ON CONTRA -rg*b-CONTINUOUS FUNCTIONS AND APPROXIMATELY-rg*b-CONTINUOUS FUNCTIONS IN TOPOLOGICAL SPACES # ¹G. Sindhu* and ²K. Indirani ¹Department of Mathematics with CA, Nirmala College for Women, Coimbatore, (T.N.), India. ²Department of Mathematics, Nirmala College for Women, Coimbatore, (T.N.), India. (Received on: 12-11-13; Revised & Accepted on: 20-12-13) #### **ABSTRACT** In this paper a new class of functions called contra- rg*b-continuous functions are introduced and their properties are studied. Further the notion of approximately- rg*b-continuous functions and almost contra- rg*b-continuous functions are introduced. **Keywords:** Contra- rg*b -continuous functions, Approximately-rg*b -continuous functions, Almost contra- rg*b-continuous functions. ### 1. INTRODUCTION In 1996, Donthev [5] introduced the notion of contra continuous functions. In 2007, Cal-das, Jafari, Noiri and Simoes [4] introduced a new class of functions called generalized contra continuous (contra g-continuous) functions. New types of contra generalized continuity such as contra αg-continuity [11] and contra gs-continuity [6] have been introduced and investigated. Recently, Nasef [14] introduced and studied so-called contra b-continuous functions. After that in 2009, Omari and Noorani [2] have studied further properties of contra b-continuous functions. Metin Akdag and Alkan Ozkan [13] introduced and investigated the notion of contra generalized b-continuity (contra gb – continuity). The purpose of the present paper is to introduce the notion of contra regular generalized star b-continuity (contra rg*b-continuity) via the concept of rg*b-closed sets in [9] and investigate some of the fundamental properties of contra rg*b-continuous functions. It turns out that contra rg*b-continuity is stronger than contra gb-continuity and weaker than contra b-continuity. Also we study the basic properties of approximately- rg*b-continuous functions and almost contra- rg*b continuous functions. # 2. PRELIMINARIES Throughout this paper (X, τ) and (Y, τ) represents non-empty topological spaces on which no separation—axioms are assumed unless otherwise mentioned. For a subset A of a space (X, τ) , cl(A) and int(A) denote the closure of A and the interior of A respectively. (X, τ) will be replaced by X if there is no chance of confusion. We denote the family of all rg*b-closed sets in X by rg*b-C(X) and regular generalized star b-neighbourhoods by rg*b-nbhd in topological spaces. Let us recall the following definitions which we shall require later. ### **Definition: 2.1** A subset A of a space (X, τ) is called - 1) a regular open set[18] if A = int(cl(A)) and a regular closed set if A = cl(int(A)) - 2) a b-open set [4] if $A \subset cl(int(A)) \cup int(cl(A))$. - 3) a regular generalized closed set (briefly, rg-closed)[15] if cl (A) \subseteq U whenever A \subseteq U and U is regular open in X. - 4) a generalized b-closed (briefly gb-closed)[1] if $bcl(A) \subset U$ whenever $A \subset U$ and U is open. - 5) a regular generalized b-closed set (briefly rgb-closed) [12] if bcl(A)⊆U whenever A⊆U and U is regular open in X. - 6) a regular generalized star b- closed set (briefly rg*b-closed set)[9] if bcl (A) \subseteq U whenever A \subseteq U and U is rgopen in X. Corresponding author: ¹G. Sindhu* and ²K. Indirani ¹Department of Mathematics with CA, Nirmala College for Women, Coimbatore, (T.N.), India. # **Definition: 2.2** A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called - 1) b-irresolute: [8] if for each b-open set V in Y, f-1(V) is b-open in X; - 2) b-continuous: [8] if for each open set V in Y, f-1(V) is b-open in X. - 3) rg*b Continuous[10] if $f^1(V)$ is rg*b Closed in X for every closed set V in Y. - 4) rg*b irresolute[10] if the inverse image of each rg*b Closed set in Y is a rg*b Closed set in X. - 5) rg*b Closed[10], if the image of each closed set in X is a rg*b Closed set in Y. - 6) rg*b Open[10], if the image of each open set in X is a rg*b open in Y. - 7) Pre rg*b Closed (resp. Pre rg*b open)[10], if the image of each rg*b closed (resp. rg*b open)set in X is a rg*b Closed (resp. rg*b open) set in Y. # **Definition: 2.3** A function $f:(X, \tau) \to (Y, \sigma)$ is called - 1) contra –continuous[5] if $f^{1}(V)$ is closed in X for each open set V of Y. - 2) contra-b-continuous [14] if $f^{-1}(V)$ is b-closed in X for each open set V of Y. - 3) contra gb-continuous[13] if $f^{-1}(V)$ is gb-closed in X for each open set V of Y. ### **Definition: 2.4** A space X is said to be - 1) Strongly-S-closed [7] if every closed cover of X has a finite sub-cover. - 2) Mildly compact [17] if every clopen cover of X has a finite sub-cover. - 3) Strongly-S-Lindelof [7] if every closed cover of X has a countable sub-cover. ### 3. CONTRA-rg*b-CONTINUOUS FUNCTIONS **Definition: 3.1** A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called contra-rg*b-continuous if $f^{-1}(V)$ is rg*b closed in (X, τ) for each open set V of (Y, σ) . #### Theorem: 3.2 - (i) Every contra continuous function is contra- rg*b continuous. - (ii) Every contra-b-continuous function is contra- rg*b continuous. - (iii) Every contra- rg*b -continuous function is contra- gb-continuous. - (iv) Every contra- rg*b -continuous function is contra- rgb-continuous. - (v) Every contra- rg*b -continuous function is contra- g*b-continuous. **Remark:** 3.3 Converses of theorem 3.2 are not true as shown in the following examples. #### Example: 3.4 - (i) Let $X=Y=\{a, b, c\}$, $\tau=\{\Phi, \{a, b\}, X\}$, $\sigma=\{\Phi, \{a\}, Y\}$. Then the identity function $f:(X, \tau)\to (Y, \sigma)$ is contrarg*b-continuous but not contra –continuous, since $f^1(\{a\})=\{a\}$ is rg*b closed in X but not closed in X. - (ii) Let $X = Y = \{a, b, c, d\}$, $\tau = \{\Phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}, X\}$, $\sigma = \{\Phi, \{b, d\}, Y\}$. Then the identity function $f: (X, \tau) \to (Y, \sigma)$ is contrarg*b-continuous but not contra-b-continuous since $f^1(\{b, d\}) = \{b, d\}$ is rg*b closed in X but not b-closed in X. - (iii) Let $X=Y=\{a, b, c\}, \tau=\{\Phi,\{a\},\{a, b\}, X\}, \sigma=\{\Phi,\{a, c\},Y\}$. Then the identity function $f:(X,\tau)\to (Y,\sigma)$ is contra- gb- continuous but not contra rg*b -continuous , since $f^1(\{a, c\})=\{a, c\}$ is gb closed in X but not rg*b closed in X. - (iv) Let $X=Y=\{a, b, c\}$, $\tau=\{\Phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, X\}$, $\sigma=\{\Phi, \{a\}, Y\}$. Then the identity function $f: (X, \tau) \to (Y, \sigma)$ is contra- rgb- continuous but not contra rg*b –continuous, since $f^1(\{a\})=\{a\}$ is rgb closed in X but not rg*b closed in X. - (v) Let $X=Y=\{a, b, c\}$, $\tau=\{D,\{a\},\{a, b\}, X\}$, $\sigma=\{D,\{a, c\},Y\}$. Then the identity function $f:(X,\tau)$ (Y,σ) is contra- g*b- continuous but not contra rg*b -continuous, since $f^1(\{a, c\})=\{a, c\}$ is g*b closed in X but not rg*b closed in X. # **Definition: 3.5** A space (X, τ) is called - (i) rg*b -space if every rg*b closed set is closed. - (ii) rg*b -locally indiscrete if every rg*b open set is closed. - (iii) a T $_{rg*b}$ -space if every rg*b closed set is b closed. # Theorem: 3.6 - (i) If a function $f:(X, \tau) \to (Y, \sigma)$ is rg*b -continuous and (X, τ) is rg*b -locally indiscrete, then f is contracontinuous - (ii) If a function $f:(X, \tau) \to (Y, \sigma)$ is contra- rg*b continuous and (X, τ) is T_{rg*b} space, then f is contra-b-continuous. - (iii) If a function $f:(X, \tau) \to (Y, \sigma)$ is contra- rg*b -continuous and (X, τ) is rg*b space, then f is contra-continuous. # **Proof:** - (i) Let V be open in (Y, σ) . By assumption, $f^1(V)$ is rg*b -open in X. Since X is locally indiscrete, $f^1(V)$ is closed in X. Hence f is contra-continuous. - (ii) Let V be open in (Y, σ) . By assumption, $f^1(V)$ is rg*b -closed in X. Since X is T_{rg*b} space, $f^1(V)$ is b-closed in X. Hence f is contra-b-continuous. - (iii) Let V be open in (Y, σ) . By assumption, $f^1(V)$ is rg*b -closed in X. Since X is rg*b -space, $f^1(V)$ is closed in X. Hence f is contra-continuous. #### **Theorem: 3.7** Let $A \subset Y \subset X$. - (i) If Y is open in X, then $A \in rg*b C(X)$ implies $A \in rg*b C(Y)$. - (ii) If Y is regular open and rg*b -closed in X, then $A \in rg*b$ C(Y) implies $A \in rg*b$ C(X) **Theorem: 3.8** Suppose rg*b $O(X, \tau)$ is closed under arbitrary union. Then the following are equivalent for a function $f: (X, \tau) \to (Y, \sigma)$: - (i) f is contra- rg*b -continuous. - (ii) For every closed subset F of Y, $f^{-1}(F) \in rg*b O(X)$ - (iii) For each $x \in X$ and each $F \in C(Y, f(x))$, there exists $U \in rg*b\ O(X, x)$ such that $f(U) \subset F$. **Proof:** (i) \Leftrightarrow (ii) and (ii) \Rightarrow (iii) is obvious. (iii) \Rightarrow (ii): Let F be any closed set of Y and $x \in f^1(F)$. Then $f(x) \in F$ and there exists $U_x \in f^x(F)$ such that $f(U_x) \subset F$. Therefore we obtain $f^1(F) = \bigcup \{U_x : x \in f^1(F)\}$ and $f^1(F)$ is f(F) sopen. **Theorem: 3.9** Suppose rg*b $O(X,\tau)$ is closed under arbitrary intersections. If a function f: $(X, \tau) \to (Y, \sigma)$ is contrarg*b continuous and U is open in X, then f / U: $(U, \tau) \to (Y, \sigma)$ is contrarg*b -continuous. **Proof:** Let V be closed in Y. Since f: $(X, \tau) \to (Y, \sigma)$ is contra- rg*b -continuous, f¹(V) is rg*b -open in (X, τ) . $(f/U)^{-1}(V) = f^{-1}(V) \cap U$ is rg*b -open in X. By theorem 3.7 (i) $(f/U)^{-1}(V)$ is rg*b -open in U. **Theorem: 3.10** Suppose rg*b $O(X, \tau)$ is closed under arbitrary unions. Let $f: (X, \tau) \to (Y, \sigma)$ be a function and $\{U_i : i \in I\}$ be a cover of X such that $U_i \in rg*b$ C(X) and regular open for each $i \in I$. If $f / U_i : (U_i, \tau / U_i) \to (Y, \sigma)$ is contra- rg*b -continuous for each $i \in I$, then f is contra- rg*b -continuous. **Proof:** Suppose that F is any closed set of Y. We have $f^1(F) = \bigcup \{f^1(F) \cap U_i : i \in I\} = \bigcup \{(f/U_i)^{-1}(F) : i \in I\}$. Since f/U_i is contra- rg*b -continuous for each $i \in I$, it follows $(f/U_i)^{-1}(F) \in rg*b$ O (U_i) . By theorem 3.7 (ii), it follows that $f^1(F) \in rg*b$ O(X). Therefore f is contra- rg*b -continuous. **Theorem: 3.11** Suppose $rg*b O(X, \tau)$ is closed under arbitrary unions. If $f:(X, \tau) \to (Y, \sigma)$ is contra- rg*b -continuous and Y is regular open, then f is rg*b -continuous. **Proof:** Let x be an arbitrary point of X and V an open set of Y containing f(x). Y is regular implies that there exists an open set W in Y containing f(x) such that $cl(W) \subset V$. Since f is contra - rg*b -continuous, by theorem 3.8, there exists $U \in rg*b \ O(X, x)$ such that $f(U) \subset cl(W) \subset V$. Hence f is rg*b -continuous. # 4. APPROXIMATELY - rg*b -CONTINUOUS FUNCTIONS **Definition:** 4.1 A map f: $X \rightarrow Y$ is said to be approximately- rg*b -continuous (ap- rg*b -continuous) if bcl (F) \subset f⁻¹(U) whenever U is an open subset of Y and F is a rg*b -closed subset of X such that $F \subset f^{-1}$ (U). **Definition:** 4.2 A map $f: X \rightarrow Y$ is said to be approximately - rg*b -closed (briefly ap- rg*b -closed) if $f(F) \subset bint(V)$ whenever V is a rg*b -open subset of Y, F is a closed subset of X and $f(F) \subset V$. **Definition:** 4.3 A map $f: X \rightarrow Y$ is said to be approximately - rg*b -open (briefly ap- rg*b -open if bcl $(F) \subset f(U)$ whenever U is an open subset of X, F is a rg*b -closed subset of Y and $F \subset f(U)$. **Definition:** 4.4 A map $f: X \rightarrow Y$ is said to be contra - rg*b -closed (resp.contra rg*b -open) if f(U) is rg*b -open (resp. rg*b -closed) in Y for each closed (resp. open) set U of X. **Theorem: 4.5** Let $f: X \rightarrow Y$ be a function, then - (1) If f is contra -b- continuous, then f is an ap- rg*b -continuous. - (2) If f is contra-b-closed, then f is ap-rg*b -closed. - (3) If f is contra -b-open, then f is ap- rg*b -open. #### **Proof:** - (1) Let $F \subset f^1(U)$ where U is a open subset in Y and F is a rg*b -closed subset of X. Then bcl(F) \subset bcl ($f^1(U)$). Since f is contra-b- continuous, bcl(F) \subset bcl ($f^1(U)$)= $f^{-1}(U)$. This implies f is ap- rg*b continuous. - (2) Let $f(F) \subset V$, where F is a closed subset of X and V is a rg*b -open subset of Y. Therefore f(F) = bint(f(F)) $\subset bint(V)$. Thus f is ap- rg*b -closed. - (3) Let $F \subset f(U)$ where F is rg*b -closed subset of Y and U is an open subset of X. Since f is contra -b-open, f(U) is b-closed in Y for each open set U of X. $bcl(F) \subset bcl(f(U)=f(U))$. Thus f is ap- rg*b -open. # **Theorem: 4.6** Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be a map. - (1) If the open and b-closed sets of (X, τ) coincide, then f is a ap- rg*b -continuous if and only if f is contrab-continuous. - (2) If the open and b-closed sets of (Y, σ) coincide, then f is ap- rg*b -closed if and only if f is contra b-closed. - (3) If the open and b-closed sets of (Y, σ) coincide, then f is ap- rg*b -open if and only if f is contra-b-open. #### **Proof:** - (1) Assume f is ap- rg*b -continuous. Let A be an arbitrary subset of (X, τ) such that $A \subset U$, where U is rg-open in X. Then bcl $(A) \subset bcl$ (U) = U. Therefore all subsets of (X, τ) are rg*b -closed (hence all are rg*b -open). So for any open set V in (Y, σ) , we have $f^{-1}(V)$ is rg*b -closed in (X, τ) . Since f is ap- rg*b -continuous, $bcl(f^{-1}(V)) \subset f^{-1}(V)$. Therefore $f^{-1}(V)$ is b-closed in (X, τ) and f is contra-b-continuous. Converse is obvious from theorem 4.5. - (2) Assume f is ap- rg*b -closed. As in (1), we get that all subsets of (Y, σ) are rg*b -open. Therefore for any closed subset F of (X, τ) , f(F) is rg*b -open in Y. Since f is ap- rg*b -closed, f(F) C bint f(F). Hence f(F) is b-open and thus f is contra b-closed. Converse is obvious from theorem 4.5. - (3) Assume f is ap- rg*b -open. As in (1) all subsets of Y are rg*b -closed. Therefore for any open subset F of (X, τ) , f(F) is rg*b -closed in (Y, σ) . Since f is ap- rg*b -open, $bcl(F) \subset f(F)$. Hence f(F) is b-closed and thus f is contra b-open. Converse is obvious from theorem 4.5. **Theorem: 4.7** If a map $f: X \rightarrow Y$ is ap- rg*b -continuous and b-closed map, then the image of each rg*b -closed set in X is rg*b -closed set in Y. **Proof:** Let F be a rg*b -closed subset of X. Let $f(F) \subset V$ where V is an open subset of Y. Then $F \subset f^{-1}(V)$ holds. Since f is ap- rg*b - continuous, $bcl(F) \subset f^{-1}(V)$. Thus $f(bcl(F)) \subset V$. Therefore we have $bcl(f(F)) \subset bcl(f(bcl(F)) = f(bcl(V)) \subset V$. Hence f(F) is rg*b -closed set in Y. **Definition:** 4.8 A map $f: X \rightarrow Y$ is said to be contra- rg*b-irresolute if $f^{-1}(V)$ is rg*b- closed in X for each rg*b –open set V in Y. **Definition: 4.9** A space X is said to be rg*b -Lindelof if every cover of X by rg*b -open sets has a countable sub cover. **Theorem: 4.10** Let f: $X \rightarrow Y$ and g: $Y \rightarrow Z$ be two maps such that gof: $X \rightarrow Z$. (i) If g is rg*b -continuous and f is contra - rg*b - irresolute, then gof is contra rg*b - continuous. (ii) If g is rg*b -irresolute and f is contra- rg*b irresolute, then gof is contra- rg*b - irresolute. # **Proof:** - (i) Let V be closed set in Z. Then $g^{-1}(V)$ is rg*b -closed in Y. Since f is contra rg*b irresolute, $f^{-1}(g^{-1}(V))$ is rg*b -open in X. Hence gof is contra rg*b continuous. - (ii) Let V be rg*b -closed in Z. Then $g^{-1}(V)$ is rg*b -closed in Y. Since f is contra rg*b irresolute, $f^{-1}(g^{-1}(V))$ is rg*b -open in X. Hence gof is contra rg*b irresolute. **Theorem: 4.11** Let f: $X \rightarrow Y$ and g: $Y \rightarrow Z$ be two maps such that (gof): $X \rightarrow Z$. - (i) If f is closed and g is ap-rg*b closed, then (gof) is ap-rg*b closed. - (ii) If f is ap- rg*b closed and g is rg*b -open and g⁻¹ preserves rg*b -open sets, then (gof) is ap- rg*b closed. - (iii) If f is ap- rg*b-continuous and g is continuous, then gof is ap- rg*b -continuous ### Proof: - (i) Suppose B is an arbitrary closed subset in X and A is a rg*b open subset of Z for which (gof) (B) ⊆A. Then f(B) is closed in Y because f is closed. Since g is ap- rg*b -closed, g (f(B)) ⊂ bint (A) . This implies (gof) is ap- rg*b closed. - (ii) Suppose B is an arbitrary closed subset of X and A is a rg*b -open subset of Z for which (gof) (B) \subseteq A. Hence $f(B) \subset g^{-1}(A)$. Then $f(B) \subset bint(g^{-1}(A))$ because $g^{-1}(A)$ is rg*b -open and f is ap- rg*b -closed. Hence (gof) (B) = $g(f(B)) \subseteq g[bint(g^{-1}(A))] \subseteq bint(g(g^{-1}(A))) \subseteq bint(A)$. This implies that (gof) is ap- rg*b -closed. - (iii) Suppose F is an arbitrary rg*b -closed subset of X and U is open in Z for which $F \subset (gof)^{-1}(U)$. Then $g^{-1}(U)$ is open in Y, because g is continuous. Since f is ap- rg*b continuous, then we have bcl $(F) \subseteq f^1(g^{-1}(U)) = (gof)^{-1}(U)$. This shows that gof is ap- rg*b -continuous. # 5. ALMOST CONTRA- rg*b -CONTINUOUS FUNCTIONS **Definition:** 5.1 A function $f: (X, \tau) \to (Y, \sigma)$ is said to be almost contra- rg*b - continuous if $f^1(V) \in rg*bC(X, \tau)$ for each $V \in RO(Y, \sigma)$. **Theorem: 5.2** Suppose $rg*bO(X, \tau)$ is closed under arbitrary unions. Then the following statements are equivalent for a function $f: (X, \tau) \to (Y, \sigma)$. - (i) f is almost contra- rg*b continuous. - (ii) $f^{-1}(F) \in rg*bO(X,\tau)$ for every $F \in RC(Y,\sigma)$. - (iii) For each $x \in X$ and each regular closed set F in Y containing f(x), there exists a rg^*b -open set U in X containing x such that $f(U) \subset F$. - (iv) For each $x \in X$, and each regular open set V in Y not containing f(x), there exists a rg*b -closed set K in X not containing x such that $f^1(V) \subset K$. - (v) $f^{-1}(int(cl(G))) \in rg*b C(X,\tau)$ for every open subset G of Y. - (vi) $f^{-1}(int(cl(F))) \in rg*b O(X,\tau)$ for every closed subset F of Y. #### Proof - (i) \Rightarrow (ii): Let $F \in RC(Y, \sigma)$. Then $Y F \in RO(Y, \sigma)$ by assumption. Hence $f^1((Y F) = X f^1(F) \in rg*b \ C(X, \tau)$. This implies $f^1(F) \in rg*b \ O(X, \tau)$. - (ii) \Rightarrow (i): Let $V \in RO(Y, \sigma)$. Then by assumption $(Y-V) \in RC(Y, \sigma)$. Hence $f^1((Y-F) = X-f^1(F) \in rg*b\ O(X, \tau)$. This implies $f^1(F) \in rg*b\ C(X, \tau)$. - (ii) \Rightarrow (iii): Let F be any regular closed set in Y containing f(x). $f^{1}(F) \in rg^{*}b$ $O(X, \tau)$ and $x \in f^{1}(F)$ (by(ii)). Take $U = f^{1}(F)$. Then $f(U) \subset F$. - (iii) \Rightarrow (ii): Let $F \in RC(Y, \sigma)$ and $x \in f^1(F)$. From (iii), there exists a rg^*b -open set U_x in X containing x such that $U_x \subset f^1(F)$. We have $f^1(F) = \bigcup \{U_x : x \in f^1(F)\}$. Then $f^1(F)$ is rg^*b -open. - (iii)⇒(iv): Let V be any regular open set in Y containing f(x). Then Y-V is a regular closed set containing f(x). By (iii), there exists a rg*b -open set U in X containing x such that $f(U) \subset Y-V$. Hence $U \subset f^1(Y-V) \subset X-f^1(V)$. Then $f^1(V) \subset X-U$. Take K=X-U. We obtain a rg*b -closed set in X not containing x such that $f^1(V) \subset K$. - (iv) \Rightarrow (iii): Let F be regular closed set in Y containing f(x). Then Y-F is regular open set in Y containing f(x). By (iv), there exists a rg*b -closed set K in X not containing x such that $f^1(Y-F) \subset K$. Then X- $f^1(F) \subset K$ implies X-K $\subset f^1(F)$. Hence $f(X-K) \subset F$. Take U=X-K. Then U is a rg*b -open set U in X containing x such that $f(U) \subset F$. - (i) \Rightarrow (v): Let G be a open subset of Y. Since int(cl(G)) is regular open, then by (i), f^{-1} (int(cl(G)) \in rg*b C(X, τ). - $(\mathbf{v})\Rightarrow(\mathbf{i})$: Let $V\in RO(Y,\sigma)$. Then V is open in Y. By (\mathbf{v}) , $f^1(\operatorname{int}(\operatorname{cl}(G))\in\operatorname{rg}^*b\ C(X,\tau)$. This implies $f^1(V)\in\operatorname{rg}^*b\ C(X,\tau)$. (ii) \Leftrightarrow (vi) is similar as $(i)\Leftrightarrow(v)$. # ¹G. Sindhu* and ²K. Indirani/ On Contra –rg*b-Continuous Functions and Approximately–rg*b-Continuous Functions.../ IJMA- 4(12), Dec.-2013. **Theorem: 5.3** If $f: (X, \tau) \to (Y, \sigma)$ is an almost contra- rg*b - continuous function and A is a open subset of X, then the restriction $f/A:A \to Y$ is almost contra- rg*b - continuous. **Proof:** Let $F \in RC(Y)$. Since f is almost contra- rg*b - continuous, $f^1(F) \in rg*b$ O(X). Since A is open, it follows that $(f/A)^{-1}(F) = A \cap f^1(F) \in rg*b$ O(A). Therefore f/A is an almost contra- rg*b- continuous. **Theorem: 5.4** Let $f: (X, \tau) \to (Y, \sigma)$ be an almost contra- rg*b -continuous surjection. Then the following statements hold. - (i) If X is rg*b -closed, then Y is nearly compact. - (ii) If X is rg*b -Lindelof, then Y is nearly Lindelof. - (iii) If X is countably- rg*b -closed, then Y is nearly countably compact. - (iv) If X is rg*b O-compact, then Y is S-closed. - (v) If X is rg*b -Lindelof, then Y is S- Lindelof. - (vi) If X is countable rg*b -compact, then Y is countably S-closed compact. **Proof:** (i) Let $\{V_b: b \in I\}$ be regular open cover of Y. Then f is almost contra- rg*b -continuous implies $\{f^{-1}(V_b): b \in I\}$ is a rg*b -closed cover of X. Since X is rg*b -closed, there exists a finite subset I_0 of I such that $X=\cup \{f^{-1}(V_b): b\in I_0\}$. Then we have $Y=\cup \{V_b: b\in I_0\}$. Hence Y is nearly compact. Proof of (ii) and (iii) is similar to that of (i). (iv) Let $\{V_b : b \in I\}$ be regular closed cover of Y. Then f is almost contra- rg*b -conntinuous implies $\{f^{-1}(V_b): b \in I\}$ is a rg*b -open cover of X. By assumption, there exists a finite subset I_0 of I such that $X=\cup \{f^{-1}(V_b): b \in I_0\}$. Then we have $Y=\cup \{V_b : b \in I_0\}$. Hence Y is nearly compact. Proof of (v) and (vi) is similar to that of (iv). **Theorem:** 5.5 If f: $(X, \tau) \rightarrow (Y, \sigma)$ is almost contra- rg*b -continuous and almost rg*b-continuous surjection. Then - (i) If X is mildly rg*b -compact, then Y is nearly compact. - (ii) If X is mildly countably rg*b -compact, then Y is nearly countably compact. - (iii) If X is mildly rg*b -Lindelof,, then Y is nearly Lindelof. **Proof:** (i) Let $V \in RO(Y)$.Since f is almost contra- rg*b -continuous and almost rg*b -continuous, $f^1(V)$ is rg*b -closed and rg*b -open in X respectively. Then $f^1(V)$ is rg*b -clopen in X. Let $\{V_b: b \in I\}$ be any regular open cover of Y. Then $\{f^{-1}(V_b): b \in I\}$ is rg*b -clopen in X. Since X is mildly rg*b -compact, there exists a finite subset I_0 of I such that $X = \bigcup \{f^{-1}(V_b): b \in I_0\}$. Since X is surjective, we obtain $Y = \bigcup \{V_b: b \in I_0\}$. Hence Y is nearly compact. Proof of (ii) and (iii) is similar to that of (i). # REFERENCES - [1] Ahmad Al-Omari and Mohd. Salmi Md. Noorani, On Generalized b-closed sets. Bull. Malays. Math. Sci. Soc(2) 32(1) (2009), 19-30 - [2] Al-Omari A. and Noorani SMd., Some properties of contra b-continuous and al-most contra b-continuous functions, European J. of Pure and App. Math., 2 (2009) 213-30. - [3] D.Andrijevic, b-open sets, Mat. Vesink, 48 (1996), 59-64. - [4] Caldas M, Jafari S. Noiri, T. and Simoes, M., A new generalization of contra-continuity via Levine's g-closed sets, Chaos, Solitons and Fractals, 32 (2007) 1597-1603. - [5] Dontchev J., Contra-continuous functions and strongly S-closed spaces. Int Math Math Sci, 19 (1996) 303-10. - [6] Dontchev J. and Noiri T., Contra semi continuous functions. Math Pannonica, 10(1999)159-168. - [7] J.Dontchev, Contra continuous function and strongly S-closed spaces, Internat J. Math. Math. Sci.19, 303-310, 1996. - [8] E. Ekici and M. Caldas, Slightly -continuous functions, Bol. Soc. Parana. Mat. (3) 22, 63-74, 2004. - [9] Indirani.K and Sindhu.G, On Regular Generalized Star b closed sets, IJMA-4(10), 2013,1-8 - $[10]\ Indirani. K\ and\ Sindhu. G\ ,\ On\ Regular\ Generalized\ Star\ b-Closed\ Functions,\ Proceedings\ of\ NARC,\ (2013), 74-78.$ # ¹G. Sindhu* and ²K. Indirani/ On Contra –rg*b-Continuous Functions and Approximately–rg*b-Continuous Functions.../ IJMA- 4(12), Dec.-2013. - [11] Jafari S. and Noiri T., Contra α -continuous functions between topological spaces, Iranian Int. J. Sci., 2 (2) (2001) 153-167 - [12] K.Mariappa and S.Sekar , On Regular Generalized b-closed set, Int. Journal of Math. Analysis, Vol. 7, (2013), 613-624. - [13] Metin Akdag and Alkan Ozkan- Some Properties of Contra gb-continuous Functions Journal of New Results in Science 1 (2012) 40-49 - [14] Nasef AA., Some properties of contra γ -continuous functions. Chaos, Solitons and Fractals, 24 (2005) 471-477. - [15] N. Palaniappan and K. C. Rao, Regular generalized closed sets, Kyungpook, Math. J., 33(1993), 211-219. - [16] J. H. Park, Strongly θ-b-continuous functions, Acta Math. Hungar. 110, no.4, 347-359, 2006. - [17] R. Staum, The algebra of bounded continuous functions into a non archemedian field, Pacific J.Math., 50, 169-185, 1974. - [18] Willard S., General topology, Addison Wesley, 1970. Source of support: Nil, Conflict of interest: None Declared