# ON SKOLEM DIFFERENCE MEAN LABELING OF GRAPHS

# D. Ramya\*1, M. Selvi <sup>2</sup> and R. Kalaiyarasi

Department of Mathematics, Dr.Sivanthi Aditanar College of Engineering, Tiruchendur- 628 215, India.

(Received on: 06-11-13; Revised & Accepted on: 28-12-13)

#### **ABSTRACT**

**A** graph G = (V, E) with p vertices and q edges is said to have skolem difference mean labeling if it is possible to label the vertices  $x \in V$  with distinct elements f(x) from 1,2,3,...,p+q in such a way that for each edge e = uv, let  $f^*(e) = \left\lceil \frac{|f(u) - f(v)|}{2} \right\rceil$  and the resulting labels of the edges are distinct and are from 1, 2, 3,..., q. A graph that admits a

skolem difference mean labeling is called a skolem difference mean graph. In this paper we prove that, ,  $< T \circ K_{1,n} >$ , where T is a Tp-tree, caterpillar ,  $S_{m,n}$  and  $C_m@K_{1,m}$  are skolem difference mean graphs, where T is a Tp-tree, are skolem difference mean graphs.

Key words: Skolem difference mean labeling, extra skolem difference mean labeling.

AMS Subject Classification: 05C78.

## 1. INTRODUCTION

By a graph we mean a finite, simple and undirected one. The vertex set and the edge set of a graph G are denoted by V(G) and E(G) respectively. The disjoint union of m copies of the graph G is denoted by mG. The union of two graphs  $G_1$  and  $G_2$  is the graph  $G_1 \cup G_2$  with  $V(G_1 \cup G_2) = V(G_1) \cup V(G_2)$  and  $E(G_1 \cup G_2) = E(G_1) \cup E(G_2)$ . A vertex of degree one is called a pendant vertex. The corona  $G_1 \odot G_2$  of the graphs  $G_1$  and  $G_2$  is obtained by taking one copy of  $G_1$  (with  $G_2$  vertices) and  $G_2$  and then joining the  $G_2$  is every vertex of the  $G_2$  to every vertex of  $G_2$  and  $G_3$  is obtained by taking one copy of  $G_3$  and  $G_4$  is every vertex of the  $G_4$  copies of  $G_4$  and then joining the  $G_4$  vertex of  $G_4$  to every vertex of the  $G_4$  copies of  $G_4$  and then joining the  $G_4$  vertex of  $G_4$  to every vertex of the  $G_4$  copies of  $G_4$  and  $G_4$  copies of  $G_4$  and then joining the  $G_4$  vertex of  $G_4$  to every vertex of the  $G_4$  copies of  $G_4$  and  $G_4$  copies of  $G_4$  and then joining the  $G_4$  vertex of  $G_4$  to every vertex of the  $G_4$  copies of  $G_4$  and  $G_4$  copies of  $G_4$  and  $G_4$  copies of  $G_4$  and then joining the  $G_4$  copies of  $G_4$  and  $G_4$  copies of  $G_4$  copies of  $G_4$  and  $G_4$  copies of  $G_4$  copies of  $G_4$  and  $G_4$  copies of  $G_4$  copies

Let T be a tree and  $u_0$  and  $v_0$  be two adjacent vertices in V(T). Let there be two pendant vertices u and v in T such that the length of  $u_0 - u$  path is equal to the length of  $v_0 - v$  path. If the edge  $u_0v_0$  is deleted from T and u, v are joined by an edge uv, then such a transformation of T is called an elementary parallel transformation (or an ept) and the edge  $u_0v_0$  is called a transformable edge. If by a sequence of ept's T can be reduced to a path, then T is called a Tp-tree (transformed tree) and any such sequence regarded as a composition of mappings (ept's) denoted by P, is called a parallel transformation of T. The path, the image of T under P is denoted as P(T).  $S_{m,n}$  is a star graph with n spokes in which each spoke is a path of length m. Let T be a Tp- tree on m vertices. Then T of T is a graph obtained from T and T copies of T is denoted of its pendant vertices results in a path.

Terms and notations not defined here are used in the sense of Harary [1].

A graph G = (V, E) with p vertices and q edges is said to have skolem difference mean labeling if it is possible to label the vertices  $x \in V$  with distinct elements f(x) from 1,2,3,..., p+q in such a way that for each edge e = uv, let  $f^*(e) = \frac{|f(u) - f(v)|}{2}$  if |f(u) - f(v)| is even and  $\frac{|f(u) - f(v)| + 1}{2}$  if |f(u) - f(v)| is odd and the resulting labels of the edges are distinct and are from 1, 2, 3,..., q. A graph that admits a skolem difference mean labeling is called a skolem difference mean graph.

Let G = (V, E) be a skolem difference mean graph with p vertices and q edges. Let one of the skolem difference mean labeling of G satisfies the condition that all the labels of the vertices are odd, and then we call this skolem difference mean labeling an extra skolem difference mean labeling and the graph G as extra skolem difference mean graph.

The concept of skolem difference mean labeling is introduced by K. Murugan and A. Subramanian [3] in 2011. They have studied the skolem difference mean labeling of H – graphs. In [6], some standard results on skolem difference mean labeling was proved.

The extra skolem difference mean labeling of a Tp-tree with 14 vertices is given in Figure 1.



Figure: 1

#### 2. SKOLEM DIFFERENCE MEAN LABELING

**Theorem: 2.1** The graph  $< T \circ K_{1,n} >$  is an extra skolem difference mean graph.

**Proof:** Let T be a Tp- tree with m vertices. By the definition of a Tp - tree there exists a parallel transformation P of T such that for the path P(T) we have (i) V(P(T)) = V(T) and (ii) $E(P(T)) = (E(T) \setminus E_d) \cup E_P$ , where  $E_d$  is the set of edges deleted from T and  $E_P$  is the set of edges newly added through the sequence  $P = (P_1, P_2, ..., P_k)$  of the epts P used to arrive at the path P(T). Clearly  $E_d$  and  $E_P$  have the same number of edges.

Now denote the vertices of P(T) successively as  $v_1, v_2, v_3, ..., v_m$  starting from one pendant vertex of P(T) right up to other. Now, denote the vertices of P(T) successively as  $v_1, v_2, v_3, ..., v_m$  starting from one pendant vertex of P(T) right up to the other. Let  $u_0^i, u_1^i, u_2^i, ..., u_n^i$  be the vertices of the  $i^{th}$  copy of  $K_{1,n}$ . Identify the vertex  $u_1^i$  with  $v_i$  for  $1 \le i \le m$  to get  $T \circ K_{1,n} > 0$ .

Define 
$$f: V(\langle T \mathbin{\hat{\circ}}_{K_{1,n}} \rangle) \to \{1,2,3,...,p+q=2m(n+1)-1\}$$
 as follows:  $f(u_0^j) = (n+1)(2m-j)+n$  for  $j$  is odd,  $1 \le j \le m$ ,  $f(u_0^j) = (n+1)j-1$  for  $j$  is even,  $1 \le j \le m$ ,  $f(u_i^j) = (n+1)(j-1)+2i-1$  for  $j$  is odd,  $1 \le j \le m$ ,  $1 \le i \le n$ ,  $f(u_{n+1-i}^j) = (n+1)[2(m+1)-j]-(2i+1)$  for  $j$  is even,  $1 \le j \le m$ ,  $1 \le i \le n$ ,  $f(v_j) = (n+1)j-n$  for  $j$  is odd,  $1 \le j \le m$ ,  $f(v_j) = (n+1)[2(m+1)-j]-2n-1$  for  $j$  is even,  $1 \le j \le m$ .

Let  $v_i v_j$  be an edge of T for some indices i and j,  $1 \le i < j \le n$  and let  $P_1$  be the ept that deletes this edge and adds the edge  $v_{i+t} v_{j-t}$  where t is the distance from  $v_i$  to  $v_{i+t}$  and also the distance from  $v_j$  to  $v_{j-t}$ . Let P be a parallel transformation of T that contains  $P_1$  as one of the constituent epts. Since  $v_{i+t}v_{j-t}$  is an edge of the path P(T), it follows that i + t + 1 = j - t which implies j = i + 2t + 1. The induced label of the edge  $v_i v_j$  is given by,

$$f * (v_i v_j) = f * (v_i v_{i+2t+1}) = \left\lceil \frac{|f(v_i) - f(v_{i+2t+1})|}{2} \right\rceil = (n+1)|m-i-t|$$
(1)

D. Ramya\*<sup>1</sup>, M. Selvi <sup>2</sup> and R. Kalaiyarasi/ On Skolem Difference Mean Labeling Of Graphs/ IJMA- 4(12), Dec.-2013.

and 
$$f^*(v_{i+t}v_{j-t}) = f^*(v_{i+t}v_{i+t+1}) = \left\lceil \frac{|f(v_{i+t}) - f(v_{i+t+1})|}{2} \right\rceil = (n+1)|m-i-t|$$
 (2)

Therefore from (1) and (2),  $f *(v_i v_j) = f *(v_{i+t} v_{j-t})$ .

Let 
$$e_i^j = u_0^j u_i^j (1 \le j \le m, 1 \le i \le n)$$
,  $e_j = v_j v_{j+1} (1 \le j \le m-1)$  be the edges of  $\langle T \circ K_{1,n} \rangle$ .

For each vertex label f, the induced edge labeling  $f^*$  is as follows:

$$f^*(e_i^j) = (n+1)(m-j+1) - i \text{ for } j \text{ is odd }, \ 1 \le j \le m \ , 1 \le i \le n,$$

$$f^*(e_i^j) = (n+1)(m-j) + i \text{ for } j \text{ is even }, \ 1 \le j \le m \ , 1 \le i \le n,$$

$$f^*(e_j) = (n+1)(m-j) \text{ for } 1 \le j \le m-1.$$

It can be verified that f is an extra skolem difference mean labeling of < T  $\circ K_{1,n} >$  . Hence, < T  $\circ K_{1,n} >$  is an extra skolem difference mean graph.

For example, the extra skolem difference mean labeling of  $< T \circ K_{1,3} >$ , where T is a  $T_P$ -tree with 7 vertices is given in Figure 2.



Figure: 2

**Theorem: 2.2** The caterpillar graph  $S(k_1, k_2, ..., k_n)$  is an extra skolem difference mean graph.

**Proof:** Let  $v_1, v_2, v_3, ..., v_n$  be the vertices of the path and  $u_1^j, u_2^j, u_3^j, ..., u_{k_j}^j$  be the pendant vertices attached with the vertex  $v_j (1 \le j \le n)$ .

Define 
$$f: V(S(k_1, k_2, ..., k_n)) \to \{1, 2, 3, ..., p + q = 2(k_1 + k_2 + ... + k_n) + 2n - 1\}$$
 as follows: 
$$f(u_i^j) = 2i - 1 \text{ for } 1 \le i \le k_1,$$
 
$$f(u_i^j) = 2(k_1 + k_3 + k_5 + ... + k_{j-2}) + 2(i - 1) + j \text{ for } j \text{ isodd, } 3 \le j \le n, 1 \le i \le k_j,$$
 
$$f(u_i^j) = 2(k_1 + k_3 + k_5 + ... + k_{j-1} + k_j + k_{j+1} + ... + k_n) + 2(n - i) + 1 - j \text{ for } j \text{ is even, } 1 \le i \le k_j,$$
 
$$f(v_j) = 2(k_1 + k_3 + ... + k_{j-2} + k_j + k_{j+1} + ... + k_n) + 2n - j \text{ for } j \text{ is odd, }$$
 
$$1 \le j \le n,$$
 
$$f(v_j) = 2(k_1 + k_3 + ... + k_{j-2} + k_j + k_{j+1} + ... + k_n) + 2n - j \text{ for } j \text{ is even, } 1 \le j \le n.$$

Let 
$$e_i^j=v_ju_i^j(1\leq j\leq n$$
 ,  $1\leq i\leq k_j),\ e_j=v_jv_{j+1}(1\leq j\leq n-1)$  be the edges of  $S(k_1,k_2,...,k_n)$ .

For each vertex label f, the induced edge label  $f^*$  is defined as follows:

$$\begin{split} f^*(e_i^j) &= k_j + k_{j+1} + k_{j+2} + \dots + k_n + (n-j+1) - i \quad \text{for} \quad j \text{ is odd }, \ 1 \leq j \leq n \ , \ 1 \leq i \leq k_j, \\ f^*(e_{n+1-i}^j) &= k_j + k_{j+1} + k_{j+2} + \dots + k_n + (n-j+1) - i \text{ for } j \text{ is even}, \ 1 \leq j \leq n \ , \ 1 \leq i \leq k_j, \\ f^*(e_i) &= k_{j+1} + k_{j+2} + \dots + k_n + n - j \quad \text{for} \ \ 1 \leq j \leq n - 1. \end{split}$$

It can be verified that f is an extra skolem difference mean labeling of  $S(k_1, k_2, ..., k_n)$ . Hence,  $S(k_1, k_2, ..., k_n)$  is an extra skolem difference mean graph.

For example, the extra skolem difference mean labeling of S(5,4,4,6,2) is given in Figure 3.



Figure: 3

**Theorem: 2.3** The graph  $C_n@K_{1,m}$   $(n \ge 3, m \ge 1)$  is a skolem difference mean graph.

**Proof:** we prove this theorem in two cases.

Case: (i) n is odd

Let 
$$n = 2k + 1$$
.

Let  $u_1, u_2, u_3, ..., u_k, v_k, v_{k-1}, ..., v_1, v_0$  be the vertices of the cycle  $C_{2k+1}$  and let  $w, w_1, w_2, ..., w_m$  be the vertices of  $K_{1,m}$ . The graph  $C_n @ K_{1,m}$  is obtained by identifying w of  $K_{1,m}$  with  $v_0$ .

Then 
$$E(C_n@K_{1,m}) = \{ww_i, u_ju_{j+1}, v_jv_{j+1}, wu_1, wv_1, u_kv_k, 1 \le i \le m, 1 \le j \le k-1\}.$$

Define 
$$f: V(C_{2k+1}@K_{1,m}) \to \{1,2,3,...,p+q=2n+2m\}$$
 as follows:  $f(w) = 1$ ,

$$f(w_{2i-1}) = 2n + 2m - 4(i-1) \quad \text{for} \quad 1 \le i \le \left[\frac{k}{2}\right],$$

$$f(v_{2i-1}) = 2n + 2m - 4i + 3 \quad \text{for} \quad 1 \le i \le \left[\frac{k}{2}\right],$$

$$f(u_{2i}) = 4i \quad \text{for} \quad 1 \le i \le \left[\frac{k}{2}\right],$$

$$f(v_{2i}) = 4i + 2 \quad \text{for} \quad 1 \le i \le \left[\frac{k}{2}\right],$$

$$f(w_i) = 3 + 2i \quad \text{for} \quad 1 \le i \le m.$$

For each vertex label f, the induced edge label  $f^*$  is defined as follows:

$$\begin{split} f^*(u_k v_k) &= 1, \\ f^*(w w_i) &= 1+i, \quad 1 \leq i \leq m, \\ f^*(w u_1) &= n+m, \\ f^*(w v_1) &= n+m-1, \\ f^*(u_i u_{i+1}) &= n+m-2i \quad \text{ for } \quad 1 \leq i \leq k-1, \\ f^*(v_i v_{i+1}) &= n+m-2i-1 \quad \text{ for } \quad 1 \leq i \leq k-1. \end{split}$$

It can be verified that f is a skolem difference mean labeling of  $C_n@K_{1,m}$ .

## Case: (ii) n is even

Let n = 2k

Let  $u_0, u_1, u_2, \dots, u_{k-1}, w, v_{k-1}, \dots v_1$  be the vertices of  $\mathbb{C}_{2k}$ .

Define  $f: V(C_{2k}@K_{1,m}) \to \{1,2,3,...,p+q=2n+2m\}$  as follows:

**Sub case:** (i) k is even f(w) = 1

 $f(w_i) = 5 + 2i$  for  $1 \le i \le m$ .

 $f(u_{2i-1}) = 2n + 2m - 4(i-1)$  for  $1 \le i \le \frac{k}{2}$ ,

 $f(v_{2i-1}) = 2n + 2m - 4i + 3$  for  $1 \le i \le \frac{k}{2}$ ,

 $f(u_{2i}) = 4i$  for  $1 \le i \le \frac{k-2}{2}$ ,

 $f(v_{2i}) = 4i + 2$  for  $1 \le i \le \frac{k-2}{2}$ 

 $f(u_0) = 2n + 2m - 2k + 1$ .

For each vertex label f, the induced edge label  $f^*$  is defined as follows:

 $f^*(ww_i) = 2 + i$  for  $1 \le i \le m$ ,

 $f^*(wu_1) = n + m_r$ 

 $f^*(wv_1) = n + m - 1$ ,

 $f^*(u_i u_{i+1}) = n + m - 2i$  for  $1 \le i \le k - 2$ .

 $f^*(v_i v_{i+1}) = n + m - 2i - 1$  for  $1 \le i \le k - 2$ 

 $f^*(u_0u_k) = 2$ 

 $f^*(v_0v_k) = 1.$ 

Subcase: (ii) k is odd

f(w) = 1

$$f(w_i) = 1 + 2i \qquad \text{for } 1 \le i \le m,$$

$$f(u_{2i-1}) = 2n + 2m - 4(i-1)$$
 for  $1 \le i \le \frac{k-1}{2}$ 

$$f(v_{2i-1}) = 2n + 2m - 4i + 3$$
 for  $1 \le i \le \frac{k-1}{2}$ 

$$f(u_{2i}) = 4i \qquad \text{for } 1 \le i \le \frac{k-1}{2}$$

$$f(v_{2i-1}) = 2n + 2m - 4i + 3 \quad \text{for } 1 \le i \le \frac{k-1}{2},$$

$$f(u_{2i}) = 4i \quad \text{for } 1 \le i \le \frac{k-1}{2},$$

$$f(v_{2i}) = 4i + 2 \quad \text{for } 1 \le i \le \frac{k-1}{2},$$

$$f(u_0) = 2(n+m-k+1).$$

For each vertex label f, the induced edge label  $f^*$  is defined as follows:

 $f^*(ww_i) = i$ for  $1 \le i \le m$ 

 $f^*(wu_1) = n + m_s$ 

 $f^*(wv_1) = n + m - 1$ ,

 $f^*(u_iu_{i+1}) = n + m - 2i$  for  $1 \le i \le k - 2$ ,

 $f^*(v_i v_{i+1}) = n + m - 2i - 1$  for  $1 \le i \le k - 2$ 

 $f^*(u_0u_k) = n + m - 2k + 1$ 

 $f^*(v_0v_k) = n + m - 2k + 2.$ 

It can be verified that f is a skolem difference mean labeling of  $C_n@K_{1,m}$ . Hence,  $C_n@K_{1,m}$  is a skolem difference mean graph.

For example, the skolem difference mean labeling of  $C_{12}@K_{1,5}$  and  $C_{11}@K_{1,6}$  are given in Figure 4.





Figure: 4

**Theorem: 2.4** The graph  $S_{m,n}$   $(m \ge 1, n \ge 1)$  is an extra skolem difference mean graph.

**Proof:** Let  $u_0, u_i^j$   $(1 \le i \le m, 1 \le j \le n)$  be the vertices of two copies of  $\mathbb{S}_{max}$ .

We define  $f: V(S_{m,n}) \to \{1,2,3,...,p+q=2mn+1\}$  as follows:  $f(u_i^{n-j}) = m(n+j+1)+2-i$  for i is odd,  $1 \le i \le m$ , j is odd and  $1 \le j \le n$ ,  $f(u_i^{n-j}) = m(n-j)+2-i$  for i is odd,  $1 \le i \le m$ , j is even and  $1 \le j \le n$ ,  $f(u_i^{n-j}) = m(n-j-1)+1+i$  for i is even,  $1 \le i \le m$ , j is odd and  $1 \le j \le n$ ,  $f(u_i^{n-j}) = m(n+j)+1+i$  for i is even,  $1 \le i \le m$ , j is even and  $1 \le j \le n$ ,  $f(u_0) = 2mn-m+2$  for m is odd,  $f(u_0) = m+1$  for m is even.

Let 
$$e_i^j=u_i^ju_{i+1}^j(1\leq i\leq m-1$$
 ,  $1\leq j\leq n)$  and  $e_m^j=u_0u_m^j$  be the edges of  $S_{m,n}$ .

For each vertex label f, the induced edge label  $f^*$  is defined as follows:  $f^*(e_i^1) = mn - i + 1 \quad \text{for} \quad 1 \leq i \leq m,$   $f^*(e_{m+1-i}^j) = m(n-j+1) + 1 - i \quad \text{for} \quad j \text{ is even, } 2 \leq j \leq n \quad \text{and} \quad 1 \leq i \leq m-1,$   $f^*(e_m^j) = mn - \frac{mj}{2} \quad \text{for} \quad j \text{ is even, } 1 \leq j \leq n,$   $f^*(e_i^j) = m(n-j+1) - i \quad \text{for} \quad j \text{ is odd, } 3 \leq j \leq n \quad \text{and} \quad 1 \leq i \leq m-1,$   $f^*(e_m^j) = \frac{(j-1)m}{2} \quad \text{for} \quad j \text{ is even, } 3 \leq j \leq n.$ 

For example, the skolem difference mean labeling of  $S_{5.4}$  is given in Figure 5.



Figure: 5

# REFERENCES

- [1] F. Harary, Graph theory, Addison Wesley, Massachusetts, (1972).
- [2] P. Jeyanthi, D. Ramya and P. Thangavelu, Some Constructions of *k*-super mean graphs, International Journal of Pure and Applied Mathematics, Vol.5, No.1 (2009), 77-86.
- [3] K. Murugan, A. Subramanian, Skolem difference mean labeling of H- graphs, International Journal of Mathematics and Soft Computing, Vol.1, No.1(2011),115-129.
- [4] D. Ramya, P. Jeyanthi, Mean Labeling of Some Graphs, SUT Journal of Mathematics, Vol. 47, No. 2 (2011), 129–141.
- [5] D.Ramya, P.Jeyanthi, New Mean Graphs, Journal of Discrete Mathematical Sciences and Cryptography (To appear).
- [6] D. Ramya, M.Selvi, On skolem difference mean labeling of some trees, IJMSC (To appear).

Source of support: Nil, Conflict of interest: None Declared