GENERALIZED FIXED POINT RESULTS OF COMPATIBILITY IN PROBABILISTIC METRIC SPACE

M. Ramana Reddy^{1*} and V. Dharmaiah²

¹Asst. Professor of Mathematics, Sreenidhi Institute Of Science & Technology, Hyderabad, India.

² Professor of Mathematics, Osmania University, Hyderabad, India.

(Received on: 07-10-13; Revised & Accepted on: 22-10-13)

ABSTRACT

A common fixed point theorem for self mapping in menger space under weak compatibility in probabilistic metric space.

Keywords: Menger space, weakly compatible mapping, semi-compatible mapping, weakly commuting mapping, common fixed point.

AMS subject classification: 47H10, 54H25.

1. INTRODUCTION

Menger in 1942[9] was first introduced the concept of probabilistic metric space. the theory of probabilistic space is of fundamental importance in probabilistic functional analysis. The most interesting reference in this direction are [1],[2],[3],[4],[5],[6] and many others have proved common fixed point theorems in probabilistic metric space and menger space

2. PRELIMINARIES

Definition 2.1: let R denote the set of real's and R⁺ the non negative real's. A mapping F: R \rightarrow R⁺ is called a distribution function if it non decreasing left continuous with $\inf_{t \in R} F(t) = 0$ and $\sup_{t \in R} F(t) = 1$

Definition2.2: A probabilistic metric space is an ordered pair (X, F) where X is a non empty set, L be set of all distribution function and $F:X \times X \to L$. We shall denote the distribution function by F(p, q) or $F_{p,q}(x)$ will represents the values of F(p, q) at $x \in \mathbb{R}$. The function F(p, q) is assumed to satisfy the following conditions:

- $1. F_{p,q}(x) = 1 \text{ for all } x>0 \Leftrightarrow p=q$
- $2.F_{p,q}(x) = 0$ for every $p,q \in X$
- 3. $F_{p,q}(x) = F_{q,p}(x)$ for every p, $q \in X$

 $4.F_{p,q}(x) = 1$ and $F_{q,r,}(x) = 1$ then $F_{p,r}(x+y) = 1$ for every p,q,r \in X and in metric space (X, d). The metric d induced a mapping F: $XxX \to L$ such that $F_{p,q}(x) = F_{q,p}(x) = H(x-d(p, q))$ for every p, $q \in X$ where H is the distribution defined as

$$H(x) = \begin{cases} 0, & x \le 0 \\ 1, & x > 0 \end{cases}$$

Definition2.3: A mapping *: $[0, 1] \times [0, 1] \rightarrow [0, 1]$ is called t-norm if

- 1. $(a*1) = a \forall a \in [0,1]$
- 2. $(a*b) = 0 \forall a, b \in [0,1]$
- 3. (a*b) = (b*a)
- 4. $(c*d) \ge (a*b)$ for $c \ge a, d \ge b$
- 5. ((a*b)*c) = (a*(b*c))

Corresponding author: M. Ramana Reddy^{2*}

¹Asst. Professor of Mathematics, Sreenidhi Institute Of Science & Technology, Hyderabad, India.

M. Ramana Reddy^{2*} and Darmaiah³/ Generalized Fixed Point Results Of Compatibility In Probabilistic Metric..../ IJMA-4(10), Oct.-2013.

Example:

1. (a*b) = ab

2. (a*b) = min (a, b)

3. (a*b) = max (a+b-1; 0)

Definition 2.4: A menger space is triplet (X, F. *) where (X, F) a PM-space and \triangle is a t-norm with the following condition $F_{u,w}(x+y) \ge F_{u,v}(x)^* F_{v,w}(y)$ this inequality is called menger's triangle inequality.

Example; Let X=R.
$$(a+b) = \min (a, b) \forall a, b \in (0, 1)$$

$$F_{u,v}(x) = \begin{cases} H(x), & for \ u \neq v \\ 1, & u = v \end{cases}$$

where

$$H(x) = \begin{cases} 0, & x \le 0 \\ 1, & x > 0 \end{cases}$$
 Then (X, F, *) is a menger space.

Definition 2.5: let (X, F, *) is menger space with the continuous T-norms t. A sequence $\{P_n\}$ in X, if for every $\in > 0, \lambda > 0$ there exists an intger $N = N(\in, \lambda)$

- (I). Is said to be $P_n = \bigcup p(\in, \lambda)$ for all $n \ge N$. or equivalently, $F_{pP_n}(\in) > 1 \in$ for all $n \ge N$. we write $P_n \to p$ as $n \to \infty$ or $\lim_{n\to\infty} P_n = p$ (II). Is said to Cauchy $F_{P_{nP_m}}(\in) > 1 - \lambda$ for all $n, m \ge N$.
- (III).Is said to be complete if every Cauchy sequence in X is converges to a point in X.

Definition 2.6: A coincidence point of two mappings is a point in their domain having the same image point under both mappings formally, given two mapping f, g: $X \rightarrow Y$ we say that a point x in X is coincidence point of f and g if f(x) = g(x).

Definition 2.7: Let (X, F, *) be a menger space, two mappings f, g: $X \to X$ are said to be weakly compatible if they commute at the coincidence point, i.e the pair {f, g} is weakly compatible pair if and only if fx=gx implies that fgx=gfx

Examples 2.9: Define athe pair A, S, $[0, 1] \rightarrow [0,1]$ by

$$A(x) = \begin{cases} x, & x \le [0,1) \\ 1, & x > [0,1] \end{cases}, \quad S(x) = \begin{cases} 1 - x, & x \le [0,1) \\ 1, & x > [0,1] \end{cases}$$

Then for any $x \in [0, 1]$, ASx = Sax, showing that A, S are weakly compatible maps on [0, 1]

Definition 2.8: Let (X, F, *) be a menger space. two mappings $A, S: X \to X$ are said to be semi compatible if $F_{ASx_n sx}(t) \to 1$ for all t > 0 wherenever $\{x_n\}$ is a sequence in X such that $Ax_n, Sx_n \to p$ for some p in X as $n \to \infty$, it follow that (A, S) is semi compatible and Ay=Sy imply ASy=Say by taking $\{x_n\}$ =y and x=Ay=Sy.

Lemma 2.9: Let (X, F, *) be a menger space. If $\{P_n\}$ be a sequence in menger space, where * is continuous I. $(x*x) \ge x \ \forall \ x \in [0,1]$

II.1. $\exists k \in (0,1)$ such that x > 0 and $n \in N$ $F_{pn,pn+1}(kx) \ge F_{pn-1,pn}(x)$. Then $\{P_n\}$ is Cauchy sequence.

Lemma 2.10: $\exists k \in (0,1)$ such that $F_{x,y}(kt) \ge F_{y,x}(t) \ \forall x,y \in X \ and \ k > 0 \ then \ x = y$.

Lemma 2.11: If (X, d) is a metric space, then the metric d induces a mapping F:X x X \rightarrow L, define by F(p, q)=H(x-d(p, q)), p, $q \in X$ and $x \in R$. Further more if $*:[0,1]X[0,1] \rightarrow [0,1]$ is defined by $(a*b) = \min(a, b)$ then (X,F,*) is a menger space. It is complete if (X, d) is complete. The space (X, F, *) is obtained is called the induced menger space.

3. MAIN RESULT

Theorem 3.1: Let (X, F, *) be a complete menger space where * is continuous and $(t*t) \ge t$ for all $t \in [0,1]$. Let S. T. A. and B be mapping from x into it self such that

- $(i).S(X) \subset B(X) \text{ AND } T(X) \subset A(X)$
- (II).A, B, are continuous.
- (iii).the pair (S,A) AND (T,B) semi compatible
- (iv).there exists a number $k \in (0,1)$ such that

 $(F_{Sx,Ty}(K \in))^2) \ge \min\{(F_{Ax,Sx}(\in),F_{By,Ty}(\in),F_{Ax,Ty}(2\in),(F_{Bx,Sx}(2\in),)\} \text{ for all } x, y \in X \text{ and } \epsilon > 0. \text{ Then } S, T, A, \text{ and } \epsilon > 0.$ B have a unique common fixed point in X.

Proof: we can find a sequence $\{y_n\}$ as follows

$$y_{2n} = s_{2n} = B_{2n+1}$$
 and $y_{2n+1} = Tx_{2n+1} = Ax_{2n+2}$.

we shall prove that for any $n \in N$ and $\epsilon > 0$

$$F_{y_{2n+1,y_{2n+2}}}(k\in) \ge F_{y_{2n,y_{2n+1}}}(\in) \tag{1}$$

suppose (1) is not true. Then there exist $n \in \mathbb{N}$ and $\in > o$ such that

$$F_{y_{2n+1,y_{2n+2}}}(k\in) < F_{y_{2n,y_{2n+1}}}(\in)$$
 (2)

it follow from (iv) and (2)

$$(F_{Sx,Ty}(K \in))^{2}$$

$$(F_{y_{2n+1,y_{2n+2}}}(k \in))^{2} = (F_{Sx_{2n+2,Tx_{2n+1}}}(k \in))^{2}$$

$$\geq \min\{(F_{Ax_{2n+2},Sx_{2n+2}}(\in),)(F_{Bx_{2n+1},Tx_{2n+1}}(\in))(F_{Ax_{2n+2},Sx_{2n+2}}(2 \in),)(F_{Bx_{2n+1},Tx_{2n+1}}(2 \in))$$

$$= \min\{(F_{Ax_{2n+2},Sx_{2n+2}}(\in),)(F_{Bx_{2n+1},Tx_{2n+1}}(\in))(F_{Ax_{2n+2},Sx_{2n+2}}(2 \in))(F_{Bx_{2n+1},Tx_{2n+1}}(2 \in))$$

$$= \min\{(F_{y_{2n+1},y_{2n+2}}(\in),)(F_{y_{2n},y_{2n+1}}(\in))(F_{y_{2n+1},y_{2n+2}}(2 \in))(F_{y_{2n},y_{2n+2}}(2 \in))\}$$

$$\geq \min\{(F_{y_{2n+1},y_{2n+2}}(K \in),)(F_{y_{2n},y_{2n+1}}(\in))(F_{y_{2n},y_{2n+2}}(2 \in))\}$$

$$\geq \min\{(F_{y_{2n+1},y_{2n+2}}(K \in),)(F_{y_{2n},y_{2n+1}}(\in))(F_{y_{2n},y_{2n+2}}(2 \in))\}$$

$$\geq \min\{(F_{y_{2n+1},y_{2n+2}}(K \in),)(F_{y_{2n},y_{2n+1}}(\in))(F_{y_{2n},y_{2n+2}}(2 \in))\}$$

$$\geq \min\{(F_{y_{2n+1},y_{2n+2}}(K \in),)(F_{y_{2n},y_{2n+1}}(E))(F_{y_{2n},y_{2n+2}}(2 \in))\}$$

$$\geq \min\{(F_{y_{2n+1},y_{2n+2}}(K \in),)(F_{y_{2n},y_{2n+1}}(E))(F_{y_{2n},y_{2n+2}}(2 \in))\}$$

And F is non decreasing.

$$\geq \min\{(F_{y_{2n+1},y_{2n+2}}(k \in),)(F_{y_{2n},y_{2n+1}}(\in))\}\min\{(F_{y_{2n},y_{2n+1}}(\in)(F_{y_{2n+1},y_{2n+2}}(\in))\}$$
(3)

Now note, that

$$\begin{cases} (a) \min\{(F_{y_{2n},y_{2n+1}}(\in)(F_{y_{2n+1},y_{2n+2}}(\in))\} > .(F_{y_{2n+1},y_{2n+2}}(k \in))^{2} \\ (b) \min\{(F_{y_{2n},y_{2n+1}}(\in)(F_{y_{2n+1},y_{2n+2}}(\in))\} \geq (F_{y_{2n+1},y_{2n+2}}(k \in)) \\ (c) \min\{(F_{y_{2n},y_{2n+1}}(\in)(F_{y_{2n+1},y_{2n+2}}(\in))\}(F_{y_{2n},y_{2n+1}}(\in)) \\ \geq \{(F_{y_{2n+1},y_{2n+2}}(k \in),)(F_{y_{2n},y_{2n+1}}(\in)) \\ > (F_{y_{2n+1},y_{2n+2}}(k \in))^{2} \end{cases}$$

So we get from (3) that

$$(F_{y_{2n+1,y_{2n+2}}}(k \in))^2 > (F_{y_{2n+1,y_{2n+2}}}(k \in))^2$$
, a contradiction.

There for, (1) holds, for any $n \in N$ and $\in > \in$

0 using a similar argument we obttain that for any $n \in N$ and $\epsilon > 0$

$$(F_{y_{2n},y_{2n+1}}(\in)) \ge (F_{y_{2n-1},y_{2n}}(\in))$$

$$(4)$$

Thus putting (1) and (4) to gather, we see that $(F_{y_n,y_{n+1}}(\in)) \ge (F_{y_{n-1},y_n}(\in))$ for any $n \in \mathbb{N}$ and $\in > 0$, and hence by lemma 2.9 $\{y_n\}$ is a Cauchy sequence in X. Since X is complete. There exists z in X such that

$$\begin{cases} S_{x_{2n}} \longrightarrow z \\ B_{x_{2n+1}} \longrightarrow z \\ T_{x_{2n+1}} \longrightarrow z \text{ as n} \longrightarrow \infty \\ A_{x_{2n+2}} \longrightarrow z \end{cases}$$

Now, suppose A is continuous. Then

$$A_{x_{2n}}^2 \to Az \text{ and } As_{x_{2n}} \to Az \text{ as } n \to \infty$$
 (5)

since both of $\{Ax_{2n}\}$ and $\{sx_{2n}\}$ are convergent to z, the semi compatibility of A and S implies that

$$\lim_{n\to\infty}F_{ASx_{2n},ASx_{2n}}(\in)=1.$$

This in conjunction with (5) and the inequality

$$F_{SAx_{2n,AZ}}(\epsilon) \ge \min\{F_{SAx_{2n,ASx_{2n}}}(\frac{\epsilon}{2}), F_{Asx_{2n,AZ_{2n}}}(\frac{\epsilon}{2})\}$$

Show that $SAx_{2n} \rightarrow Az \ as \ n \rightarrow \infty$

Let $E = \{ \in > 0 : F_{Az,z} \text{ is continuous at } \in \}$ since $F_{Az,z}$ is non decreasing, it can be discontinuous at only denumerable many points.

We show that $F_{Az,z}(\in) \ge F_{Az,z}(k^{-1} \in)$ for any \in belongs to E. by IV

$$(F_{SAx_{2n,Tx_{2n+1}}}(k \in))^{2} \ge \min\{(F_{A2x_{2n},Sx_{2n+2}}(k^{-1} \in),)(F_{Bx_{2n+1},Tx_{2n+1}}(k^{-1} \in)(F_{A2x_{2n+2},Sx_{2n+2}}(2k^{-1} \in),)(F_{Bx_{2n+1},Tx_{2n}}(2k^{-1} \in))\}$$

$$(F_{Bx_{2n+1},Tx_{2n}}(2k^{-1} \in))$$

$$(6)$$

it is easy to see that we can choose a subsequence $\{n_j\}$ of natural numbers such that all the limits in (6) exists as $j \to \infty$ and satisfy

$$Lim_{j\to\infty}(F_{SAx_{2nj},Tx_{2nj+1}}(k\in))^2\geq \min\{Lim_{j\to\infty}(F_{A2x_{2nj},SAx_{2nj}}(k^{-1}\in),)(F_{Bx_{2nj+1},Tx_{2nj+1}}(k^{-1}\in))\}$$

$$Lim_{i\to\infty}\{(F_{A2x_{2ni+1},Tx_{2ni+1}}(2k^{-1}\in),)(F_{Bx_{2ni+1},SAx_{2ni}}(2k^{-1}\in))\}$$

$$\geq \min\{ Lim_{j\to\infty}(F_{A2x_{2nj},sAx_{2nj}}(k^{-1}\in),)(F_{Bx_{2nj+1},Tx_{2nj+1}}(k^{-1}\in)) \}$$

$$Lim_{j\to\infty}(F_{A2x_{2nj+1},Tx_{2nj+1}}(2k^{-1}\in),)(F_{Bx_{2nj+1},SAx_{2nj}}(2k^{-1}\in)) \}$$

$$\geq \min\{F_{Az,Az}(k^{-1} \in),)(F_{z,z}(k^{-1} \in))(F_{Az,z}(2k^{-1} \in),)(F_{z,Az}(2k^{-1} \in))$$

$$\geq (F_{AZ,Z}(k^{-1}\in))^2\tag{7}$$

Also since \in belong to E, it follow from lemma 2.9 that $\lim_{n\to\infty} F_{SAx_{2n,Tx_{2n+1}}}(\in) = (F_{AZ,Z}(\in))$ which in conjunction with (7) shows that

$$(F_{AZZ}(\in) \ge (F_{AZZ}(k^{-1} \in) \text{ for } \in \text{ belong to } E.$$
 (8)

to conclude that Az = z we must show that $F_{AZ,Z}(\in)=1$ for any \in 0. for this let \in be any member in E and put $\in_1=\in$. Then we have

$$\epsilon_1 = k^{-1}(\epsilon_1) < k^{-2}(\epsilon_1) < \dots k^{-n}(\epsilon_1) < \dots \lim_{n \to \infty} k^{-n}(\epsilon_1) = \infty$$
(9)

let $\dot{\eta} > 0$ be any given positive number. Since $F_{AZ,Z}$ is left continuous at $k^{-2}(\in_1)$. there is $\delta > 0$. Such that

$$F_{AZ,Z}(k^{-2}(\in_1)) \le F_{AZ,Z}(\omega) + \frac{\eta}{2}$$
 (10)

For all $\omega \in (k^{-2}(\in_1) - \delta, k^{-2}(\in_1))$

By the continuity of k^{-1} at $k^{-1}(\in_1)$, we choose $\in_2 \in (\in_1, k^{-1}(\in_1)) \cap E$ so that $k^{-1}(\in_1) \in (k^{-2}(\in_1) - \delta, (k^{-2}(\in_1)),$ and hence with the aid of (10)

$$(F_{AZ,Z}(k^{-1}(\epsilon_2))) \ge (F_{AZ,Z}(k^{-2}(\epsilon_1))) - \frac{\eta}{2}$$
(11)

by induction, for any $n \in N$ we can choose $\in_{n+1} \in E$ so that

$$k^{-n+1}(\in_1)) < \in_{n+1} < k^{-n}(\in_1) \text{ and } (F_{AZ,Z}(k^{-1}(\in_{n+1}))) \ge (F_{AZ,Z}(k^{-(n+1)}(\in_1))) - \frac{\dot{\eta}}{2^n}$$
 (12)

So we have

$$\begin{split} F_{AZ,Z}(\in) &= F_{AZ,Z}(\in_1) \\ &\geq (F_{AZ,Z}(k^{-1}(\in_1))) \\ &\geq (F_{AZ,Z}(k^{-2}(\in_2))) \text{ since } \in_2 \ \ belong \ to \ E} \\ &\geq (F_{AZ,Z}(\in_3) - \frac{\dot{\eta}}{2} \\ &\geq (F_{AZ,Z}K^{-1}(\in_2)) - \frac{\dot{\eta}}{2} \\ &\geq (F_{AZ,Z}K^{-1}(\in_1)) - \frac{\dot{\eta}}{2} - \frac{\dot{\eta}}{2} \\ &\qquad \cdots \\ &\geq (F_{AZ,Z}(K^{-1}(\in_1)) - (\frac{\dot{\eta}}{2^{n-1}} + \frac{\dot{\eta}}{2^{n-2}} + \cdots - \frac{\dot{\eta}}{2}) \\ &= (F_{AZ,Z}(K^{-n}(\in_1)) - \dot{\eta}(1 - \frac{1}{2^{n-1}}) \forall n \in \mathbb{N} \end{split}$$

Letting $n \to \infty$ in (13) and holding $\lim_{n \to \infty} k^{-n}$ (\in_1)= ∞ , we obtain that

$$F_{Az,z}(\in) \ge 1-\eta \text{ for } \eta > 0.$$

Since $\eta > 0$ is arbitrary, we conclude that $F_{Az,z}(\in) = 1$ for any \in belong to E. Since E is dense in $[0, \infty)$ and $F_{Az,z}$ is left continuous on $(0, \infty)$. We see that $F_{Az,z}(\in) = 1$ for all $\in > 0$ and so Az=z. As for Sz=z, using $(F_{Az,z}(\in))^2 = \lim_{n\to\infty} (F_{Sz,Tx_{2n+1}}(\in))^2$ and (iv), we can just follow as before to obtain $F_{Sz,z}(\in) \geq (F_{Sz,z}(\in))^2$ for $\in >$ Where $F_{Sz,z}$ is continuous. Then in a similar argument as before, we conclude $F_{Sz,z}(\in) = 1 \forall \in > 0$. Since $S(X) \subseteq B(X)$, there exist y in X such that By=Sz=Z. so for any $\in > 0$

$$(F_{z,Ty} (k \in))^{2} = (F_{Sz,Ty} (k \in))^{2}$$

$$\geq \min\{(F_{Az,Sz} (\in), F_{By,Ty} (\in)(F_{Az,Ty} (2 \in)(F_{By,Sz} (2 \in))\}\}$$

$$\geq \min\{(F_{z,Ty} (\in)(F_{z,Ty} (2 \in))\}\}$$

$$\geq (F_{z,Ty} (\in))^{2}$$

 $(F_{z,Ty} (K \in) \ge (F_{z,Ty} (\in)))$, and ty=z. up to now we have shown that SZ = Az = z = By = Ty. We are now going to show that z is a common fixed point of S, T, A, and B. Since T and B are semi compatible, we have BTy=TBy, that is Bz = Tz. Therefore for $\epsilon > 0$, we have following inequalities.

$$(F_{z,Tz} (k \in))^{2} = (F_{Sz,Tz} (k \in))^{2}$$

$$\geq \min\{(F_{Az,Sz} (\in), F_{Bz,Tz} (\in)(F_{Az,Tz} (2 \in)(F_{Bz,Sz} (2 \in)$$

$$\geq \min\{(F_{z,Tz} (\in)(F_{z,Tz} (2 \in))\}$$

$$= \min\{(F_{z,Tz} (2 \in))^{2}, (F_{z,Tz} (2 \in)$$

$$\geq (F_{z,Tz} (\in))^{2}$$

So Tz=z ny Lemma 2.10. This completes the proof for z being the common fixed point of S, T, A, A and B provided that A is continuous. By symmetric, if B is continuous we can prove that S, T, A and B have common fixed point in a similar way.

Next, assume that S is continuous. Then $SAx_{2n} \to Sz$ and $SBx_{2n+1} \to Sz$ as $n \to \infty$, and since S and A are semi compatible and both $\{Ax_{2n}\}$ and $\{Sx_{2n}\}$ are convergent to z, $\lim_{n\to\infty}(F_{ASx_{2n},SAx_{2n}} \in \frac{\epsilon}{2}, F_{ASx_{2n},Sz} \in \frac{\epsilon}{2})$ and $\{F_{SAx_{2n},Sz} \in \frac{\epsilon}{2}\}$ are convergent to 1. We see that $\lim_{n\to\infty}(F_{ASx_{2n},Sz}(\epsilon)=1)$ for $\epsilon>0$ and so $\lim_{n\to\infty}ASx_{2n}=Sz$. In inequality

$$(F_{SBx_{2n+1},Tx_{2n+1}}(\in))^{2} \geq \min\{(F_{ABx_{2n+1},ABx_{2n+1}}(k^{-1}\in),(F_{Bx_{2n+1},Tx_{2n+1}}(k^{-1}\in),(F_{Bx_{2n+1},Tx_{2n+1}}(2k^{-1}\in),(F_{Bx_{2n+1},SBx_{2n+1}}(2k^$$

M. Ramana Reddy^{2*} and Darmaiah³/ Generalized Fixed Point Results Of Compatibility In Probabilistic Metric..../ IJMA- 4(10), Oct.-2013.

Next, assume that S is continuous. Then $SAx_{2n} \to Sz$ and $SBx_{2n+1} \to Sz$ as $n \to \infty$, and since S and A are semi compatible and both $\{Ax_{2n}\}$ and $\{Sx_{2n}\}$ are convergent to z, $\lim_{n\to\infty} (F_{ASx_{2n},SA} \times z_{2n} = \frac{\epsilon}{2}, F_{ASx_{2n},Sz} = \frac{\epsilon}{2})$ and $\{F_{SAx_{2n},Sz} = \frac{\epsilon}{2}\}$ are convergent to 1. We see that $\lim_{n\to\infty} (F_{ASx_{2n},Sz} = \frac{\epsilon}{2})$ for $\epsilon > 0$ and so $\lim_{n\to\infty} ASx_{2n} = Sz$. In inequality

$$(F_{SBx_{2n+1},Tx_{2n+1},}(\in))^2 \geq \min\{(F_{ABx_{2n+1},ABx_{2n+1}}(k^{-1}\in),(F_{Bx_{2n+1},Tx_{2n+1}}(k^{-1}\in),(F_{ABx_{2n+1},Tx_{2n+1}}(2k^{-1}\in),(F_{Bx_{2n+1},SBx_{2n+1}}(2k^{-1}\in),(F_{ABx_{2n+1},Tx_{2n+1}}(2k^{-1}\in),(F_{ABx_{2n+1},SBx_{2n+1}}(2k^{-1}\in),(F_{ABx_{2n+1},Tx_{2n+1}(2k^$$

We can imitate the procedure for the case that A is continuous to show that $F_{Sz,z}(\in) \ge (F_{Sz,z}(k^{-1} \in))$, for any $\in > 0$ where $F_{Sz,z}$ is continuous, and then show that $F_{Sz,z}(\in) = 1$ for any $\in > 0$. So Sz=z. Since $S(x) \subseteq B(X)$. We can choose $y \in X$. We can choose $Y \in X$ such that By=Sz=z. then for any $\in > 0$ and $n \in N$ we have

$$\begin{split} (F_{SBx_{2n+1},y}\left(\in\right))^2 &\geq \min\{(F_{ABx_{2n+1},SBx_{2n+1}}\left(k^{-1}\in\right),(F_{By,Ty}\left(k^{-1}\in\right),\\ &(F_{ABx_{2n+1},Ty}\left(2k^{-1}\in\right),(F_{By,SBx_{2n+1}}\left(2k^{-1}\in\right),\\ &= \min\{(F_{ASx_{2n+1},S^2x_{2n}}\left(k^{-1}\in\right),(F_{z,Ty}\left(k^{-1}\in\right),(F_{ASx_{2n},S^2x_{2n}}\left(2k^{-1}\in\right),(F_{z,S^2x_{2n}}\left(2k^{-1}\in\right),(F_{z,S^2x_{2n}}\left(2k^{-1}\in\right),(F_{z,S^2x_{2n}}\left(2k^{-1}\in\right),(F_{z,S^2x_{2n}}\left(2k^{-1}\in\right),(F_{z,S^2x_{2n}}\left(2k^{-1}\in\right),(F_{z,S^2x_{2n}}\left(2k^{-1}\in\right),(F_{z,S^2x_{2n}}\left(2k^{-1}\in\right),(F_{z,S^2x_{2n}}\left(2k^{-1}\in\right),(F_{z,S^2x_{2n}}\left(2k^{-1}\in\right),(F_{z,S^2x_{2n}}\left(2k^{-1}\in\right),(F_{z,S^2x_{2n}}\left(2k^{-1}\in\right),(F_{z,S^2x_{2n}}\left(2k^{-1}\in\right),(F_{z,S^2x_{2n}}\left(2k^{-1}\in\right),(F_{z,S^2x_{2n}}\left(2k^{-1}\in\right),(F_{z,S^2x_{2n}}\left(2k^{-1}\in\right),(F_{z,S^2x_{2n}}\left(2k^{-1}\in\left(2k^{-1}\right),(F_{z,S^2x_{2n}}\left(2k^{-1}),(F_{z,S^2x_{2n}}\left(2k^{-1}),(F_{z,S^2x_{2n}}\left(2k^{-1}),(F_{z,S^2x_{2n}}\left(2k^{-1}),(F_{z,S^2x_{2n}}\left(2k^{-1}),(F_{z,S^2x_{2n}}\left(2k^{-1}),(F_{z,S^2x_{2n}}\left(2k^{-1}),(F_{z,S^2x_{2n}}\left(2k^{-1}),(F_{z,S^2x_{2n}}\left(2k^{-1}),(F_{z,S^2x_{2n}}\left(2k^{-1}),(F_{z,S^2x_{2n}}\left(2k^{-1}),(F_{z,S^2x_{2n}}\left(2k^{-1}),(F_{z,S^2x_{2n}}\left(2k^{-1}),(F_{z,S^2x_{2n}}\left(2k^{-1}),(F_{z,S^2x_{2n}}\left(2k^{$$

As the case that A is continuous. We can take limit via a suitable subsequence $\{n_i\}$ of natural numbers to get

$$(F_{z,Ty_{,}}(k \in))^{2} \ge \min\{(F_{z,Ty_{,}}(k^{-1} \in), (F_{z,Ty_{,}}(2k^{-1} \in), \}$$

 $\ge (F_{z,Ty_{,}}(k^{-1} \in))^{2} \text{ for } \in > 0 \text{ where } F_{z,Ty_{,}} \text{ is continuous.}$

Thus ty=z. in summary we have shown that By=Ty=z. Now Since $T(X) \subseteq A(X)$ there exists $x \in X$ such that z=Sz=By=Ty=Ax. Then we get Ax=Sx from the following inequalities.

$$(F_{Sx.Ax_{,}}(k \in))^{2} = (F_{Sx.Ty_{,}}(k \in))^{2}$$

$$\geq \min\{(F_{Ax,Sx}(\in), F_{By,Ty}(\in)(F_{Ax,Ty}(2 \in)(F_{By,Sx}(2 \in)$$

$$= \min\{(F_{Ax,Sx}(\in)(F_{Ax,Sx}(2 \in))\}$$

$$\geq (F_{Ax.Sx}(\in))^{2}$$

Let ξ Ax=Sx=Ty=By. since S and A are semi compatible and hence Ax=Sx, we get ASx=Sax, that is $A\xi = S\xi$. Then for any $\epsilon > 0$

$$(F_{S\xi,\xi_{,}}(k \in))^{2} = (F_{S\xi,T\xi_{,}}(k \in))^{2}$$

$$\geq \min\{(F_{A\xi,S\xi}(\in),F_{By,Ty}(\in)(F_{A\xi,Ty}(2 \in)(F_{By,S\xi}(2 \in))\}$$

$$= \min\{(F_{S\xi,\xi_{,}}(k \in))^{2}(F_{S\xi,\xi}(2 \in)\}$$

$$\geq (F_{S\xi,\xi_{,}}(\in))^{2}$$

Which implies that $S \xi = \xi = A \xi$. Next $\nu \in X$ such that $B \nu = S \xi = \xi$. Then

$$(F_{\xi,T\nu_{,}}(\mathbf{k} \in))^{2} = (F_{S\nu,T_{,}\nu}(\mathbf{k} \in))^{2}$$

$$\geq \min\{(F_{A\xi,S\xi}(\in), F_{B\nu,T\nu}(\in)(F_{A\xi,T\nu}(2\in)(F_{B,\nu S\xi}(2\in))\}$$

$$= \min\{(F_{\xi,S\nu}(\in), (F_{\xi,T\nu}(2\in))\}$$

$$\geq (F_{\xi,T\nu}(\in))^{2} \forall \in > 0$$

Hence T $\nu = \xi$. Since T and B are semi compatible and T $\nu = B \nu$. We have TB $\nu = BT \nu$ that is T $\xi = B\xi$. Then we conclude that T $\xi = \xi$ from the following inequalities.

$$(F_{y,z_{,}}(k \in))^{2} = (F_{Sy,T_{,z}}(k \in))^{2}$$

$$\geq \min\{(F_{Ay,Sy}(\in), F_{Bz,Tz}(\in)(F_{Ay,Tz}(2 \in)(F_{Bz,Sy}(2 \in))\}$$

$$= \min\{(F_{y,z_{,}}(2 \in))^{2}, (F_{y,z}(2 \in))\}$$

$$\geq (F_{y,z_{,}}(\in))^{2} \forall \in > 0$$

M. Ramana Reddy^{2*} and Darmaiah³/ Generalized Fixed Point Results Of Compatibility In Probabilistic Metric..../ IJMA- 4(10), Oct.-2013.

We conclude that y=z by virtue of lemma 2.10

Corollary 3.2: Let (X, F, *) be a complete menger space where * is continuous and $(t*t) \ge t$ for all $t \in [0,1]$. Let S. T. A. and B be mapping from x into it self such that

- $(i).S(X) \subset B(X)$
- (II).B is continuous.
- (iii).the pair (S, B) is semi compatible
- (iv).there exists a number $k \in (0,1)$ such that

 $(F_{Sx,Ty}(K \in))^2) \ge \min\{(F_{Ax,Sx}(\in),F_{By,Ty}(\in),F_{Ax,Ty}(2 \in),(F_{Bx,Sx}(2 \in)),\} \text{ for all } x, y \in X \text{ and } E \in S \text{ and } E \text{ and } E \in S \text{ and } E \text{ and } E \in S \text{ and } E \text{ and } E \in S \text{ and } E \text{ and } E$

4. BIBLIOGRAPHY

- [1] A. T. Bharucha Ried, Fixed point theorems in Probabilistic analysis, Bull. Amer. Math. Soc, 82 (1976), 611-617.
- [2] Gh. Boscan, On some fixed point theorems in Probabilistic metric spaces, Math. balkanica, 4 (1974), 67-70
- [3] S. Chang, Fixed points theorems of mappings on Probabilistic metric spaces with applications, Scientia Sinica SeriesA, 25 (1983), 114-115
- [4] R. Dedeic and N. Sarapa, Fixed point theorems for sequence of mappings on Menger spaces, Math. Japonica, 34 (4) (1988), 535-539
- [5] O. Hadzic, On the (ε, λ) -topology of LPC-Spaces, Glasnik Mat; 13(33) (1978), 293-297.
- [6] O. Hadzic, Some theorems on the fixed points in probabilistic metric and random normed spaces, Boll. Un. Mat. Ital; 13(5) 18 (1981), 1-11
- [7] G. Jungck and B.E. Rhodes, Fixed point for set valued functions without continuity, Indian J. Pure. Appl. Math., 29(3) (1998), 977-983
- [8] G. Jungck, Compatible mappings and common fixed points, Internat J. Math. and Math. Sci. 9 (1986), 771-779.
- [9] K. Menger, Statistical Matrices, Procedings of the National academy of sciences of the United states of America 28 (1942), 535-537
- [10] S. N. Mishra, Common fixed points of compatible mappings in PM-Spaces, Math. Japonica, 36(2) (1991), 283-289
- [11] B. Schweizer and A. Sklar, Probabilistic Metric spaces, Elsevier, North-Holland, New York, 1983.
- [12] B. Schweizer and A. Sklar, Statistical metrices spaces, pacific Journal of Mathematics 10(1960), 313-334
- [13] V.M. Sehgal, A.T. Bharucha-Reid, Fixed points of contraction mappings in PM spaces, Math. System Theory 6 (1972) 97-102.
- [14] S. Sessa, On weak commutativity conditions of mapping in fixed point consideration, Publ. Inst. Math. Beograd, 32(46) (1982), 149-153
- [15] S. L. Singh and B.D. Pant, Common fixed point theorems in Probabilistic metric spaces and extention touniform spaces, Honam Math. J., 6 (1984), 1-12
- [16] D. Xieping, A common fixed point theorem of commuting mappings in probabilistic metric spaces, Kexeue Tongbao, 29 (1984), 147-150.

Source of support: Nil, Conflict of interest: None Declared