International Journal of Mathematical Archive-4(10), 2013, 278-284 (c) $)^{2}$ MA Available online through www.ijma.info ISSN 2229-5046

GENERALIZED FIXED POINT RESULTS OF COMPATIBILITY IN PROBABILISTIC METRIC SPACE

M. Ramana Reddy ${ }^{1 *}$ and V. Dharmaiah ${ }^{2}$
${ }^{1}$ Asst. Professor of Mathematics, Sreenidhi Institute Of Science \& Technology, Hyderabad, India.
${ }^{2}$ Professor of Mathematics, Osmania University, Hyderabad, India.

(Received on: 07-10-13; Revised \& Accepted on: 22-10-13)

Abstract

A common fixed point theorem for self mapping in menger space under weak compatibility in probabilistic metric space.

Keywords: Menger space, weakly compatible mapping, semi-compatible mapping, weakly commuting mapping, common fixed point.

AMS subject classification: 47H10, 54H25.

1. INTRODUCTION

Menger in 1942[9] was first introduced the concept of probabilistic metric space. the theory of probabilistic space is of fundamental importance in probabilistic functional analysis. The most interesting reference in this direction are [1],[2],[3],[4],[5],[6] and many others have proved common fixed point theorems in probabilistic metric space and menger space

2. PRELIMINARIES

Definition 2.1: let R denote the set of real's and R^{+}the non negative real's. A mapping $\mathrm{F}: \mathrm{R} \rightarrow \mathrm{R}^{+}$is called a distribution function if it non decreasing left continuous with $\inf _{t \in R} F(t)=0$ and $\sup _{t \in R} F(t)=1$

Definition2.2: A probabilistic metric space is an ordered pair (X, F) where X is a non empty set, L be set of all distribution function and $\mathrm{F}: X x X \rightarrow L$. We shall denote the distribution function by $\mathrm{F}(\mathrm{p}, \mathrm{q})$ or $F_{p, q}(x)$ will represents the values of $F(p, q)$ at $x \in R$. The function $F(p, q)$ is assumed to satisfy the following conditions:

1. $F_{p, q}(x)=1$ for all $\mathrm{x}>0 \Leftrightarrow \mathrm{p}=\mathrm{q}$
2. $F_{p, q}(x)=0$ for every $\mathrm{p}, \mathrm{q} \in \mathrm{X}$
3. $F_{p, q}(x)=F_{q, p}(x)$ for every $\mathrm{p}, \mathrm{q} \in \mathrm{X}$
4. $F_{p, q}(x)=1$ and $F_{q, r}(x)=1$ then $F_{p, r}(x+y)=1$ for every $\mathrm{p}, \mathrm{q}, \mathrm{r} \in \mathrm{X}$ and in metric space (X, d). The metric d induced a mapping $\mathrm{F}: X x X \rightarrow L$ such that $F_{p, q}(x)=F_{q, p}(x)=\mathrm{H}(\mathrm{x}-\mathrm{d}(\mathrm{p}, \mathrm{q})$ for every $\mathrm{p}, \mathrm{q} \in \mathrm{X}$ where H is the distribution defined as
$H(x)= \begin{cases}0, & x \leq 0 \\ 1, & x>0\end{cases}$
Definition2.3: A mapping *: $[0,1] \mathrm{X}[0,1] \rightarrow[0,1]$ is called t-norm if
5. $\left(\mathrm{a}^{*} 1\right)=\mathrm{a} \forall a \in[0,1]$
6. $\left(\mathrm{a}^{*} \mathrm{~b}\right)=0 \forall a, b \in[0,1]$
7. $(\mathrm{a} * \mathrm{~b})=(\mathrm{b} * \mathrm{a})$
8. ($\left.\mathrm{c}^{*} \mathrm{~d}\right) \geq(\mathrm{a} * \mathrm{~b})$ for $\mathrm{c} \geq a, d \geq b$
9. $\left(\left(a^{*} b\right) * \mathrm{c}\right)=\left(a^{*}\left(b^{*} \mathrm{c}\right)\right)$

M. Ramana Reddy ${ }^{2 *}$ and Darmaiah ${ }^{3}$ /Generalized Fixed Point Results Of Compatibility In Probabilistic Metric..../ IJMA- 4(10), Oct.-2013.

Example:

1. $\left(a^{*} b\right)=a b$
2. $(\mathrm{a} * \mathrm{~b})=\min (\mathrm{a}, \mathrm{b})$
3. $(\mathrm{a} * \mathrm{~b})=\max (\mathrm{a}+\mathrm{b}-1 ; 0)$

Definition 2.4: A menger space is triplet ($\mathrm{X}, \mathrm{F} .{ }^{*}$) where (X, F) a PM-space and Δ is a t-norm with the following condition $F_{u, w}(x+y) \geq F_{u, v}(\mathrm{x})^{*} F_{v, w}(\mathrm{y})$ this inequality is called menger‘s triangle inequality.

Example; Let $\mathrm{X}=\mathrm{R} .(\mathrm{a}+\mathrm{b})=\min (\mathrm{a}, \mathrm{b}) \forall \mathrm{a}, \mathrm{b} \in(\mathrm{o}, 1)$
$F_{u, v}(\mathrm{x})=\left\{\begin{aligned} H(x), & \text { for } u \neq v \\ 1, & u=v\end{aligned}\right.$
where
$H(x)=\left\{\begin{array}{ll}0, & x \leq 0 \\ 1, & x>0\end{array}\right.$.Then (X, $\left.\mathrm{F}, *\right)$ is a menger space.
Definition 2.5: let (X, F, *) is menger space with the continuous T-norms t. A sequence $\left\{P_{n}\right\}$ in X , if for every $\in>0, \lambda>0$ there exists an intger $N=N(\epsilon, \lambda)$
(I). Is said to be $P_{n}=\cup p(\epsilon, \lambda)$ for all $\mathrm{n} \geq \mathrm{N}$. or equivalently, $F_{p P_{n}}(\epsilon)>1-\epsilon$ for all $\mathrm{n} \geq \mathrm{N}$. we write $P_{n} \rightarrow p$ as $\mathrm{n} \rightarrow \infty$ or $\lim _{n \rightarrow \infty} P_{n}=p$
(II). Is said to Cauchy $F_{P_{n} P_{m}},(\in)>1-\lambda$ for all $\mathrm{n}, \mathrm{m} \geq \mathrm{N}$.
(III).Is said to be complete if every Cauchy sequence in X is converges to a point in X .

Definition 2.6: A coincidence point of two mappings is a point in their domain having the same image point under both mappings formally, given two mapping f, g : $X \rightarrow Y$ we say that a point x in X is coincidence point of f and g if $f(x)=g(x)$.

Definition 2.7: Let ($\mathrm{X}, \mathrm{F},{ }^{*}$) be a menger space. two mappings $\mathrm{f}, \mathrm{g}: \mathrm{X} \rightarrow \mathrm{X}$ are said to be weakly compatible if they commute at the coincidence point. i.e the pair $\{\mathrm{f}, \mathrm{g}\}$ is weakly compatible pair if and only if $\mathrm{fx}=\mathrm{gx}$ implies that $\mathrm{fgx}=\mathrm{gfx}$

Examples 2.9: Define athe pair A, S, $[0,1] \rightarrow[0,1]$ by
$A(x)=\left\{\begin{array}{ll}x, & x \leq[0,1) \\ 1, & x>[0.1]\end{array} \quad S(x)=\left\{\begin{aligned} 1-x, & x \leq[0,1) \\ 1, & x>[0.1]\end{aligned}\right.\right.$
Then for any $x \in[0,1]$, ASx=Sax, showing that A, S are weakly compatible maps on $[0,1]$
Definition 2.8: Let ($\mathrm{X}, \mathrm{F},{ }^{*}$) be a menger space. two mappings $\mathrm{A}, \mathrm{S}: \mathrm{X} \rightarrow \mathrm{X}$ are said to be semi compatible if $F_{A S x_{n}, S x}(\mathrm{t}) \rightarrow 1$ for all $\mathrm{t}>0$ wherrnever $\left\{x_{n}\right\}$ is a sequence in X such that $\left.A x_{n}, S x_{n}\right) \rightarrow p$ for some p in X as $\mathrm{n} \rightarrow \infty$, it follow that (A, S) is semi compatible and Ay=Sy imply ASy=Say by taking $\left\{x_{n}\right\}=y$ and $\mathrm{x}=\mathrm{Ay}=\mathrm{Sy}$.

Lemma 2.9: Let ($\mathrm{X}, \mathrm{F},{ }^{*}$) be a menger space. If $\left\{P_{n}\right\}$ be a sequence in menger space, where $*$ is continuous
I. $\left(\mathrm{x}^{*} \mathrm{x}\right) \geq \mathrm{x} \forall \mathrm{x} \in[0,1]$
II.1.ヨ $k \in(0,1)$ such that $\mathrm{x}>0$ and $\mathrm{n} \in N F_{p n, p n+1}(\mathrm{kx}) \geq F_{p n-1, p n}(\mathrm{x})$. Then $\left\{P_{n}\right\}$ is Cauchy sequence.

Lemma 2.10: $\exists k \in(0,1)$ such that $F_{x, y}(\mathrm{kt}) \geq F_{y, x}(\mathrm{t}) \forall x, y \in X$ and $k>0$ then $x=y$.
Lemma 2.11: If (X, d) is a metric space, then the metric d induces a mapping $F: X \times X \rightarrow L$, define by $F(p, q)=H(x-d(p$, $q)$), $p, q \in X$ and $x \in R$.Further more if $*:[0,1] X[0,1] \rightarrow[0,1]$ is defined by $(a * b)=\min (a, b)$ then $\left(X, F,{ }^{*}\right)$ is a menger space. It is complete if (X, d) is complete. The space $(X, F, *)$ is obtained is called the induced menger space.

3. MAIN RESULT

Theorem 3.1: Let $(X, F, *)$ be a complete menger space where * is continuous and $\left(t^{*} t\right) \geq t$ for all $t \in[0,1]$. Let S. T. A. and B be mapping from x into it self such that
(i). $\mathrm{S}(\mathrm{X}) \subset \mathrm{B}(\mathrm{X})$ AND $\mathrm{T}(\mathrm{X}) \subset A(X)$
(II).A, B, are continuous.
(iii).the pair (S, A) AND (T, B) semi compatible
(iv).there exists a number $k \in(0,1)$ such that
$\left.\left(F_{S x, T y}(K \in)\right)^{2}\right) \geq \min \left\{\left(F_{A x, S x}(\in), F_{B y, T y}(\in), F_{A x, T y}(2 \in),\left(F_{B x, S x}(2 \in),\right\}\right.\right.$ for all $\mathrm{x}, \mathrm{y} \in X$ and $\in>0$. Then S, T, A, and B have a unique common fixed point in X .

M. Ramana Reddy ${ }^{2^{*}}$ and Darmaiah ${ }^{3} /$ Generalized Fixed Point Results Of Compatibility In Probabilistic Metric..../ IJMA- 4(10), Oct.-2013.

Proof: we can find a sequence $\left\{y_{n}\right\}$ as follows
$y_{2 n}=s_{2 n}=B_{2 n+1}$ and $y_{2 n+1}=T x_{2 n+1}=A x_{2 n+2}$.
we shall prove that for any $n \in N$ and $\in>0$
$F_{y_{2 n+1, y_{2 n+2}}}(\mathrm{k} \in) \geq F_{y_{2 n, y_{2 n+1}}}(\in)$
suppose (1) is not true. Then there exist $n \in N$ and $\in>o$ such that
$F_{y_{2 n+1, y_{2 n+2}}}(\mathrm{k} \in)<F_{y_{2 n, y_{2 n+1}}}(\in)$
it follow from (iv) and (2)

$$
\begin{aligned}
&\left(F_{S x, T y}(K \in)\right)^{2} \\
&\left(F_{y_{2 n+1, y_{2 n+2}}}(k \in)\right)^{2}=\left(F_{S x_{2 n+2, T x_{2 n+1}}}(k \in)\right)^{2} \\
& \geq \min \left\{(F _ { A x _ { 2 n + 2 } , s x _ { 2 n + 2 } } (\epsilon) ,) (F _ { B x _ { 2 n + 1 } , T x _ { 2 n + 1 } } (\in)) (F _ { A x _ { 2 n + 2 } , s x _ { 2 n + 2 } } (2 \in) ,) \left(F_{B x_{2 n+1}, T x_{2 n+1}}(2 \in)\right.\right. \\
&=\min \left\{(F _ { A x _ { 2 n + 2 } , s x _ { 2 n + 2 } } (\in) ,) \left(F _ { B x _ { 2 n + 1 } , T x _ { 2 n + 1 } } (\in) \left(F _ { A x _ { 2 n + 2 } , s x _ { 2 n + 2 } } (2 \in) \left(F_{B x_{2 n+1}, T x_{2 n+1}}(2 \in)\right.\right.\right.\right. \\
&=\min \left\{(F _ { y _ { 2 n + 1 } , y _ { 2 n + 2 } } (\epsilon) ,) \left(F _ { y _ { 2 n } , y _ { 2 n + 1 } } (\in) \left(F _ { y _ { 2 n + 1 } , y _ { 2 n + 1 } } (2 \in) \left(F_{y_{2 n}, y_{2 n+2}}(2 \in)\right.\right.\right.\right. \\
& \geq \min \left\{(F _ { y _ { 2 n + 1 } , y _ { 2 n + 2 } } (K \in) ,) \left(F _ { y _ { 2 n } , y _ { 2 n + 1 } } (\epsilon) \left(F_{y_{2 n}, y_{2 n+2}}(2 \in) \text { since } K \in<\in\right.\right.\right.
\end{aligned}
$$

And F is non decreasing.

$$
\begin{equation*}
\geq \min \left\{(F _ { y _ { 2 n + 1 } , y _ { 2 n + 2 } } (k \in) ,) (F _ { y _ { 2 n } , y _ { 2 n + 1 } } (\in) \} \operatorname { m i n } \left\{\left(F _ { y _ { 2 n } , y _ { 2 n + 1 } } (\in) \left(F_{y_{2 n+1}, y_{2 n+2}}(\epsilon)\right.\right.\right.\right. \tag{3}
\end{equation*}
$$

Now note, that

$$
\left\{\begin{array}{c}
(a) \min \left\{\left(F_{y_{2 n}, y_{2 n+1}}(\epsilon)\left(F_{y_{2 n+1}, y_{2 n+2}}(\epsilon)\right\}>.\left(F_{y_{2 n+1, y_{2 n+2}}}(k \in)\right)^{2}\right.\right. \\
(b) \min \left\{\left(F_{y_{2 n}, y_{2 n+1}}(\epsilon)\left(F_{y_{2 n+1}, y_{2 n+2}}(\epsilon)\right\} \geq\left(F_{y_{2 n+1}, y_{2 n+2}}(k \in)\right.\right.\right. \\
(c) \min \left\{\left(F _ { y _ { 2 n } , y _ { 2 n + 1 } } (\epsilon) (F _ { y _ { 2 n + 1 } , y _ { 2 n + 2 } } (\epsilon) \} \left(F_{y_{2 n}, y_{2 n+1}}(\epsilon)\right.\right.\right. \\
\geq\left\{(F _ { y _ { 2 n + 1 } , y _ { 2 n + 2 } } (k \in) ,) \left(F_{y_{2 n}, y_{2 n+1}}(\epsilon)\right.\right. \\
>\left(F_{y_{2 n+1, y 2 n+2}}(k \in)\right)^{2}
\end{array}\right.
$$

So we get from (3) that
$\left(F_{y_{2 n+1, y_{2 n+2}}}(k \in)\right)^{2}>\left(F_{y_{2 n+1, y 2 n+2}}(k \in)\right)^{2}$, a contradiction.
There for, (1) holds, for any $\mathrm{n} \in N$ and $\in>\in$
0 using a similar argument we obatain that for any $\mathrm{n} \in N$ and $\in>0$
$\left(F_{y_{2 n}, y_{2 n+1}}(\epsilon)\right) \geq\left(F_{y_{2 n-1}, y_{2 n}}(\epsilon)\right\}$
Thus putting (1) and (4) to gather, we see that $\left(F_{y_{n}, y_{n+1}}(\in)\right) \geq\left(F_{y_{n-1}, y_{n}}(\in)\right.$ for any $n \in N$ and $\in>0$, and hence by lemma2.9 $\left\{y_{n}\right\}$ is a Cauchy sequence in X. Since X is complete. There exists z in X such that
$\left\{\begin{array}{l}S_{x_{2 n}} \rightarrow z \\ B_{x_{2 n+1}} \rightarrow z \\ T_{x_{2 n+1}} \rightarrow z \\ A_{x_{2 n+2}} \rightarrow z\end{array}\right.$ as n $\rightarrow \infty$

Now, suppose A is continuous. Then
$A_{x_{2 n}}^{2} \rightarrow A z$ and $A s_{x_{2 n}} \rightarrow A z$ as $\mathrm{n} \rightarrow \infty$
since both of $\left\{A x_{2 n}\right\}$ and $\left\{s x_{2 n}\right\}$ are convergent to z , the semi compatibility of A and S implies that
$\lim _{n \rightarrow \infty} F_{A S x_{2 n, A S x}^{2 n}}(\epsilon)=1$.
This in conjunction with (5) and the inequality
$F_{S A x_{2 n, A Z}}(\epsilon) \geq \min \left\{F_{S A x_{2 n, A s x}{ }_{2 n}}\left(\frac{\epsilon}{2}\right), F_{A s x_{2 n, A z 2 n}}\left(\frac{\epsilon}{2}\right)\right.$
Show that $S A x_{2 n} \rightarrow A z$ as $n \longrightarrow \infty$
Let $\mathrm{E}=\left\{\in>0: F_{A z, Z}\right.$ is continuous at $\left.\in\right\}$ since $F_{A z, z}$ is non decreasing, it can be discontinuous at only denumerable many points.

We show that $F_{A z, Z}(\in) \geq F_{A z, Z}\left(k^{-1} \in\right)$ for any \in belongs to E. by IV

$$
\begin{gather*}
\left(F_{\left.S A x_{2 n, T x_{2 n+1}}(k \in)\right)^{2} \geq \min \left\{(F _ { A 2 x _ { 2 n } , s x _ { 2 n + 2 } } (k ^ { - 1 } \in) ,) \left(F_{B x_{2 n+1}, T x_{2 n+1}}\left(k^{-1} \in\right)\left(F_{A 2 x_{2 n+2}, s x_{2 n+2}}\left(2 k^{-1} \in\right),\right)\right.\right.}^{\left(F_{B x_{2 n+1}, T x_{2 n}}\left(2 k^{-1} \in\right)\right.}\right. \text {) }
\end{gather*}
$$

it is easy to see that we can choose a subsequence $\left\{n_{j}\right\}$ of natural numbers such that all the limits in (6) exists as $j \rightarrow \infty$ and satisfy

$$
\begin{align*}
& \operatorname{Lim}_{j \rightarrow \infty}\left(F_{\left.S A x_{2 n j, T x_{2 n j+1}}(k \in)\right)^{2} \geq} \geq \min \left\{\operatorname{Lim}_{j \rightarrow \infty}\left(F_{A 2 x_{2 n j}, S A x_{2 n j}}\left(k^{-1} \in\right),\right)\left(F_{B x_{2 n j+1}, T x_{2 n j+1}}\left(k^{-1} \in\right)\right\}\right.\right. \\
& \operatorname{Lim}_{j \rightarrow \infty}\left\{\left(F_{A 2 x_{2 n j+1}, T x_{2 n j+1}}\left(2 k^{-1} \in\right),\right)\left(F_{B x_{2 n j+1}, S A x_{2 n j}}\left(2 k^{-1} \in\right)\right\}\right. \\
& \geq \min \left\{\operatorname{Lim}_{j \rightarrow \infty}\left(F_{A 2 x_{2 n j}, S A x_{2 n j}}\left(k^{-1} \in\right),\right)\left(F_{B x_{2 n j+1}, T x_{2 n j+1}}\left(k^{-1} \in\right)\right\}\right. \\
& \operatorname{Lim}_{j \rightarrow \infty}\left(F_{A 2 x_{2 n j+1}, T x_{2 n j+1}}\left(2 k^{-1} \in\right),\right)\left(F_{B x_{2 n j+1}, S A x_{2 n} j}\left(2 k^{-1} \in\right)\right. \\
& \geq \min \left\{\operatorname { l o w e r l i m } _ { n \rightarrow \infty } (F _ { A 2 x _ { 2 n } , s A x _ { 2 n } } (k ^ { - 1 } \in) ,) \left(F_{B x_{2 n+1}, T x_{2 n+1}}\left(k^{-1} \in\right)\right.\right. \\
& \quad \quad \operatorname{lowerlim}\left(F_{A 2 x_{2 n+1}, T x_{2 n+1}}\left(2 k^{-1} \in\right),\right)\left(F_{B x_{2 n+1}, S A x_{2 n}}\left(2 k^{-1} \in\right)\right. \\
& \geq \min \left\{F_{A z, A z}\left(k^{-1} \in\right),\right)\left(F _ { z , z } (k ^ { - 1 } \in) (F _ { A z , z } , (2 k ^ { - 1 } \in) ,) \left(F_{z, A z}\left(2 k^{-1} \in\right)\right.\right. \\
& \geq\left(F_{A Z, Z}\left(k^{-1} \in\right)\right)^{2} \tag{7}
\end{align*}
$$

Also since ϵ belong to E, it follow from lemma 2.9 that $\lim _{n \rightarrow \infty} F_{S A x_{2 n, T x_{2 n+1}}}(\in)=\left(F_{A Z, Z}(\in)\right.$ which in conjunction with (7) shows that

$$
\begin{equation*}
\left(F_{A Z, Z}(\in) \geq\left(F_{A Z, Z}\left(k^{-1} \in\right) \text { for } \in\right. \text { belong to E. }\right. \tag{8}
\end{equation*}
$$

to conclude that $A z=z$ we must show that $F_{A Z, Z}(\in)=1$ for any $\in>0$. for this let \in be any member in E and put $\epsilon_{1}=\in$. Then we have
$\epsilon_{1}=k^{-1}\left(\epsilon_{1}\right)<. k^{-2}\left(\epsilon_{1}\right)<\ldots \ldots . . k^{-n}\left(\epsilon_{1}\right)<\ldots \ldots \ldots . \lim _{n \rightarrow \infty} k^{-n}\left(\epsilon_{1}\right)=\infty$
let $\dot{\eta}>0$ be any given positive number. Since $F_{A Z, Z}$ is left continuous at $k^{-2}\left(\epsilon_{1}\right)$. there is $\delta>0$. Such that
$F_{A Z, Z}\left(k^{-2}\left(\epsilon_{1}\right).\right) \leq F_{A Z, Z}(\omega)+\frac{\mathfrak{n}}{2}$
For all $\omega \in\left(k^{-2}\left(\epsilon_{1}\right)-\delta, k^{-2}\left(\epsilon_{1}\right)\right)$
By the continuity of k^{-1} at $k^{-1}\left(\epsilon_{1}\right)$, we choose $\epsilon_{2} \in\left(\epsilon_{1}, k^{-1}\left(\epsilon_{1}\right)\right) \cap \mathrm{E}$ so that $k^{-1}\left(\epsilon_{1}\right) \in\left(k^{-2}\left(\epsilon_{1}\right)-\delta,\left(k^{-2}\left(\epsilon_{1}\right)\right)\right.$, and hence with the aid of (10)
$\left(F_{A Z, Z}\left(k^{-1}\left(\epsilon_{2}\right)\right)\right) \geq\left(F_{A Z, Z}\left(k^{-2}\left(\epsilon_{1}\right)\right)\right)-\frac{\dot{n}}{2}$
by induction, for any $\mathrm{n} \in N$ we can choose $\epsilon_{n+1} \in \mathrm{E}$ so that
$\left.\left.k^{-n+1}\left(\epsilon_{1}\right)\right)\right)<\epsilon_{n+1}<k^{-n}\left(\epsilon_{1}\right)$ and $\left(F_{A Z, Z}\left(k^{-1}\left(\epsilon_{n+1}\right)\right)\right) \geq\left(F_{A Z, Z}\left(k^{-(n+1)}\left(\epsilon_{1}\right)\right)\right)-\frac{\dot{\eta}}{2^{n}}$
So we have

$$
\begin{aligned}
F_{A Z, Z}(\in)= & F_{A Z, Z}\left(\epsilon_{1}\right) \\
\geq & \left(F_{A Z, Z}\left(k^{-1}\left(\epsilon_{1}\right)\right)\right) \\
\geq & \left(F_{A Z, Z}\left(k^{-2}\left(\epsilon_{2}\right)\right)\right) \text { since } \epsilon_{2} \text { belong to } E \\
\geq & \left(F_{A Z, Z}\left(\epsilon_{3}\right)--\frac{\dot{\eta}}{2}\right. \\
\geq & \left(F_{A Z, Z} K^{-1}\left(\epsilon_{2}\right)\right)-\frac{\dot{\eta}}{2} \\
\geq & \left(F_{A Z, Z}\left(K^{-1}\left(\epsilon_{1}\right)\right)--\frac{\dot{\eta}}{2^{2}} \quad-\frac{\dot{\eta}}{2}\right. \\
& \quad \ldots \ldots \cdots \cdots \cdots \\
\geq & \left(F_{A Z, Z}\left(K^{-n}\left(\epsilon_{1}\right)\right)--\left(\frac{\dot{\eta}}{2^{n-1}}+\frac{\dot{\eta}}{2^{2 n-2}}+\ldots \ldots-\frac{\dot{\eta}}{2}\right)\right. \\
= & \left(F_{A Z, Z}\left(K^{-n}\left(\epsilon_{1}\right)\right)-\dot{\eta}\left(1-\frac{1}{2^{n-1}}\right) \forall n \in N\right.
\end{aligned}
$$

Letting $n \rightarrow \infty$ in (13) and holding $\lim _{n \rightarrow \infty} k^{-n}\left(\epsilon_{1}\right)=\infty$, we obtain that
$F_{A z, z}(\epsilon) \geq 1-\eta$ for $\eta>0$.
Since $\eta>0$ is arbitrary, we conclude that $F_{A z, Z}(\in)=1$ for any \in belong to E. Since E is dense in $[0, \infty)$ and $F_{A z, Z}$ is left continuous on $(0, \infty)$. We see that $F_{A z, Z}(\epsilon)=1$ for all $\in>0$ and so $\mathrm{Az}=\mathrm{z}$. As for $\mathrm{Sz}=\mathrm{z}$, using $\left(F_{A z, Z}(\epsilon)\right)^{2}$ $=\lim _{n \rightarrow \infty}\left(F_{S z, T x_{2 n+1}}(E)\right)^{2}$ and (iv), we can just follow as before to obtain $F_{S z, z}(\in) \geq\left(F_{S z, Z}(\in)\right)^{2}$ for $\in>$ Where $F_{S z, Z}$ is continuous. Then in a similar argument as before, we conclude $F_{S z, Z}(\in)=1 \forall \in>0$. Since $\mathrm{S}(\mathrm{X}) \subseteq B(X)$, there exist y in X such that $\mathrm{By}=\mathrm{Sz}=\mathrm{Z}$. so for any $\in>0$

$$
\begin{aligned}
\left(F_{z, T y}(\mathrm{k} \in)\right)^{2} & =\left(F_{S z, T y}(\mathrm{k} \in)\right)^{2} \\
& \geq \min \left\{\left(F_{A z, S z}(\in), F_{B y, T y}(\in)\left(F_{A z, T y}(2 \in)\left(F_{B y, S z}(2 \in)\right\}\right.\right.\right. \\
& \geq \min \left\{\left(F_{z, T y}(\in)\left(F_{z, T y}(2 \in)\right\}\right.\right. \\
& \geq\left(F_{z, T y}(\in)\right)^{2}
\end{aligned}
$$

$\left(F_{z, T y}(K \in) \geq\left(F_{z, T y}(\epsilon)\right)\right.$, and ty=z. up to now we have shown that $\mathrm{SZ}=\mathrm{Az}=\mathrm{z}=\mathrm{By}=\mathrm{Ty}$. We are now going to show that z is a common fixed point of S, T, A, and B. Since T and B are semi compatible, we have BTy=TBy, that is $\mathrm{Bz}=\mathrm{Tz}$. Therefore for $\in>0$, we have following inequalities.

$$
\begin{aligned}
\left(F_{z, T z}(\mathrm{k} \in)\right)^{2} & =\left(F_{S z, T z}(\mathrm{k} \in)\right)^{2} \\
& \geq \min \left\{\left(F_{A z, S z}(\in), F_{B z, T z}(\in)\left(F _ { A z , T z } (2 \in) \left(F_{B z, S z}(2 \in)\right.\right.\right.\right. \\
& \geq \min \left\{\left(F_{z, T z}(\in)\left(F_{z, T z}(2 \in)\right\}\right.\right. \\
& =\min \left\{\left(F_{z, T z}(2 \in)\right)^{2},\left(F_{z, T z}(2 \in)\right.\right. \\
& \geq\left(F_{z, T z}(\in)\right)^{2}
\end{aligned}
$$

So $\mathrm{Tz}=\mathrm{z}$ ny Lemma 2.10. This completes the proof for z being the common fixed point of $\mathrm{S}, \mathrm{T}, \mathrm{A}, \mathrm{A}$ and B provided that A is continuous. By symmetric, if B is continuous we can prove that S, T, A and B have common fixed point in a similar way.

Next, assume that S is continuous. Then $\mathrm{SA} x_{2 n} \rightarrow S z$. and $\mathrm{SB} x_{2 n+1} \rightarrow S z$. as $n \rightarrow \infty$, and since S and A are semi compatible and both $\left\{\mathrm{A} x_{2 n}\right\}$ and $\left\{\mathrm{S} x_{2 n}\right\}$ are convergent to $\mathrm{z}, \lim _{\mathrm{n} \rightarrow \infty}\left(F_{A S x_{2 n, S A x_{2 n}}} \frac{\epsilon}{2}, F_{A S x_{2 n, S z}} \frac{\epsilon}{2}\right\}$ and both $\left.F_{A S x_{2 n, S A x_{2 n}}} \frac{\epsilon}{2}\right\}$ and $\left\{F_{S A x_{2 n, S z}} \frac{\epsilon}{2}\right\}$ are convergent to1. We see that $\lim _{n \rightarrow \infty}\left(F_{A S x_{2 n, S z}}(\epsilon)=1\right.$ for $\in>0$ and so $\lim _{n \rightarrow \infty} A S x_{2 n}=S z$. In inequality

$$
\begin{aligned}
\left(F_{S B x_{2 n+1}, T x_{2 n+1},}(\in)\right)^{2} \geq \min \{ & \left(F_{A B x_{2 n+1}, A B x_{2 n+1}}\left(k^{-1} \in\right),\left(F_{B x_{2 n+1}, T x_{2 n+1}}\left(k^{-1} \in\right),\right.\right. \\
& \left(F_{A B x_{2 n+1}, T x_{2 n+1}}\left(2 k^{-1} \in\right),\left(F_{B x_{2 n+1}, S B x_{2 n+1}}\left(2 k^{-1} \in\right),\right.\right.
\end{aligned}
$$

M. Ramana Reddy ${ }^{2 *}$ and Darmaiah ${ }^{3}$ /Generalized Fixed Point Results Of Compatibility In Probabilistic Metric..../ IJMA- 4(10), Oct.-2013.

We can imitate the procedure for the case that A is continuous to show that $F_{S z, Z}(\in) \geq\left(F_{S z, Z}\left(k^{-1} \in\right)\right.$, for any $\in>0$ where $F_{S z, z}$ is continuous, and then show that $F_{S z, z}(\in)=1$ for any $\in>0$. So Sz=z. Since $\mathrm{S}(\mathrm{x}) \subseteq \mathrm{B}(\mathrm{X})$. We can choose $\mathrm{y} \in X$. we can choose $\mathrm{Y} \in \mathrm{X}$ such that $\mathrm{By}=\mathrm{Sz}=\mathrm{z}$. then for any $\in>0$ and $\mathrm{n} \in N$. So $\mathrm{Tz}=\mathrm{z}$ by Lemma 2.10 This completes the proof for z being the common fixed point of S, T, A, A and B provided that A is continuous .By symmetric, if B is continuous we ca prove that $\mathrm{S}, \mathrm{T}, \mathrm{A}$ and B have common fixed point in a similar way.

Next, assume that S is continuous. Then $\mathrm{SA} x_{2 n} \rightarrow S z$. and $\mathrm{SB} x_{2 n+1} \rightarrow S z$. as $\mathrm{n} \rightarrow \infty$, and since S and A are semi compatible and both $\left\{\mathrm{A} x_{2 n}\right\}$ and $\left\{\mathrm{S} x_{2 n}\right\}$ are convergent to $\mathrm{z}, \lim _{\mathrm{n} \rightarrow \infty}\left(F_{A S x_{2 n, S A x_{2 n}}} \frac{\epsilon}{2}, F_{A S x_{2 n, S z}} \frac{\epsilon}{2}\right\}$ and both $\left.F_{A S x_{2 n, S A x_{2 n}}} \frac{\epsilon}{2}\right\}$ and $\left\{F_{S A x_{2 n, S z}} \frac{\epsilon}{2}\right\}$ are convergent to 1 . We see that $\lim _{\mathrm{n} \rightarrow \infty}\left(F_{A S x_{2 n, S z}}(\epsilon)=1\right.$ for $\in>0$ and so $\lim _{\mathrm{n} \rightarrow \infty} \mathrm{A} S x_{2 n}=S z$. In inequality

$$
\begin{aligned}
\left(F_{S B x_{2 n+1}, T x_{2 n+1}}(\epsilon)\right)^{2} \geq \min \{ & \left(F_{A B x_{2 n+1}, A B x_{2 n+1}}\left(k^{-1} \in\right),\left(F_{B x_{2 n+1}, T x_{2 n+1}}\left(k^{-1} \in\right),\right.\right. \\
& \left(F_{A B x_{2 n+1}, T x_{2 n+1}}\left(2 k^{-1} \in\right),\left(F_{B x_{2 n+1}, S B x_{2 n+1}}\left(2 k^{-1} \in\right),\right.\right.
\end{aligned}
$$

We can imitate the procedure for the case that A is continuous to show that $F_{S Z, Z}(\in) \geq\left(F_{S_{z, Z}}\left(k^{-1} \in\right)\right.$,for any $\in>0$ where $F_{S Z, Z}$ is continuous, and then show that $F_{S z, Z}(\epsilon)=1$ for any $\in>0$. So Sz=z. Since $\mathrm{S}(\mathrm{x}) \subseteq \mathrm{B}(\mathrm{X})$. We can choose $\mathrm{y} \in X$. We can choose $\mathrm{Y} \in \mathrm{X}$ such that $\mathrm{By}=\mathrm{Sz}=\mathrm{z}$. then for any $\in>0$ and $\mathrm{n} \in N$ we have

$$
\begin{aligned}
&\left(F_{S B x_{2 n+1, y} y}(\epsilon)\right)^{2} \geq \min \{ \left(F_{A B x_{2 n+1}, S B x_{2 n+1}}\left(k^{-1} \in\right),\left(F_{B y, T y}\left(k^{-1} \in\right),\right.\right. \\
&\left(F_{A B x_{2 n+1}, T y}\left(2 k^{-1} \in\right),\left(F_{B y, S B x_{2 n+1}}\left(2 k^{-1} \in\right),\right.\right. \\
&=\min \left\{\left(F_{A S x_{2 n+1}, S^{2} x_{2 n}}\left(k^{-1} \in\right),\left(F_{z, T y}\left(k^{-1} \in\right),\left(F_{A S x_{2 n} S^{2} x_{2 n},}\left(2 k^{-1} \in\right),\left(F_{z, S^{2} x_{2 n}}\left(2 k^{-1} \in\right),\right.\right.\right.\right.\right.
\end{aligned}
$$

As the case that A is continuous. We can take limit via a suitable subsequence $\left\{n_{j}\right\}$ of natural numbers to get

$$
\begin{aligned}
\left(F_{z . T y}(\mathrm{k} \in)\right)^{2} & \geq \min \left\{\left(F_{z, T y,}\left(k^{-1} \in\right),\left(F_{z, T y,},\left(2 k^{-1} \in\right),\right\}\right.\right. \\
& \geq\left(F_{z . T y,}\left(k^{-1} \in\right)\right)^{2} \text { for } \in>0 \text { where } F_{z . T y,} \text {, is continuous. }
\end{aligned}
$$

Thus ty=z. in summary we have shown that $\mathrm{By}=\mathrm{Ty}=\mathrm{z}$. Now Since $\mathrm{T}(\mathrm{X}) \subseteq A(X)$ there exists $\mathrm{x} \in X$ such that $\mathrm{z}=\mathrm{Sz}=\mathrm{By}=\mathrm{Ty}=\mathrm{Ax}$. Then we get $\mathrm{A} x=\mathrm{Sx}$ from the following inequalities.

$$
\begin{aligned}
\left(F_{S x . A x,}(\mathrm{k} \in)\right)^{2} & =\left(F_{S x . T y,}(\mathrm{k} \in)\right)^{2} \\
& \geq \min \left\{\left(F_{A x, S x}(\in), F_{B y, T y}(\in)\left(F _ { A x , T y } (2 \in) \left(F_{B y, S x}(2 \in)\right.\right.\right.\right. \\
& =\min \left\{\left(F_{A x, S x}(\in)\left(F_{A x, S x}(2 \in)\right\}\right.\right. \\
& \geq\left(F_{A x . S x,}(\in)\right)^{2}
\end{aligned}
$$

Let $\xi A x=S x=T y=B y$. since S and A are semi compatible and hence $A x=S x$, we get $A S x=S a x$, that is $A \xi=S \xi$. Then for any $\in>0$

$$
\begin{aligned}
\left(F_{S \xi, \xi,}(\mathrm{k} \in)\right)^{2} & =\left(F_{S \xi, T \xi,}(\mathrm{k} \in)\right)^{2} \\
& \geq \min \left\{\left(F_{A \xi, S \xi}(\in), F_{B y, T y}(\in)\left(F_{A \xi, T y}(2 \in)\left(F_{B y, S \xi}(2 \in)\right\}\right.\right.\right. \\
& =\min \left\{(F _ { S \xi , \xi , } (\mathrm { k } \in)) ^ { 2 } \left(F_{S \xi, \xi}(2 \in\}\right.\right. \\
& \geq\left(F_{S \xi, \xi,}(\in)\right)^{2}
\end{aligned}
$$

Which implies that $\mathrm{S} \xi=\xi=A \xi$.Next $v \in X$ such that $\mathrm{B} v=S \xi=\xi$. Then

$$
\begin{aligned}
\left(F_{\xi, T v,}(\mathrm{k} \in)\right)^{2} & =\left(F_{S v, T, v}(\mathrm{k} \in)\right)^{2} \\
& \geq \min \left\{\left(F_{A \xi, S \xi}(\in), F_{B v, T v}(\in)\left(F_{A \xi, T v}(2 \in)\left(F_{B, v S \xi}(2 \in)\right\}\right.\right.\right. \\
& =\min \left\{\left(F_{\xi, S v}(\in),\left(F_{\xi, T v}(2 \in)\right\}\right.\right. \\
& \geq\left(F_{\xi, T v,}(\in)\right)^{2} \forall \in>0
\end{aligned}
$$

Hence $\mathrm{T} v=\xi$. Since T and B are semi compatible and $\mathrm{T} v=\mathrm{B} v$. We have $\mathrm{T} B v=\mathrm{BT} v$ that is $\mathrm{T} \xi=B \xi$. Then we conclude that $\mathrm{T} \xi=\xi$ from the following inequalities.

$$
\begin{aligned}
\left(F_{y, z,}(\mathrm{k} \in)\right)^{2} & =\left(F_{S y, T, z}(\mathrm{k} \in)\right)^{2} \\
& \geq \min \left\{\left(F_{A y, S y}(\in), F_{B z, T z}(\in)\left(F_{A y, T z}(2 \in)\left(F_{B z, S y}(2 \in)\right\}\right.\right.\right. \\
& =\min \left\{\left(F_{y, z},(2 \in)\right)^{2},\left(F_{y, z}(2 \in)\right\}\right. \\
& \geq\left(F_{y, z,}(\in)\right)^{2} \forall \in>0
\end{aligned}
$$

M. Ramana Reddy ${ }^{2 *}$ and Darmaiah ${ }^{3}$ /Generalized Fixed Point Results Of Compatibility In Probabilistic Metric..../ IJMA- 4(10), Oct.-2013.

We conclude that $\mathrm{y}=\mathrm{z}$ by virtue of lemma 2.10
Corollary 3.2: Let $(X, F, *)$ be a complete menger space where * is continuous and $\left(t^{*} t\right) \geq t$ for all $t \in[0,1]$. Let S. T.
A. and B be mapping from x into it self such that
(i). $S(X) \subset B(X)$
(II).B is continuous.
(iii).the pair (S, B) is semi compatible
(iv).there exists a number $k \in(0,1)$ such that
$\left.\left(F_{S x, T y}(K \in)\right)^{2}\right) \geq \min \left\{\left(F_{A x, S x}(\in), F_{B y, T y}(\epsilon), F_{A x, T y}(2 \in),\left(F_{B x, S x}(2 \in),\right\}\right.\right.$ for all $\mathrm{x}, \mathrm{y} \in X$ and $\in>0$. Then S , and B have a unique common fixed point in X .

4. BIBLIOGRAPHY

[1] A. T. Bharucha Ried, Fixed point theorems in Probabilistic analysis, Bull. Amer. Math. Soc, 82 (1976), 611-617.
[2] Gh. Boscan, On some fixed point theorems in Probabilistic metric spaces, Math. balkanica, 4 (1974), 67-70
[3] S. Chang, Fixed points theorems of mappings on Probabilistic metric spaces with applications, Scientia Sinica SeriesA, 25 (1983), 114-115
[4] R. Dedeic and N. Sarapa, Fixed point theorems for sequence of mappings on Menger spaces, Math. Japonica, 34 (4) (1988), 535-539
[5] O. Hadzic, On the (ε, λ)-topology of LPC-Spaces, Glasnik Mat; 13(33) (1978), 293-297.
[6] O. Hadzic, Some theorems on the fixed points in probabilistic metric and random normed spaces, Boll. Un. Mat. Ital; 13(5) 18 (1981), 1-11
[7] G. Jungck and B.E. Rhodes, Fixed point for set valued functions without continuity, Indian J. Pure. Appl. Math., 29(3) (1998), 977-983
[8] G. Jungck, Compatible mappings and common fixed points, Internat J. Math. and Math. Sci. 9 (1986), 771-779.
[9] K. Menger, Statistical Matrices, Procedings of the National academy of sciences of the United states of America 28 (1942), 535-537
[10] S. N. Mishra, Common fixed points of compatible mappings in PM-Spaces, Math. Japonica, 36(2) (1991), 283-289
[11] B. Schweizer and A. Sklar, Probabilistic Metric spaces, Elsevier, North-Holland, New York, 1983.
[12] B. Schweizer and A. Sklar, Statistical metrices spaces, pacific Journal of Mathematics 10(1960), 313-334
[13] V.M. Sehgal, A.T. Bharucha-Reid, Fixed points of contraction mappings in PM spaces, Math. System Theory 6 (1972) 97-102.
[14] S. Sessa, On weak commutativity conditions of mapping in fixed point consideration, Publ. Inst. Math. Beograd, 32(46) (1982), 149-153
[15] S. L. Singh and B.D. Pant, Common fixed point theorems in Probabilistic metric spaces and extention touniform spaces, Honam Math. J., 6 (1984), 1-12
[16] D. Xieping, A common fixed point theorem of commuting mappings in probabilistic metric spaces, Kexeue Tongbao, 29 (1984), 147-150.

Source of support: Nil, Conflict of interest: None Declared

