sets and generalized continuous maps of topological spaces were extended to closure spaces in [2]. N.Levine [6] introduced semi- open sets and semi-continuity. P. Sundaram and M. Sheik John [9] introduced w - closed sets in topological spaces.

In this paper, we introduce and study the notion of w - closed sets in closure spaces. We define a new class of space namely T_w -space and their properties are studied. Further, we introduce a class of w- continuous maps and w- closed maps and their characterizations are obtained.

PRELIMINARIES

A map k: $P(X) \rightarrow P(X)$ defined on the power set P(X) of a set X is called a closure operator on X and the pair (X, k) is called a closure space if the following axioms are satisfied.

(i) $k(\phi) = \phi$, (ii) $A \subseteq k(A)$ for every $A \subseteq X$ (iii) $k(A \cup B) = k(A) \cup k(B)$ for all $A, B \subseteq X$

A closure operator k on a set X is called idempotent if k(A) = k[k(A)] for all $A \subseteq X$.

Definitions: 1.1 A subset A of a čech closure space (X, k) is said to be

- (i) čech closed if k(A) = A
- (ii) čech open if k(X-A) = X-A
- (iii) čech semi-open if $A \subseteq k$ int (A)
- (iv) čech pre-open if $A \subseteq int [k(A)]$
- (v) čech pre-closed if $k[int (A)] \subseteq A$

Definition: 1.2 A čech closure space (Y, l) is said to be a subspace of (X, k) if $Y \subseteq X$ and $k(A) = k(A) \cap Y$ for each subset $A \subseteq Y$. If Y is closed in (X, k) then the subspace (Y, l) of (X, k) is said to be closed too.

Definition: 1.3 Let (X, k) and (Y, l) be čech closure spaces. A map f: $(X, k) \rightarrow (Y, k)$ is said to be continuous, if f (kA) $\subseteq k$ f(A) for every subset A \subseteq F.

Corresponding author: D. Sasikala*

Department of Mathematics with Computer Applications, Nirmala College for Women, Coimbatore, India.

Definition: 1.4 Let (X, k) and (Y, l) be čech closure spaces. A map f: $(X, k) \rightarrow (Y, l)$ is said to be closed (resp. open) if f(F) is a closed (resp. open) subset of (Y, I) whenever F is a closed (resp. open) subset of (X, k).

Definition: 1.5 The product of a family $\{(X_{\alpha}, k_{\alpha}); \alpha \in I\}$ of closure spaces denoted by $\prod (X_{\alpha}, k_{\alpha})$ is the closure

space $(\prod (X_{\alpha}, k))$ where $\prod X_{\alpha}$ denotes the Cartesian product of sets X_{α} , $\alpha \in I$ and k is čech closure operator

generated by the projections π_{α} : $\prod (X_{\alpha}, k_{\alpha}) \rightarrow (X_{\alpha}, k_{\alpha})$, $\alpha \in I$ i.e defined by $k(A) = \prod k_{\alpha} \pi_{\alpha}(A)$ for each $A \subseteq \prod X_{\alpha}$

Clearly, if $\{(X_{\alpha}, k_{\alpha}): \alpha \in I\}$ is a family of closure spaces, then the projection map $\pi_{\beta}: \prod (X_{\alpha}, k_{\alpha}) \rightarrow (X_{\beta}, k_{\beta})$ is closed

and continuous for every $\beta \in I$.

Proposition: 1.6 Let $\{(X_{\alpha}, k_{\alpha}): \alpha \in I\}$ be a family of closure spaces, let $\beta \in I$ and $F \subseteq X_{\beta}$. Then F is a closed subset of ((X_{α}, k_{α}) if and only if F x $\prod X_{\alpha}$ is a closed subset of $\prod (X_{\alpha}, k_{\alpha})$. $\alpha \neq \beta$ $\alpha \in I$

Proposition: 1.7 Let {(X_{α}, k_{α}): $\alpha \in I$ } be a family of closure spaces, let $\beta \in I$ and $G \subseteq X_{\beta}$. Then G is a open subset of (X_{β},k_{β}) if and only if G x $\prod X_{\alpha}$ is an open subset of $\prod (X_{\alpha},k_{\alpha})$. α≠β α∈I

 $\alpha \in I$

2. Čech w - closed sets

Definition 2.1: Let (X, k) be a čech closure space. A subset $A \subseteq X$ is called a w - closed set if $K(A) \subseteq G$ whenever G is a semi-open subset of (X, k) with $A \subseteq G$. A subset A of X is called a w - open set if its complement is a w - closed subset of (X, k).

Proposition: 2.2 Every closed set is w - closed.

Proof: Let G be a semi-open subset of (X, k) such that $A \subseteq G$. Since A is a closed set, we have K (A) = $A \subseteq G$. Therefore A is w-closed.

The converse need not true as seen in the following example:

Example: 2.3 Let $X = \{a, b, c\}$ and define a closure k on X by $k\phi = \phi$, $k\{a\} = \{a\}$; $k\{b\} = \{b, c\}$; $k\{c\} = k\{a, c\} = k\{a, c\} = k\{a, c\}$ $\{a, c\}$; $k\{a, b\} = k\{b, c\} = kX = X$. Then $\{a, b\}$ is w - closed but it is not closed.

Proposition: 2.4 Let (X, k) be a čech closure space. If A and B are w - closed subset of (X, k), then $A \cup B$ is also w closed.

Proof: Let G be a semi - open subset of (X, k) such that $A \cup B \subseteq G$, then $A \subseteq G$ and $B \subseteq G$. Since A and B are w closed, we have k (A) \subseteq G, and k (B) \subseteq G. Consequently, k (A \cup B) = k(A) \cup k(B) \subseteq G. Therefore A \cup B is w - closed.

Remark: The intersection of two w- closed sets need not be w - closed as can be seen by the following example.

Example: 2.5 Let $X = \{a, b, c\}$ and define a closure k on X by $k\phi = \phi$, $k\{a\} = \{a, b\}$; $k\{b\} = k\{c\} = k\{b, c\} = \{b, c\}$; $k\{a, b\} = k\{a, c\} = kX = X$. If $A = \{a, b\}$ and $B = \{a, c\}$, then $\{a, b\} \cap \{a, c\} = \{a\}$ which is not w - closed.

Proposition: 2.6 Let (X, k) be a čech closure space. If A is w - closed and F is semi - closed in (X, k), then A \cap F is wclosed.

Proof: Let G be a semi - open subset of (X, k) such that $A \cap F \subseteq G$, Then $A \subseteq G \cup (X-F)$ and so, Since A is w closed, k (A) \subseteq G \cup (X-F), Then k (A) \cap F \subseteq G, Since F is semi - closed, k (A \cap F) \subseteq G. Therefore A \cap F is w closed.

Proposition: 2.7 Let (Y, l) be a closed subspace of (X, k). If F is a w - closed subset of (Y, l), then F is a w - closed subset of (X, k).

I. Arockiarani and D. Sasikala*/ Čech w - Closed sets in closure spaces/IJMA- 4(10), Oct.-2013.

Proof: Let G be semi - open set of (X, k) such that $F \subseteq G$. Since F is w - closed and $G \cap F$ is semi - open k $(F) \cap Y \subseteq G$, But Y is closed subset of (X, k) and k $(F) \subseteq G$, where G is a semi-open set. Therefore F is a w- closed set of (X, k).

The following statement is obvious

Proposition: 2.8 Let (X, k) be a čech closure space and let $A \subseteq X$. If A is both semi - open and w - closed then A is closed.

Proposition: 2.9 Let (X, k) be a čech closure space and let k be idempotent. If A is a w - closed subset of (X, k) such that $A \subseteq B \subseteq k$ (A), then B is a w - closed subset of (X, k).

Proof: Let G be a semi - open subset of (X, k) such that $B \subseteq G$. Then $A \subseteq G$, Since A is w - closed, $k(A) \subseteq G$. As G is idempotent, $k(B) \subseteq k(k(A)) = k(A) \subseteq G$, Hence B is w - closed.

Proposition: 2.10 Let (X, k) be a čech closure space and let $A \subseteq X$. If A is w - closed, then k(A) - A has no non empty semi - closed subset.

Proof: Suppose that A is w- closed. Let F be a semi - closed set of k (A) – A. Then $F \subseteq k$ (A) \cap (X– A), so A \subseteq X-F. Consequently, since A is w – closed $F \subseteq X$ - k (A), Since $F \subseteq k$ (A), $F \subseteq (X - k (A)) \cap k$ (A) = ϕ , thus $F = \phi$. Therefore k (A) – A contains no non empty semi - closed subset.

Proposition: 2.11 Let(X, k) be a čech closure space. A set $A \subseteq X$ is w - open if and only if $F \subseteq X - k$ (X-A) whenever F is semi - closed subset of (X, k) with $F \subseteq A$.

Proof: Suppose that A is w- open and F be a semi - closed subset of (X, k) such that $F \subseteq A$. Then $X - A \subseteq X - F$. But X-A is w- closed and X-F is semi -open. It follows that $k(X-A) \subseteq X - F$. (i.e.) $F \subseteq X - k(X-A)$.

Conversely, Let G be a semi - open subset of (X, k) such that X-A \subseteq G. Then X-G \subseteq A. Therefore X-U \subseteq k (X-A). Consequently, k (X-A) \subseteq G. Hence X- A is w- closed and so A is w- open.

Remark: 2.12 The union of two w- open sets need not be w- open.

Proposition: 2.13 Let(X, k) be a čech closure space. If A is w- open and B is semi -open in (X, k), then $A \cup B$ is w- open.

Proof: Let F be a semi- closed subset of (X, k) such that $F \subseteq A \cup B$. Then X- $(A \cup B) \subseteq X$ -F. Hence $(X-A) \cap (X-B) \subseteq X$ -F. By proposition 2.6, we have, $(X-A) \cap (X-B)$ is w- closed. Therefore k $[(X-A) \cap (X-B)] \subseteq X$ -F. Consequently, F $\subseteq X$ - k $[(X-A) \cap (X-B)] = X$ - k $[X - \cap (A \cup B)]$. Since $F \subseteq X$ - k [(X-A)], then A is w- open. Therefore A \cup B is w- open.

Proposition: 2.14 Let(X, k) be a čech closure space. If A and B are w- open of (X, k), then $A \cap B$ is w – open.

Proof: Let F be a semi- closed subset of (X, k) such that $F \subseteq A \cap B$. Then $X - (A \cap B) \subseteq X - F$. Consequently, $(X-A) \cup (X-B) \subseteq X - F$. By proposition 2.4, $(X-A) \cup (X-B)$ is w - closed. Thus, $k [(X-A) \cup (X-B)] \subseteq X - F$. Hence $F \subseteq X - k[(X-A) \cup (X-B)] \subseteq X - (X - (A \cap B))$, By proposition 2.11, $A \cap B$ is w - open.

Proposition: 2.15 Let(X, k) be a čech closure space. If A is w- open subsets of (X, k), then X = G whenever G is semi open and $(X - k (X - A)) \cup (X - A) \subseteq G$.

Proof: Suppose that A is w – open. Let G be an semi open subset of (X, k) such that $(X - k (X - A)) \cup (X - A) \subseteq G$. Then $X - G \subseteq X$ -[$(X - k (X - A)) \cup (X - A)$]. Therefore $X - G \subseteq k (X - A) \cap A$ or equivalently, $X - G \subseteq k(X - A) - (X - A)$. But X - G is semi closed and X - A is w – closed. Then by proposition 2.10, $X - G = \phi$. Consequently X = G.

Proposition: 2.16 Let (X, k) be a čech closure space and let $A \subseteq X$. If A is w - closed, then k (A) - A is w - open.

Proof: Suppose that A is w - closed. Let F be a semi - closed set of (X, k) such that $F \subseteq k(A) - A$. By proposition 2.10 k (A) - A = ϕ , and hence $F \subseteq X$ - [(X - k (X - A)). By proposition 2.11 k (A) - A is w - open.

Proposition: 2.17 Let $\{(X_{\alpha}, k_{\alpha}): \alpha \in I\}$ be a family of closure spaces, let $\beta \in I$ and $G \subseteq X_{\beta}$. Then G is a w - open subset of (X_{β}, k_{β}) if and only if $G \times \prod X_{\alpha}$ is a w - open subset of $\prod (X_{\alpha}, k_{\alpha})$.

 $\alpha \in I$

 $\alpha \neq \beta$ $\alpha \in I$

Proof: Let F be a w - closed subset of (X_{α}, k_{α}) such that $F \subseteq G \times \prod_{\alpha} X_{\alpha}$, Then $\pi_{\beta}(F) \subseteq G$. Since $\pi_{\beta}(F)$ is semi - closed and G is w - open in $(X_{\beta}, k_{\beta}), \ \pi_{\beta}(F) \subseteq X_{\beta} - k_{\beta} \ (X_{\beta}-G).$ Therefore $F \subseteq \pi_{\beta}^{-1}(X_{\beta} - k_{\beta} \ (X_{\beta}-G)) = \prod X_{\alpha} - \prod k_{\alpha} \pi_{\alpha} \ (\prod X_{\beta} - k_{\beta} \ (X_{\beta} - G)) = \prod X_{\alpha} - \prod K_{\alpha} \pi_{\alpha} \ (\prod X_{\beta} - K_{\beta} \ (X_{\beta} - G)) = K_{\beta} - K_{\beta} \ (X_{\beta} - G) = K_{\beta} - K_{\beta} \ (X_{\beta} - G) = K_{\beta} - K_{\beta} \ (X_{\beta} - G) = K_{\beta} - K_{\beta} - K_{\beta} \ (X_{\beta} - G) = K_{\beta} - K_{\beta}$ α∈I $X_{\alpha} - G \times \prod_{\alpha \neq \beta \atop \alpha \neq 1} X_{\alpha} \text{), hence } G \times \prod_{\alpha \neq \beta \atop \alpha \neq 1} X_{\alpha} \text{ is a w- closed subset of } \prod_{\alpha = 1} (X_{\alpha}, k_{\alpha}).$

Conversely, Let F be a semi - closed subset of (X_{β}, k_{β}) such that $F \subseteq G$. Then $F \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha} \subseteq G \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}$). Since $F \times \prod_{\alpha \neq \beta} X_{\alpha} \subseteq G \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}$.

$$\prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha} \text{ is semi - closed and } G \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha} \text{ is w- open in } \prod_{\alpha \in I} (X_{\alpha}, k_{\alpha}).$$

$$F \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha} \subseteq \prod_{\alpha \in I} X_{\alpha} - \prod_{\alpha \in I} k_{\alpha} \pi_{\alpha} (\prod_{\alpha \in I} X_{\alpha} - G \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}).By \text{ proposition, 2.11. Therefore}$$

$$\prod_{\alpha \in I} k_{\alpha} \pi_{\alpha} (X_{\beta} - G) \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}) \subseteq \prod_{\alpha \in I} X_{\alpha} - F \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha} = (X_{\beta} - F) \prod_{\alpha \in I} X_{\alpha}$$

Consequently, $k_{\beta} (X_{\beta} - G) \subseteq X_{\beta} - F$ implies $F \subseteq X_{\beta} - k_{\beta} (X_{\beta} - G)$. Hence G is a w - open subset of (X_{β}, k_{β}) .

Proposition: 2.18 Let $\{(X_{\alpha}, k_{\alpha}): \alpha \in I\}$ be a family of closure spaces, let $\beta \in I$ and $F \subseteq X_{\beta}$. Then F is a w- closed subset of (X_{β}, k_{β}) if and only if $F \times \prod X_{\alpha}$ is a w - closed subset of $\prod (X_{\alpha}, k_{\alpha})$.

Proof: Let F be a w - closed subset of (X_{β}, k_{β}) . Then X_{β} -F is an w - open subset of (X_{β}, k_{β}) . By proposition 2.17, $(X_{\beta}$ -F) $\times \prod_{\alpha \neq \beta \atop \alpha \in I} X_{\alpha} = \prod_{\alpha \neq \beta \atop \alpha \in I} X_{\alpha} - F \times \prod_{\alpha \neq \beta \atop \alpha \in I} X_{\alpha}$ is a w - open subset of $\prod_{\alpha \in I} (X_{\alpha}, k_{\alpha})$. Hence $F \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}$ is a w - closed of $\prod_{\alpha \in I} (X_{\alpha}, k_{\alpha})$.

Conversely, let G be a w - open subset of (X_{β}, k_{β}) such that $F \subseteq G$, Then $F \times \prod_{\alpha} X_{\alpha}$

α∈I

$$\subseteq G \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha} \text{ .Since } F \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha} \text{ is } w \text{ - closed and } G \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha} \text{ is semi-open in} \prod_{\alpha \in I} (X_{\alpha}, k_{\alpha}),$$

$$\prod_{\substack{\alpha \in I \\ \alpha \in I}} k_{\alpha} \pi_{\alpha} (F \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\beta}) \subseteq G \times \prod_{\alpha \in I} X_{\alpha} \text{ .Consequently, } k_{\beta}(F) \subseteq G. \text{ Therefore, F is a } w \text{ - closed subset of } (X_{\beta}, k_{\beta}).$$

Proposition: 2.19 Let $\{(X_{\alpha}, k_{\alpha}): \alpha \in I\}$ be a family of closure spaces, For each $\beta \in I$ and let $\pi_{\beta}: \prod X_{\alpha} \to X_{\beta}$ be a

projection map. Then (i) If F is a w - closed subset of $\prod (X_{\alpha}, k_{\alpha})$, then $\pi_{\beta}(F)$ is a w- closed subset of (X_{β}, k_{β}) . (ii) If F is a w-closed subset of (X_{β}, k_{β}) , then $\pi_{\beta}^{-1}(F)$ is a w- closed subset of $\prod (X_{\alpha}, k_{\alpha})$,

Proof: Let F be a w-closed subset of $\prod (X_{\alpha}, k_{\alpha})$ and let G be a semi-open subset of (X_{β}, k_{β}) such that $\pi_{\beta}(F) \subseteq G$. Then $F \subseteq \pi_{\beta}^{-1}(G) = G \times \prod_{\alpha \in I} X_{\alpha}. \text{ Since F is a w - closed and } G \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\beta} \text{ is semi - open, } \prod_{\alpha \in I} k_{\alpha}\pi_{\alpha}(F) \subseteq G \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}. \text{ Consequently } X_{\alpha}$

 $k_{\beta}\pi_{\beta}(F) \subseteq G.$

 $\alpha \in I$

© 2013, IJMA. All Rights Reserved

Hence $\pi_{\beta}(F)$ is a w - closed subset of (X_{β}, k_{β}) .

(ii) Let F be a w - closed subset of (X_{β}, k_{β}) , Then $\pi_{\beta}^{-1}(F) = F \times \prod_{\alpha \neq \alpha} X_{\alpha}$

. Therefore, we have, $F \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}$ is a w - closed subset of $\prod_{\alpha \in I} (X_{\alpha}, k_{\alpha})$. Therefore, $\pi_{\beta}^{-1}(F)$ is a w - closed subset of

$$\prod_{\alpha \in I} (X_{\alpha}, k_{\alpha}).$$

Definition: 2.20 A closure space (X, k) is said to be a Tw -space if every w-closed subset of (X, k) is closed.

Proposition: 2.21 Let (X, k) be closure space. Then

(i) If (X, k) is a T_w -space then every singleton subset of X is either semi - closed or open. (ii) If every singleton subset of X is a semi - closed subset of (X, k), then (X, k) is a T_w -space.

Proof:

- Suppose that (X. k) is a T_w -space. Let x∈X and assume that{x} is not semi closed. Then X-{x} is not semi open. This implies X-{x} is w closed since X is the only semi open set which contains X-{x}. Since (X, k) is a T_w space, X-{x} is closed or equivalently {x} is open.
- ii. Let A be a w closed subset of (X, k). Suppose that $x \notin A$. Then $\{x\} \subseteq X \{x\}$.

Since A is w - closed and X-{x} is semi – open, k (A) \subseteq X-{x}, (i.e) {x} \subseteq X- k (A).

Hence $x \notin k$ (A) and thus k (A) \subseteq A. Therefore A is closed subset of (X, k). Hence (X, k) is a T_w-space.

3. Čech w - continuous maps

Definition: 3.1 Let (X, k) and (Y, l) be a čech closure space. A mapping f: $(X, k) \rightarrow (Y, l)$ is said to be w - continuous, if f⁻¹(F) is w - closed set of (X, k) for every closed set F in (Y, l).

Proposition: 3.2 Every continuous map is w - continuous.

Proof: Let $f : (X, k) \to (Y, l)$ be continuous, Let F be a closed set of (Y, l).Since f is continuous, then $f^{-1}(F)$ is θ - closed set of (X, k).Since every closed set is w - closed of (X, k), we have $f^{-1}(F)$ is a w - closed set of (X, k). Therefore f is a w - continuous map.

Proposition: 3.3 Let (X, k) be a T_w space and let (Y, l) be a čech closure space. If f: $(X, k) \rightarrow (Y, l)$ is said to be semi-continuous, then f is w - continuous,

Proof: Let F be a closed subset of (Y, 1).Since F is semi - continuous, then $f^{-1}(F)$ is semi - closed set of (X, k).Since (X, k) is a T_w space, $f^{-1}(F)$ is a w- closed set of (X, k). Hence, f is w - continuous,

The following statement is obvious.

Proposition: 3.4 Let (X, k), (Y, l) and (Z, m) be closure spaces. If f: $(X, k) \rightarrow (Y, l)$ is w - continuous and g: $(Y, l) \rightarrow (Z, m)$ is continuous then $g \circ f$: $(X, k) \rightarrow (Z, m)$ is w - continuous.

Proposition: 3.5 Let, (Z, m) be closure spaces and let (Y, l) be a T_{w} space .If f: (X, k) \rightarrow (Y, l) and g: (Y, l) \rightarrow (Z, m) are w - continuous, then $g \circ f$: (X, k) \rightarrow (Z, m) is w - continuous.

Proof: Let F be a closed subset of (Z, w).Since g is w - continuous, then $g^{-1}(F)$ is w - closed set of (Y, l).Since (Y, l) is a T_w space, $g^{-1}(F)$ is a closed set of (Y, l) which implies that $(g \circ f)^{-1}(F)$ is a w – closed subset of (X, k). Hence, $g \circ f$ is w - continuous,

Proposition: 3.6 Let $\{(X_{\alpha}, k_{\alpha}): \alpha \in I\}$ and $\{(Y_{\alpha}, l_{\alpha}): \alpha \in I\}$ be families of closure spaces. For each $\alpha \in I$, let $f_{\alpha}: X_{\alpha} \to Y_{\alpha}$ be a map defined by $f((x_{\alpha})_{\alpha \in I}) = (f_{\alpha}(x_{\alpha})_{\alpha \in I})$. If $f: \prod_{\alpha \in I} (X_{\alpha}, k_{\alpha}) \to \prod_{\alpha \in I} (Y_{\alpha}, l_{\alpha})$ is we defined by $f((x_{\alpha})_{\alpha \in I}) = (f_{\alpha}(x_{\alpha})_{\alpha \in I})$. If $f: \prod_{\alpha \in I} (X_{\alpha}, k_{\alpha}) \to \prod_{\alpha \in I} (Y_{\alpha}, l_{\alpha})$ is we defined by $f((x_{\alpha})_{\alpha \in I}) = (f_{\alpha}(x_{\alpha})_{\alpha \in I})$.

continuous, then f_{α} : $(X_{\alpha}, k_{\alpha}) \rightarrow (Y_{\alpha}, l_{\alpha})$ is w - continuous for each $\alpha \in I$.

Proof: Let $\beta \in I$ and F be a closed subset of (Y_{β}, l_{β}) . Then F x $\prod_{\alpha \neq \beta} Y_{\alpha}$ is a closed subset of $\prod (Y_{\alpha}, l_{\alpha})$, Since f is w -

continuous, $f^{-1}(F \ge \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} Y_{\alpha}) = f_{\beta}^{-1}(F) \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}$ is a w - closed subset of $\prod_{\alpha \in I} (X_{\alpha}, k_{\alpha})$. By proposition 2.18, $f_{\beta}^{-1}(F)$ is a w-

closed subset of (X_{β}, k_{β}) , Hence f_{β} is w - continuous.

Definition: 3.7 Let (X, k) and (Y, l) be closure spaces. A map f: $(X, k) \rightarrow (Y, l)$ is called w – irresolute if $f^{1}(F)$ is w – closed set in (X, k) for every w – closed set F in (Y, l).

Definition: 3.8 Let (X, k) and (Y, l) be closure spaces. A map f: $(X, k) \rightarrow (Y, l)$ is called w-closed if f(F) is a w - closed subset of (Y, l) for every closed set F of (X, k).

Proposition: 3.9 Let (X, k), (Y, l) and (Z, m) be closure spaces. If f: $(X, k) \rightarrow (Y, l)$ and g : $(Y, l) \rightarrow (Z, m)$ be map. Then

(i) If f is closed and g is w - closed, then $g \circ f$ is w - closed

(ii) If $g \circ f$ is w - closed and f is continuous and surjective, then g is w - closed.

(iii) If $g \circ f$ is closed and g is w - continuous and injective, then f is w - closed.

Proposition: 3.10 A map f: $(X, k) \rightarrow (Y, l)$ is w – closed if and only if, for each subset B of Y and each open subset G with $f^{-1}(B) \subseteq G$, there is a w - open subset V of (Y, l) such that $B \subseteq V$ and $f^{-1}(V) \subseteq G$.

Proof: Suppose f is w - closed. Let B be a subset of (Y, 1) and G be an open subset of (X, k) such that $f^{-1}(B) \subseteq G$, Then f(X-G) is a w - closed subset of (Y, 1). Let $V = Y \cdot f(X \cdot G)$. Since V is w - open and $f^{-1}(V) = f^{-1}(Y \cdot f(X \cdot G)) = X \cdot f^{-1}(f(X \cdot G)) \subseteq X \cdot (X \cdot G) = G$. Therefore, V is w - open, $B \subseteq V$ and $f^{-1}(V) \subseteq G$.

Conversely, Suppose F is a closed subset of (X, k), Then $f^{1}(Y-f(F)) \subseteq X$ -F and X-F is open. By hypothesis there is a w - open subset V of (Y, l) such that Y-f (F) $\subseteq V$ and $f^{1}(V) \subseteq X$ -F.

Therefore $F \subseteq X$ - $f^{1}(V)$. Hence $Y - V \subseteq f(F) \subseteq f(X - f^{1}(V) \subseteq Y - V \Rightarrow f(F) = Y - V$. Thus f(F) is w - closed. Therefore f is w - closed.

REFERENCES

[1] C. Boonpok, Between closed sets and Generalized closed in closure Spaces, Acta Math Univ, Ostra 16(2008), 3-14

[2] C. Boonpok, Generalized closed sets in čech closed space, Acta math Univ, Apulensis, No-22(2010), 133-140.

[3] E. Čech, Topological Spaces, Topological papers of Eduard Čech, Academia Prague (1968), 436-472.

[4] J. Chvalina, On homeomorphic topologies and equivalent systems, Arch Math.2, Scripta Fac. Sci. Nat. UJEP Brunensis, XII, (1976), 107-116.

[5] J. Chvalina, Stackbases in power sets of neighbourhood spaces preserving the continuity of mappings, Arch Math.2,Scripta Fac.Sci.Nat. UJEP Brunensis, XVII, (1981), 81-86.

[6] N. Levine: Generalized closed sets in topology, Rend, Circ. Mat.Palermo, 19 (1970), 89-96

[7] L. Skula: Systeme von stetigen abbildungen. Caech. Math . J. 17. 92. (1967), 45-52.

[8] J. Slapal, Closure operations for digital topology, Theoret. Comput. Sci., 305, (2003), 457 – 471.

[9] P.Sundaram and Sheik John. Weakly closed sets and weak continuous maps in topological spaces. In proc. 82nd, volume 49, Indian Sci. cong Calcutta, 1995.

Source of support: Nil, Conflict of interest: None Declared