International Journal of Mathematical Archive-5(2), 2014, 281-292

Available online through www.ijma.info ISSN 2229-5046

VERTEX- EDGE DOMINATION POLYNOMIALS OF GRAPHS

${ }^{1}$ A. Vijayan* and ${ }^{2}$ T. Nagarajan
${ }^{1}$ Associate Professor, Department of Mathematics, Nesamony Memorial Christian College, Marthandam, Tamil Nadu, India.
${ }^{2}$ Assistant Professor, Department of Mathematics, Sivanthi Aditanar College, Pillayarpuram, Nagercoil, Tamil Nadu, India.

(Received on: 10-02-14; Revised \& Accepted on: 25-02-14)

Abstract

In this paper, we introduce the concept of vertex-edge domination polynomial for any Graph. The vertex-edge domination polynomial of a graph G of order n is the polynomia $D_{v e}(G, x)=\sum_{i=\gamma_{\mathrm{ve}}(\mathrm{G})}^{|\mathrm{V}(\mathrm{G})|} d_{v e}(G, i) x^{i}$, where $d_{v e}(G, i)$ is the number of vertex-edge dominating sets of G of size i, and $\gamma_{v e}(G)$ is the vertex-edge domination number of G. We obtain some properties of $D_{v e}(G, x)$ and its co-efficients. Also, we find the vertex-edge domination polynomial for the complete Graph K_{n}, G o K_{1} and $G o K_{2}$.

Keywords: Vertex-edge dominating sets, vertex-edge domination number, vertex-edge domination polynomial.

1. INTRODUCTION

Let $G=(V, E)$ be a Graph. For any vertex $v \in V$, the open neighbourhood of v is the set $N(v)=\{u \in V \mid u v \in E\}$ and the closed neighbourhood of v is the set $\mathrm{N}[\mathrm{v}]=\mathrm{N}(\mathrm{v}) \cup\{\mathrm{v}\}$. For a set $\mathrm{S} \subseteq \mathrm{V}$, the open neighbourhood of S is $\mathrm{N}(\mathrm{S})=\bigcup_{\mathrm{v} \in \mathrm{S}} N(v)$ and the closed neighbourhood of S is $\mathrm{N}[\mathrm{S}]=\mathrm{N}(\mathrm{S}) \cup \mathrm{S}$. A set S of vertices in a Graph G is said to be a dominating set if every vertex $u \in V$ is either an element of S or is adjacent to an element of S. The minimum cardinality of a dominating set of G is said to be domination number and is denoted by $\gamma(\mathrm{G})$.

A set S of vertices in a Graph G is said to be a vertex-edge dominating set, if for every edge $e \in E(G)$, there exists a vertex $v \in S$ such that v dominates e. In other words, for a Graph $G=(V, E)$, a vertex $u \in V(G)$ vertex-edge dominates an edge $v w \in E(G)$ if (i) $u=v$ or $u=w$ (u is incident to $v w$), or (ii) $u v$ or $u w$ is an edge in G (u is incident to an edge is adjacent to vw).

The minimum cardinality of a vertex-edge dominating set of G is called vertex-edge domination number of G, and is denoted by $\gamma_{\mathrm{ve}}(\mathrm{G})$.

The join of two Graphs G_{1} and G_{2}, denoted by $G_{1} \vee G_{2}$ is a graph with the vertex set $V=V_{1} \cup V_{2}$ and edge set $E_{1} \cup E_{2}$ $\cup\left\{u v \mid u \in V_{1}\right.$ and $\left.v \in V_{2}\right\}$. The corona of two graphs G_{1} and G_{2} is the graph $G=G_{1}$ o G_{2} formed from one copy of G_{1} and $\left|V\left(G_{1}\right)\right|$ copies of G_{2}, where the $i^{\text {th }}$ vertex of G_{1} is adjacent to every vertex in the $i^{\text {th }}$ copy of G_{2}. A graph is an empty graph if it contains no edges.

2. INTRODUCTION TO VERTEX-EDGE DOMINATION POLYNOMIAL

In this section, we are going to state the definition of vertex-edge domination polynomial and derive some properties.
Definition: 2. 1 Let $D_{v e}(G, i)$ be the family of vertex-edge dominating sets of a graph G with cardinality i and let $d_{\text {ve }}(G, i)=\left|D_{\text {ve }}(G, i)\right|$. Then the vertex-edge domination polynomial, $D_{\text {ve }}(G, x)$ of G is defined as

Corresponding author: ${ }^{1}$ A. Vijayan*
${ }^{1}$ Associate Professor, Department of Mathematics, Nesamony Memorial Christian College, Marthandam, Tamil Nadu, India.
E-mail: naacnmccm@gmail.com

$$
\mathrm{D}_{\mathrm{ve}}(\mathrm{G}, x)=\sum_{i=\gamma_{\mathrm{ve}}(G)}^{|\mathrm{V}(\mathrm{G})|} d_{\mathrm{ve}}(G, i) x^{i},
$$

where $\gamma_{\mathrm{ve}}(\mathrm{G})$ is the vertex-edge domination number of G.
Example: 2.2 Consider K_{4}

Vertex-edge dominating sets of cardinality 1 are $\{1\},\{2\},\{3\},\{4\}$.
$\therefore \mathrm{K}_{4}$ has 4 vertex-edge dominating sets of cardinality 1 and $\gamma_{\mathrm{ve}}\left(\mathrm{K}_{4}\right)=1$
Vertex-edge dominating sets of cardinality 2 are $\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}$.
$\therefore \mathrm{K}_{4}$ has 6 vertex-edge dominating sets of cardinality 2
Vertex-edge dominating sets of cardinality 3 are $\{1,2,3\},\{1,2,4\},\{1,3,4\},\{2,3,4\}$.
$\therefore \mathrm{K}_{4}$ has 4 vertex-edge dominating sets of cardinality 3 .
Vertex-edge dominating sets of cardinality 4 is $\{1,2,3,4\}$
$\therefore \mathrm{K}_{4}$ has 1 vertex-edge dominating set of cardinality 4 .
\therefore The vertex-edge domination polynomial is
$\mathrm{D}_{\mathrm{ve}}\left(\mathrm{K}_{4}, x\right)=\sum_{i=\gamma_{\mathrm{ve}}\left(\mathrm{K}_{4}\right)}^{\left|\mathrm{K}_{4}\right|} d_{v e}\left(K_{4}, i\right) x^{i}$
$=\sum_{i=1}^{4} d_{v e}\left(K_{4}, i\right) x^{i}$
$=\mathrm{d}_{\mathrm{ve}}\left(\mathrm{K}_{4}, 1\right) x^{1}+\mathrm{d}_{\mathrm{ve}}\left(\mathrm{K}_{4}, 2\right) x^{2}+\mathrm{d}_{\mathrm{ve}}\left(\mathrm{K}_{4}, 3\right) x^{3}+\mathrm{d}_{\mathrm{ve}}\left(\mathrm{K}_{4}, 4\right) x^{4}$
$=4 x^{1}+6 x^{2}+4 x^{3}+1 . x^{4}$
$=x^{4}+4 x^{3}+6 x^{2}+4 x+1-1$
$=(1+x)^{4}-1$
Theorem: 2.2 If G is a Graph without isolated vertices, consisting of two components G_{1} and G_{2}, then $\mathrm{D}_{\mathrm{ve}}(\mathrm{G}, x)=\mathrm{D}_{\mathrm{ve}}\left(\mathrm{G}_{1}, x\right) . \mathrm{D}_{\mathrm{ve}}\left(\mathrm{G}_{2}, x\right)$.

Proof: Let G_{1} and G_{2} be the components of a Graph G without isolated vertices. Let the vertex-edge domination number of G_{1} and G_{2} be $\gamma_{v e}\left(G_{1}\right)$ and $\gamma_{v e}\left(G_{2}\right)$. For any $k \geq \gamma_{v e}(G)$, the vertex-edge dominating set of k vertices in G arises by choosing a vertex-edge dominating set of j vertices of G_{1} and a vertex-edge dominating set of k - j vertices in G_{2}.

The number of vertex-edge dominating sets in $G_{1} \cup G_{2}$ is equal to the coefficient of x^{k} in $D_{\text {ve }}\left(G_{1}, x\right)$. $D_{\text {ve }}\left(G_{2}, x\right)$. The number of vertex-edge dominating sets of G is the co-efficient of x^{k} in $D_{v e}(G, x)$.

Hence the co-efficient of x^{k} in $\mathrm{D}_{\text {ve }}(\mathrm{G}, x)$ and $\mathrm{D}_{\text {ve }}\left(\mathrm{G}_{1}, x\right) . \mathrm{D}_{\text {ve }}\left(\mathrm{G}_{2}, x\right)$ are equal.
$\therefore \mathrm{D}_{\text {ve }}(\mathrm{G}, x)=\mathrm{D}_{\text {ve }}\left(\mathrm{G}_{1}, x\right) . \mathrm{D}_{\text {ve }}\left(\mathrm{G}_{2}, x\right)$.
Theorem: 2.3 If G is a Graph without isolated vertices consists of m components $G_{1}, G_{2}, \ldots, G_{m}$. Then $\mathrm{D}_{\mathrm{ve}}(\mathrm{G}, x)=\mathrm{D}_{\mathrm{ve}}\left(\mathrm{G}_{1}, x\right) . \mathrm{D}_{\text {ve }}\left(\mathrm{G}_{2}, x\right) \ldots \mathrm{D}_{\mathrm{ve}}\left(\mathrm{G}_{\mathrm{m}}, x\right)$.

Proof: The proof of the theorem follows from theorem 2.2.

${ }^{1}$ A. Vijayan* and ${ }^{2}$ T. Nagarajan/Vertex- Edge Domination Polynomials Of Graphs / IJMA- 5(2), Feb.-2014.

Example: 2.4 Consider the graph given in figure 1.

Figure 1
$\gamma_{\mathrm{ve}}(\mathrm{G})=\gamma_{\mathrm{ve}}\left(\mathrm{G}_{1}\right)+\gamma_{\mathrm{ve}}\left(\mathrm{G}_{2}\right)=1+1=2$ a vertex-edge dominating sets of $\mathrm{k}=2$ vertices in G arises by choosing a vertex-edge dominating set of $\mathrm{j}=1$ in $\mathrm{G}_{1}(\mathrm{j} \in\{1,2,3,4\})$ and a vertex edge dominating set $\mathrm{k}-\mathrm{j}=2-1=1$ vertex in G_{2}

$$
\begin{aligned}
\mathrm{D}_{\mathrm{ve}}\left(\mathrm{G}_{1}, x\right) & =\sum_{i=\gamma_{\mathrm{ve}}\left(\mathrm{G}_{1}\right)}^{\left.\mathrm{V}_{1}\right) \mid} d_{v e}\left(G_{1}, i\right) x^{i} \\
& =\sum_{i=1}^{4} d_{v e}\left(G_{1}, i\right) x^{i} \\
& =\mathrm{d}_{\mathrm{ve}}\left(\mathrm{G}_{1}, 1\right) x^{1}+\mathrm{d}_{\mathrm{ve}}\left(\mathrm{G}_{1}, 2\right) x^{2}+\mathrm{d}_{\mathrm{ve}}\left(\mathrm{G}_{1}, 3\right) x^{3}+\mathrm{d}_{\mathrm{ve}}\left(\mathrm{G}_{1}, 4\right) x^{4} \\
& =2 x+6 x^{2}+4 x^{3}+x^{4} \\
& =x^{4}+4 x^{3}+6 x^{2}+2 x
\end{aligned}
$$

$$
\mathrm{D}_{\mathrm{ve}}\left(\mathrm{G}_{2}, x\right)=\sum_{i=\gamma_{\mathrm{ve}}\left(\mathrm{G}_{2}\right)}^{\left|\mathrm{V}\left(\mathrm{G}_{2}\right)\right|} d_{v e}\left(G_{2}, i\right) x^{i}
$$

$$
=\sum_{i=1}^{4} d_{v e}\left(G_{2}, i\right) x^{i \mathrm{i}}
$$

$$
=\mathrm{d}_{\mathrm{ve}}\left(\mathrm{G}_{2}, 1\right) x^{1}+\mathrm{d}_{\mathrm{ve}}\left(\mathrm{G}_{2}, 2\right) x^{2}+\mathrm{d}_{\mathrm{ve}}\left(\mathrm{G}_{2}, 3\right) x^{3}+\mathrm{d}_{\mathrm{ve}}\left(\mathrm{G}_{2}, 4\right) x^{4}
$$

$$
=4 x^{1}+6 x^{2}+4 x^{3}+x^{4}
$$

$$
=x^{4}+4 x^{3}+6 x^{2}+4 x
$$

$$
\mathrm{D}_{\mathrm{ve}}\left(\mathrm{G}_{1}, x\right) . \mathrm{D}_{\mathrm{ve}}\left(\mathrm{G}_{2}, x\right)=\left(x^{4}+4 x^{3}+6 x^{2}+2 x\right) \times\left(x^{4}+4 x^{3}+6 x^{2}+4 x\right)
$$

Coefficient of x^{2} in $\mathrm{D}_{\text {ve }}\left(\mathrm{G}_{1}, x\right) . \mathrm{D}_{\text {ve }}\left(\mathrm{G}_{2}, x\right)$ is

$$
\begin{aligned}
& =8 \\
& =2
\end{aligned}
$$

$\mathrm{j}_{1}=1, \mathrm{k}-\mathrm{j}_{1}=2-1=1$

The vertex-edge dominating set of cardinality 2 of

$$
G=\{\{2,5\},\{2,6\},\{2,7\},\{2,8\},\{3,5\},\{3,6\},\{3,7\},\{3,8\}\}
$$

$$
\mathrm{d}_{\mathrm{ve}}(\mathrm{G}, 2)=8
$$

\therefore coefficient of x^{2} in $\mathrm{D}_{\mathrm{ve}}(\mathrm{G}, x)$ is 8
\therefore coefficient of x^{2} in $\mathrm{D}_{\mathrm{ve}}(\mathrm{G}, x)$ is same as coefficient of x^{2} in

$$
\mathrm{D}_{\mathrm{ve}}\left(\mathrm{G}_{1}, x\right) . \mathrm{D}_{\mathrm{ve}}\left(\mathrm{G}_{2}, x\right)
$$

$\therefore \mathrm{D}_{\text {ve }}(\mathrm{G}, x)=\mathrm{D}_{\text {ve }}\left(\mathrm{G}_{1}, x\right) . \mathrm{D}_{\mathrm{ve}}\left(\mathrm{G}_{2}, x\right)$
$\mathrm{k}=3$
$\mathrm{j}_{1}=1, \mathrm{k}-\mathrm{j}_{1}=3-1=2$

$$
\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}
$$

$\mathrm{d}_{\mathrm{ve}}\left(\mathrm{G}_{1}, 1\right)=\{\{2\},\{3\}\}=2$
The coefficient of x^{1} in $D_{\text {ve }}\left(G_{1}, x\right)$ is 2
$\mathrm{d}_{\mathrm{ve}}\left(\mathrm{G}_{2}, 2\right)=\{\{5,6\},\{5,7\},\{5,8\},\{6,7\},\{6,8\},\{7,8\}\}=6$
\therefore The coefficient of x^{2} in $\mathrm{D}_{\text {ve }}\left(\mathrm{G}_{2}, x\right)$ is 6
\therefore The coefficient of x^{3} in $D_{\text {ve }}\left(G_{1}, x\right) . D_{\text {ve }}\left(G_{2}, x\right)$ is $2 \times 6=12 G=G_{1} \cup G_{2}$
$d_{\text {ve }}(G, 3)=\{\{2,5,6\},\{2,5,7\},\{2,5,8\},\{2,6,7\},\{2,6,8\},\{2,7,8\},\{3,5,6\},\{3,5,7\},\{3,5,8\}$, $\{3,6,7\},\{3,6,8\},\{3,7,8\}\}$
$=12$
\therefore The coefficient of x^{3} in $D_{\text {ve }}(G, x)$ is 12
$\therefore \mathrm{D}_{\mathrm{ve}}(\mathrm{G}, x)=\mathrm{D}_{\text {ve }}\left(\mathrm{G}_{1}, x\right) \mathrm{D}_{\text {ve }}\left(\mathrm{G}_{2}, x\right)$
$\mathrm{k}=3$
$\mathrm{j}_{1}=2, \mathrm{k}-\mathrm{j}_{1}=3-2=1$

$\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}$
$d_{\text {ve }}\left(G_{1}, 2\right)=\{\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}\}$

$$
=6
$$

\therefore The coefficient of x^{2} in $\mathrm{D}_{\text {ve }}\left(\mathrm{G}_{1}, x\right)$ is 6
$\mathrm{d}_{\mathrm{ve}}\left(\mathrm{G}_{2}, 1\right)=\{\{5\},\{6\},\{7\},\{8\}\}=4$
\therefore The coefficient of x^{1} in $\mathrm{D}_{\text {ve }}\left(\mathrm{G}_{2}, x\right)$ is 4
Coefficient of x^{3} in $\mathrm{D}_{\text {ve }}\left(\mathrm{G}_{1}, x\right) . \mathrm{D}_{\mathrm{ve}}\left(\mathrm{G}_{2}, x\right)=6 \times 4=24$

${ }^{1}$ A. Vijayan* and ${ }^{2}$ T. Nagarajan/Vertex- Edge Domination Polynomials Of Graphs / IJMA- 5(2), Feb.-2014.

$$
\begin{aligned}
& \mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2} \\
& \mathrm{~d}_{\mathrm{ve}}(\mathrm{G}, 3)=\{\{1,2,5\},\{1,2,6\},\{1,2,7\},\{1,2,8\},\{1,3,5\},\{1,3,6\},\{1,3,7\}, \\
&\{1,3,8\},\{1,4,5\},\{1,4,6\},\{1,4,7\},\{1,4,8\},\{2,3,5\},\{2,3,6\}, \\
&\{2,3,7\},\{2,3,8\},\{2,4,5\},\{2,4,6\},\{2,4,7\},\{2,4,8\},\{3,4,5\}, \\
&=\{3,4,6\},\{3,4,7\},\{3,4,8\}\} .
\end{aligned}
$$

\therefore The coefficient of x^{3} in $\mathrm{D}_{\text {ve }}(\mathrm{G}, x)$ is 24
$\therefore \quad \mathrm{D}_{\mathrm{ve}}(\mathrm{G}, x)=\mathrm{D}_{\mathrm{ve}}\left(\mathrm{G}_{1}, x\right) . \mathrm{D}_{\mathrm{ve}}\left(\mathrm{G}_{2}, x\right)$
Theorem: 2.5 If G_{1} and G_{2} are Graphs of order n_{1} and n_{2} respectively, then

$$
\mathrm{D}_{\mathrm{ve}}\left(\mathrm{G}_{1} \vee \mathrm{G}_{2}, x\right)=\left[\left((1+x)^{\mathrm{n} 1}-1\right)\left((1+x)^{\mathrm{n} 2}-1\right)\right]+\mathrm{D}_{\mathrm{ve}}\left(\mathrm{G}_{1}, x\right)+\mathrm{D}_{\mathrm{ve}}\left(\mathrm{G}_{2}, x\right)
$$

Proof: From the definition of $G_{1} \vee G_{2}$, if D_{1} is any vertex-edge domination set of G_{1}, then D_{1} is a vertex-edge domination set of $G_{1} \vee G_{2}$. Similarly, if D_{2} is any vertex-edge domination set of G_{2}, then D_{2} is a vertex-edge domination set of $G_{1} \vee G_{2}$.

Also, the sets consist of any one vertex of G_{1} and any one vertex of G_{2}, forms the vertex-edge Dominating sets of $\mathrm{G}_{1} \vee \mathrm{G}_{2}$ of cardinality two. There are $\binom{\mathrm{n}_{1}}{1}\binom{\mathrm{n}_{2}}{1}$ such sets. Similarly, the number of vertex-edge dominating sets of cardinality three other than the first two cases is $\binom{\mathrm{n}_{1}}{1}\binom{\mathrm{n}_{2}}{2}+\binom{\mathrm{n}_{2}}{1}\binom{\mathrm{n}_{1}}{2}$.

Proceeding like this, we obtain the other vertex-edge dominating sets of cardinality $\mathrm{n}_{1}+\mathrm{n}_{2}$.
Therefore, $\mathrm{D}_{\mathrm{ve}}\left(\mathrm{G}_{1} \vee \mathrm{G}_{2}, x\right)=\mathrm{D}_{\mathrm{ve}}\left(\mathrm{G}_{1}, x\right)+\mathrm{D}_{\mathrm{ve}}\left(\mathrm{G}_{2}, x\right)+\binom{\mathrm{n}_{1}}{1}\binom{\mathrm{n}_{2}}{1} x^{2}+\left[\binom{\mathrm{n}_{1}}{1}\binom{\mathrm{n}_{2}}{2}+\binom{\mathrm{n}_{1}}{2}\binom{\mathrm{n}_{2}}{1}\right] x^{3}$

$$
\begin{aligned}
& +\left[\binom{\mathrm{n}_{1}}{1}\binom{\mathrm{n}_{2}}{3}+\binom{\mathrm{n}_{1}}{2}\binom{\mathrm{n}_{2}}{2}+\binom{\mathrm{n}_{1}}{3}\binom{\mathrm{n}_{2}}{1}\right] x^{4} \\
& +\ldots+\left[\binom{\mathrm{n}_{1}}{1}\binom{\mathrm{n}_{2}}{\mathrm{n}_{1}+\mathrm{n}_{2-1}}+\ldots+\binom{\mathrm{n}_{2}}{\mathrm{n}_{1}+\mathrm{n}_{2-1}}\binom{\mathrm{n}_{2}}{1}\right] x^{\mathrm{n} 1}+{ }^{\mathrm{n} 2} \\
& \mathrm{D}_{\mathrm{ve}}\left(\mathrm{G}_{1}, x\right)+\mathrm{D}_{\mathrm{ve}}\left(\mathrm{G}_{2}, x\right)+\left[\binom{\mathrm{n}_{1}}{1} x+\binom{\mathrm{n}_{2}}{2} x^{2}+\ldots+\binom{\mathrm{n}_{1}}{\mathrm{n}_{1}} x^{\mathrm{n}_{1}}\right] \\
& \times\left[\binom{\mathrm{n}_{2}}{1} x+\binom{\mathrm{n}_{2}}{2} x^{2}+\ldots+\binom{\mathrm{n}_{2}}{\mathrm{n}_{2}} x^{\mathrm{n}_{2}}\right]
\end{aligned}
$$

$$
=\mathrm{D}_{\mathrm{ve}}\left(\mathrm{G}_{1}, x\right)+\mathrm{D}_{\mathrm{ve}}\left(\mathrm{G}_{2}, x\right)
$$

$$
+\left[\binom{\mathrm{n}_{1}}{0}+\binom{\mathrm{n}_{1}}{1} x+\binom{\mathrm{n}_{1}}{2} x^{2}+\ldots+\binom{\mathrm{n}_{1}}{\mathrm{n}_{1}} x^{\mathrm{n}_{1}}-\binom{\mathrm{n}_{1}}{0}\right]
$$

$$
\times\left[\binom{\mathrm{n}_{2}}{0}+\binom{\mathrm{n}_{2}}{1} x+\binom{\mathrm{n}_{2}}{2} x^{2}+\ldots+\binom{\mathrm{n}_{2}}{\mathrm{n}_{2}} x^{\mathrm{n}_{2}}-\binom{\mathrm{n}_{2}}{0}\right]
$$

$\therefore \mathrm{D}_{\text {ve }}\left(\mathrm{G}_{1}, \vee \mathrm{G}_{2}, x\right)=\mathrm{D}_{\text {ve }}\left(\mathrm{G}_{1}, x\right)+\mathrm{D}_{\text {ve }}\left(\mathrm{G}_{2}, x\right)+\left[(1+x)^{\mathrm{n} 1}-1\right]\left[(1+x)^{\mathrm{n} 2}-1\right]$
$\therefore \mathrm{D}_{\mathrm{ve}}\left(\mathrm{G}_{1} \vee \mathrm{G}_{2}, x\right)=\left[(1+x)^{\mathrm{n} 1}-1\right]\left[(1+x)^{\mathrm{n} 2}-1\right]+\mathrm{D}_{\mathrm{ve}}\left(\mathrm{G}_{1}, x\right)+\mathrm{D}_{\mathrm{ve}}\left(\mathrm{G}_{2}, x\right)$

3. CO-EFFICIENT OF VERTEX-EDGE DOMINATION POLYNOMIAL

Theorem: 3.1 Let G be a graph with $|\mathrm{V}(\mathrm{G})|=\mathrm{n}$. Then
(i) If G is connected, then $d_{v e}(G, n)=1$ and $d_{v e}(G, n-1)=n$.
(ii) $\mathrm{d}_{\mathrm{ve}}(\mathrm{G}, \mathrm{i})=0$ iff $\mathrm{i}<\gamma_{\mathrm{ve}}(\mathrm{G})$ or $\mathrm{i}>\mathrm{n}$.
(iii) $\mathrm{D}_{\mathrm{ve}}(\mathrm{G}, x)$ has no constant term.
(iv) $\mathrm{D}_{\mathrm{ve}}(\mathrm{G}, x)$ is a strictly increasing function in $[0, \infty)$.
(v) Let G be a Graph and H be any induced subgraph of G. Then, $\operatorname{deg}\left(\mathrm{D}_{\mathrm{ve}}(\mathrm{G}, \mathrm{x})\right) \geq \operatorname{deg}\left(\mathrm{D}_{\mathrm{ve}}(\mathrm{H}, x)\right)$
(vi) Zero is a root of $D_{\mathrm{ve}}(\mathrm{G}, x)$ with multiplicity $\gamma_{\mathrm{ve}}(\mathrm{G})$.

Proof:

(i) Since G has n vertices, there is only one way to choose all these vertices and it dominates all the vertices and edges. Therefore, $\mathrm{d}_{\mathrm{ve}}(\mathrm{G}, \mathrm{n})=1$. If we delete one vertex v , the remaining $\mathrm{n}-1$ vertices dominate all the vertices and edges of G. (This is done in n ways). Therefore, $d_{v e}(G, n-1)=n$.
(ii) Since $D_{\text {ve }}(G, i)=\phi$ if $i<\gamma_{v e}(G)$ or $D_{v e}(G, n+k)=\phi, k=1,2, \ldots$

Therefore, we have $\mathrm{d}_{\mathrm{ve}}(\mathrm{G}, \mathrm{i}) \square=0$ if $\mathrm{i}<\gamma_{\mathrm{ve}}(\mathrm{G})$ or $\mathrm{i}>\mathrm{n}$
Conversely, if $\mathrm{i}<\gamma_{\mathrm{ve}}(\mathrm{G})$ or $\mathrm{i}>\mathrm{n}, \mathrm{d}_{\mathrm{ve}}(\mathrm{G}, \mathrm{i})=0$.Hence the result.
(iii) Since $\gamma_{\mathrm{ve}}(G) \geq 1$, the vertex-edge domination polynomial has no term of degree 0 . Therefore, it has no constant term. The proof of (iv) follows from the definition of vertex-edge domination polynomial.
(v) We have deg $\left(\mathrm{D}_{\mathrm{ve}}(\mathrm{H}, x)\right)=$ Number of vertices in H, Also, deg $\left(\mathrm{D}_{\mathrm{ve}}(\mathrm{G}, x)\right)=$ Number of vertices in G since Number of vertices in $H \leq$ Number of vertices in G,
$\operatorname{deg}\left(D_{\text {ve }}(H, x)\right) \leq \operatorname{deg}\left(D_{\text {ve }}(G, x)\right)$

4. Vertex-edge Domination Polynomial of G o K \mathbf{K}_{1}

Lemma: 4.1 Let G be an empty graph of order n. Then, $\gamma_{\mathrm{ve}}\left(\mathrm{G}\right.$ o $\left.\mathrm{K}_{1}\right)=\mathrm{n}$
Proof: Since G has n vertices, G o K_{1} has $2 n$ vertices. Let $V(G)=\left\{u_{1}, u_{2}, \ldots u_{n}\right\}$. Clearly $\left\{u, u_{2}, \ldots, u_{n}\right\}$ is the minimal vertex-edge dominating set of G o K_{1}.

Therefore, $\gamma_{\mathrm{ve}}\left(\mathrm{G} \circ \mathrm{K}_{1}\right)=\mathrm{n}$
Example: 4.2
(Empty graph with 3 vertices)

There are three vertices required to cover all the vertices and edges of G o K_{1}.
Therefore, Minimum cardinality $=3$

$$
\gamma_{\mathrm{ve}}\left(\mathrm{G} \circ \mathrm{~K}_{1}\right)=3
$$

Example: 4.3 Let G be a complete Graph with n vertices. First, let $n=1$.

$\mathrm{d}_{\mathrm{ve}}\left(\mathrm{G}\right.$ o $\left.\mathrm{K}_{1}, 1\right)=2$
$\mathrm{d}_{\mathrm{ve}}\left(\mathrm{G}\right.$ o $\left.\mathrm{K}_{1}, 2\right)=1$

$$
\begin{aligned}
& \left|\mathrm{V}\left(\mathrm{GoK}_{1}\right)\right| \\
& \therefore \mathrm{D}_{\mathrm{ve}}\left(\mathrm{Go} \mathrm{~K} \mathrm{~K}_{1}, x\right)=\sum_{i=\gamma_{\mathrm{ve}}\left(\mathrm{GoK}_{1}\right)} d_{v e}\left(G o K_{1}, i\right) x^{i} \\
& =\sum_{i=1}^{2} d_{v e}\left(\text { GoK }_{1}, i\right) x^{i} \\
& =\mathrm{d}_{\mathrm{ve}}\left(\mathrm{G} \text { o } \mathrm{K}_{1}, 1\right) x^{1}+\mathrm{d}_{\mathrm{ve}}\left(\mathrm{G} \text { o } \mathrm{K}_{1}, 2\right) x^{2} \\
& =2 x+x^{2} \\
& =(1+x)^{2}-1 \\
& =(1+x)^{2}-\binom{1}{0}
\end{aligned}
$$

Let $\mathrm{n}=2$,

$$
{\stackrel{\bullet}{\mathrm{K}_{1}}}^{\mathbf{~}}
$$

GoK
$\mathrm{d}_{\mathrm{ve}}\left(\mathrm{G} \circ \mathrm{K}_{1}, 1\right)=2$
$\mathrm{d}_{\mathrm{ve}}\left(\mathrm{G}\right.$ o $\left.\mathrm{K}_{1}, 2\right)=6$
$\mathrm{d}_{\mathrm{ve}}\left(\mathrm{G} \circ \mathrm{K}_{1}, 3\right)=4$
$\mathrm{d}_{\mathrm{ve}}\left(\mathrm{G}\right.$ o $\left.\mathrm{K}_{1}, 4\right)=1$

$$
\begin{aligned}
\therefore \mathrm{D}_{\mathrm{ve}}\left(\mathrm{Go} \mathrm{~K}_{1}, x\right) & =\sum_{i=\gamma_{\mathrm{ve}}\left(\mathrm{GoK}_{1}\right)}^{\left|\mathrm{V}\left(\mathrm{GoK}_{1}\right)\right|} d_{v e}\left(\text { GoK K }_{1}, i\right) x^{i} \\
& =\sum_{i=1}^{4} d_{v e}\left(G o K_{1}, i\right) x^{i} \\
& =2 x+6 x^{2}+4 x^{3}+x^{4} \\
& =(1+x)^{4}-(2 x+1) \\
& =(1+x)^{4}-\left(\binom{2}{1} x+\binom{2}{0}\right)
\end{aligned}
$$

$n=3$,

$\mathrm{d}_{\mathrm{ve}}\left(\mathrm{G} \circ \mathrm{K}_{1}, 1\right)=3$
$\mathrm{d}_{\mathrm{ve}}\left(\mathrm{G}\right.$ o $\left.\mathrm{K}_{1}, 2\right)=12$
$d_{v e}\left(\mathrm{G} \mathrm{o} \mathrm{K}_{1}, 3\right)=20$
$d_{v e}\left(G \circ K_{1}, 4\right)=15$
$\mathrm{d}_{\mathrm{ve}}\left(\mathrm{G}\right.$ o $\left.\mathrm{K}_{1}, 5\right)=6$
$\mathrm{d}_{\mathrm{ve}}\left(\mathrm{G} \circ \mathrm{K}_{1}, 6\right)=1$

$$
\left.\begin{array}{rl}
\therefore \mathrm{D}_{\mathrm{ve}}(\mathrm{Go} \mathrm{~K} \\
1
\end{array}, x\right)=\sum_{i=\gamma_{\mathrm{ve}}\left(\mathrm{GoK}_{1}\right)}^{\left|\mathrm{V}\left(\mathrm{GoK}_{1}\right)\right|} d_{v e}\left(\text { GoK }_{1}, i\right) x^{i} .
$$

$n=4$,

$\mathrm{d}_{\mathrm{ve}}\left(\mathrm{G}\right.$ o $\left.\mathrm{K}_{1}, 1\right)=4$
$d_{\text {ve }}\left(\mathrm{G} \mathrm{o} \mathrm{K}_{1}, 2\right)=22$
$\mathrm{d}_{\mathrm{ve}}\left(\mathrm{G}\right.$ o $\left.\mathrm{K}_{1}, 3\right)=52$
$d_{\text {ve }}\left(\mathrm{G} \mathrm{o} \mathrm{K}_{1}, 4\right)=70$
$\mathrm{d}_{\mathrm{ve}}\left(\mathrm{G}\right.$ o $\left.\mathrm{K}_{1}, 5\right)=56$
$\mathrm{d}_{\text {ve }}\left(\mathrm{G}\right.$ o $\left.\mathrm{K}_{1}, 6\right)=28$
$\mathrm{d}_{\mathrm{ve}}\left(\mathrm{G} \circ \mathrm{K}_{1}, 7\right)=8$
$\mathrm{d}_{\mathrm{ve}}\left(\mathrm{G}\right.$ o $\left.\mathrm{K}_{1}, 8\right)=1$

$$
\begin{aligned}
\therefore \mathrm{D}_{\mathrm{ve}}\left(\mathrm{G} \mathrm{o} \mathrm{~K}_{1}, x\right) & =\sum_{i=\gamma_{\mathrm{ve}}\left(\mathrm{GoK}_{1}\right)}^{\left|\mathrm{V}\left(\mathrm{GoK}_{1}\right)\right|} d_{v e}\left(\text { GoK }_{1}, i\right) x^{i} \\
& =\sum_{i=1}^{8} d_{v e}\left(\text { GoK }_{1}, i\right) x^{i} \\
& =4 x+22 x^{2}+52 x^{3}+70 x^{4}+56 x^{5}+28 x^{6}+8 x^{7}+x^{8} \\
& =(1+x)^{8}-\left(4 x^{3}+6 x^{2}+4 x+1\right) \\
& =(1+x)^{8}-\left(\binom{4}{3} x^{3}+\binom{4}{2} x^{2}+\binom{4}{1} x+\binom{4}{0}\right)
\end{aligned}
$$

$\mathrm{n}=5$,

$\mathrm{d}_{\mathrm{ve}}\left(\mathrm{G} \circ \mathrm{K}_{1}, 1\right)=5$
$d_{\mathrm{ve}}\left(\mathrm{G} \circ \mathrm{K}_{1}, 2\right)=35$
$\mathrm{d}_{\mathrm{ve}}\left(\mathrm{G}\right.$ o $\left.\mathrm{K}_{1}, 3\right)=110$
$\mathrm{d}_{\mathrm{ve}}\left(\mathrm{G}\right.$ o $\left.\mathrm{K}_{1}, 4\right)=205$
$\mathrm{d}_{\mathrm{ve}}\left(\mathrm{G}\right.$ o $\left.\mathrm{K}_{1}, 5\right)=252$
$\mathrm{d}_{\mathrm{ve}}\left(\mathrm{G} \circ \mathrm{K}_{1}, 6\right)=210$
$\mathrm{d}_{\mathrm{ve}}\left(\mathrm{G} \circ \mathrm{K}_{1}, 7\right)=120$
$\mathrm{d}_{\mathrm{ve}}\left(\mathrm{G} \mathrm{o} \mathrm{K} \mathrm{K}_{1}, 8\right)=45$
$\mathrm{d}_{\mathrm{ve}}\left(\mathrm{G} \circ \mathrm{K}_{1}, 9\right)=10$
$\mathrm{d}_{\mathrm{ve}}\left(\mathrm{G}\right.$ o $\left.\mathrm{K}_{1}, 10\right)=1$

$$
\begin{aligned}
\therefore \mathrm{D}_{\mathrm{ve}}\left(\mathrm{G} \mathrm{o} \mathrm{~K}_{1}, x\right) & =\sum_{i=\gamma_{\mathrm{ve}}\left(\mathrm{GoK}_{1}\right)}^{\left|\mathrm{V}\left(\mathrm{GoK}_{1}\right)\right|} d_{v e}\left(\text { GoK }_{1}, i\right) x^{i} \\
& =5 x+35 x^{2}+110 x^{3}+205 x^{4}+252 x^{5}+210 x^{6}+120 x^{7}+45 x^{8}+10 x^{9}+x^{10} \\
& =(1+x)^{10}-\left(5 x^{4}+10 x^{3}+10 x^{2}+5 x+1\right) \\
& =(1+x)^{10}-\left(\binom{5}{4} x^{4}+\binom{5}{3} x^{3}+\binom{5}{2} x^{2}+\binom{5}{1} x+\binom{5}{0}\right)
\end{aligned}
$$

Now, we generalize the vertex-edge domination polynomial of G o K_{1}, where G is the complete graph with n vertices as

$$
\left.\begin{array}{rl}
\mathrm{D}_{\mathrm{ve}}(\mathrm{Go} \mathrm{~K} & 1, x)
\end{array}=(1+x)^{2 \mathrm{n}}-\left(\binom{\mathrm{n}}{0}+\binom{\mathrm{n}}{1} x+\ldots+\binom{\mathrm{n}}{\mathrm{n}-1} x^{n-1}\right)\right)
$$

Theorem: 4.4 G is a complete Graph of order n. We have

$$
\mathrm{d}_{\mathrm{ve}}\left(\mathrm{G} \text { o } \mathrm{K}_{1}, \mathrm{r}\right)=\left\{\begin{array}{l}
\left(\begin{array}{c}
2 \mathrm{n} \\
\mathrm{r} \\
2 \mathrm{n} \\
\mathrm{r}
\end{array}\right),-\binom{\mathrm{n}}{\mathrm{r}}, \mathrm{r} \geq \mathrm{n}
\end{array}\right.
$$

Hence, $\quad \mathrm{D}_{\mathrm{ve}}\left(\mathrm{G}\right.$ o $\left.\mathrm{K}_{1}, x\right)=(1+x)^{2 \mathrm{n}}-\sum_{r=0}^{n-1}\binom{\mathrm{n}}{\mathrm{r}} X^{r}$.
Proof: Since G has n vertices, G o K_{1} has $2 n$ vertices. One vertex of G o K_{1} is enough to cover all the vertices and edges of G o K_{1}. Therefore the minimum cardinality is one.

${ }^{1}$ A. Vijayan* and ${ }^{2}$ T. Nagarajan/ Vertex-Edge Domination Polynomials Of Graphs / IJMA- 5(2), Feb.-2014.

Therefore, $\gamma_{\mathrm{ve}}\left(\mathrm{G}\right.$ o $\left.\mathrm{K}_{1}\right)=1$. If $\mathrm{r}<\mathrm{n}$, then the $\mathrm{V}(\mathrm{G})=\left\{\mathrm{u}_{1} \ldots \mathrm{u}_{\mathrm{n}}\right\}$ and $\mathrm{V}\left(\mathrm{G}\right.$ o $\left.\mathrm{K}_{1}\right)=\left\{\mathrm{u}_{1} \ldots \mathrm{u}_{\mathrm{n}}, \mathrm{v}_{1} \ldots \mathrm{v}_{\mathrm{n}}\right\}$ consists of any r vertices from $\left\{\mathrm{u}_{1} \ldots \mathrm{u}_{\mathrm{n}}, \mathrm{v}_{1} \ldots \mathrm{v}_{\mathrm{n}}\right\}$ excluding sets having any r vertices from $\left\{\mathrm{v}_{1} \ldots \mathrm{v}_{\mathrm{n}}\right\}$.

Thus, If $r<n$, then the vertex-edge dominating sets of G o K_{1} is $\binom{2 n}{r}-\binom{n}{r}$.
\therefore The number of vertex - edge dominating sets is $\binom{2 n}{r}-\binom{n}{r}$. Let $r \geq n$, we know that any set of n vertices in $\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots \ldots \mathrm{u}_{\mathrm{n}}, \mathrm{v}_{1}, \mathrm{v}_{2} \ldots \mathrm{v}_{\mathrm{n}}\right\}$ is a vertex-edge dominating set of $\mathrm{Go} \mathrm{K}_{1}$. Then the number of vertex-edge dominating sets of G o K_{1} is $\binom{2 n}{r}$.

$$
\begin{aligned}
& \mathrm{D}_{\mathrm{ve}}\left(\mathrm{G} \text { o } \mathrm{K}_{1}, x\right)=\sum_{i=\gamma_{\mathrm{ve}}\left(\mathrm{GoK}_{1}\right)}^{\left|\mathrm{V}\left(\mathrm{GoK}_{1}\right)\right|} d_{v e}\left(\text { GoK }_{1}, r\right) x^{r} \\
& =\sum_{\mathrm{r}=1}^{2 n} d_{v e}\left(G o K_{1}, r\right) x^{r} \\
& =\sum_{\mathrm{r}=1}^{n-1} d_{v e}\left(\text { GoK }_{1}, r\right) x^{r}+\sum_{\mathrm{r}=\mathrm{n}}^{2 n} d_{v e}\left(\text { GoK }_{1}, r\right) x^{r} \\
& =\sum_{\mathrm{r}=1}^{n-1}\left[\binom{2 \mathrm{n}}{\mathrm{r}}-\binom{\mathrm{n}}{\mathrm{r}}\right] x^{\mathrm{r}}+\sum_{\mathrm{r}=\mathrm{n}}^{2 n}\binom{2 \mathrm{n}}{\mathrm{r}} x^{\mathrm{r}} \\
& =\left[\binom{2 \mathrm{n}}{1}-\binom{\mathrm{n}}{1}\right] x^{1}+\left[\binom{2 \mathrm{n}}{2}-\binom{\mathrm{n}}{2}\right] x^{2}+\ldots+ \\
& {\left[\binom{2 n}{n-1}-\binom{n}{n-1}\right] x^{n-1}+\binom{2 n}{n} x^{n}+\binom{2 n}{n+1} x^{n+1}+\ldots+\binom{2 n}{2 n} x^{2 n}} \\
& =\binom{2 \mathrm{n}}{1} x^{1}+\binom{2 \mathrm{n}}{2} x^{2}+\binom{2 \mathrm{n}}{3} x^{3}+\ldots+\binom{2 \mathrm{n}}{\mathrm{n}} x^{\mathrm{n}}+\binom{2 \mathrm{n}}{\mathrm{n}+1} x^{\mathrm{n}+1}+\ldots+\binom{2 \mathrm{n}}{2 \mathrm{n}} x^{2 \mathrm{n}} \\
& -\left(\binom{\mathrm{n}}{1} x^{1}+\binom{\mathrm{n}}{2} x^{2}+\ldots+\binom{\mathrm{n}}{\mathrm{n}-1} x^{\mathrm{n}-1}\right)=\binom{2 \mathrm{n}}{0}+\binom{2 \mathrm{n}}{1} x^{1}+\binom{2 \mathrm{n}}{2} x^{2}+\binom{2 \mathrm{n}}{3} x^{3} \\
& +\ldots+\binom{2 \mathrm{n}}{\mathrm{n}} x^{\mathrm{n}}+\binom{2 \mathrm{n}}{\mathrm{n}+1} x^{\mathrm{n}+1}+\ldots+\binom{2 \mathrm{n}}{2 \mathrm{n}} x^{2 \mathrm{n}}-\left(\binom{\mathrm{n}}{0}+\binom{\mathrm{n}}{1} x^{1}\right. \\
& \left.+\binom{\mathrm{n}}{2} x^{2}+\ldots+\binom{\mathrm{n}}{\mathrm{n}-1} x^{\mathrm{n}-1}\right) \\
& =(1+x)^{2 \mathrm{n}}-\sum_{\mathrm{r}=0}^{n-1}\binom{\mathrm{n}}{\mathrm{r}} x^{\mathrm{r}}
\end{aligned}
$$

5. VERTEX-EDGE DOMINATION POLYNOMIAL OF G o K 2

Theorem: 5.1 If G is a complete Graph of order n. we have
$d_{v e}\left(G o K_{2}, r\right)=\left\{\begin{array}{l}\binom{3 n}{r}-\binom{n}{1}\binom{3 n-3}{r}+\binom{n}{2}\binom{3 n-6}{r}-\ldots+(-1)^{k}\binom{n}{k}\binom{3 n-3 k}{r} \\ k \text { is the largest integer satisfying } 3 n-3 k \geq r, \text { if } r \leq 3 n-3 \\ \binom{3 n}{r}, \text { if } r>3 n-3\end{array}\right.$
Hence, $\mathrm{D}_{\mathrm{ve}}\left(\mathrm{G}\right.$ o $\left.\mathrm{K}_{2}, x\right)=\left[(1+x)^{3}-1\right]^{\mathrm{n}}$

${ }^{1}$ A. Vijayan* and ${ }^{2}$ T. Nagarajan/ Vertex- Edge Domination Polynomials Of Graphs / IJMA-5(2), Feb.-2014.

Proof: Since G has n vertices, G o K_{2} has $3 n$ vertices. The n vertices of G cover all the vertices and edges of G o K_{2}. Therefore, the minimum cardinality of vertex-edge dominating sets is n.

$$
\therefore \gamma_{\mathrm{ve}}\left(\mathrm{Go} \mathrm{~K} \mathrm{~K}_{2}\right)=\mathrm{n}
$$

If $r \leq 3 n-3$, then, The number of vertex-edge dominating sets of $G o K_{2}$ of cardinality r is

$$
\binom{3 n}{r}-\binom{n}{1}\binom{3 n-3}{r}+\binom{n}{2}\binom{3 n-6}{r}-\ldots+(-1)^{k}\binom{n}{k}\binom{3 n-3 k}{r}
$$

When $r>3 n-3$, The number of vertex-edge dominating sets of G o K_{2} of cardinality r is $\binom{3 n}{r}$.
Therefore,

$$
\begin{aligned}
& \left.D_{\text {ve }}(G \text { o K } 2, x)=\sum_{r=\gamma_{v e}\left(\sum_{\text {G o K }}^{2}\right)}\right) \mathrm{d}_{\text {ve }}\left(\mathrm{G} \text { o K K } 2 \text {, r) } x^{\mathrm{r}}\right. \\
& =\sum_{r=n}^{3 n} \mathrm{~d}_{\mathrm{ve}}\left(\mathrm{Goo} \mathrm{~K}_{2}, \mathrm{r}\right) x^{\mathrm{r}} \\
& \left.=\sum_{r=1}^{3 n} d_{\text {ve }}\left(G \circ K_{2}, r\right) x^{r} \text { (Since, } d_{\text {ve }}\left(G \circ K_{2}, r\right)=0 \text { for } r=1,2, \ldots, n-1\right) \\
& =\sum_{r=1}^{3 \mathrm{n}-3} \mathrm{~d}_{\mathrm{ve}}\left(\mathrm{G} \text { o K } \mathrm{K}_{2}, \mathrm{r}\right) x^{\mathrm{r}}+\sum_{r=3 \mathrm{n}-2}^{3 \mathrm{n}} \mathrm{~d}_{\mathrm{ve}}\left(\mathrm{Go} \mathrm{~K} \mathrm{~K}_{2}, \mathrm{r}\right) x^{\mathrm{r}} \\
& =\sum_{r=1}^{3 n-3}\left[\binom{3 n}{r}-\binom{n}{1}\binom{3 n-3}{r}+\binom{n}{2}\binom{3 n-6}{r}\right. \\
& \left.-\ldots+(-1)^{\mathrm{k}}\binom{\mathrm{n}}{\mathrm{k}}\binom{3 \mathrm{n}-3 \mathrm{k}}{\mathrm{r}}\right] x^{\mathrm{r}}+\sum_{r=3 \mathrm{n}-2}^{3 \mathrm{n}}\binom{3 \mathrm{n}}{\mathrm{r}} x^{\mathrm{r}} \\
& =\sum_{r=1}^{3 n-3}\binom{3 n}{r} x^{r}-\binom{\mathrm{n}}{1} \sum_{r=1}^{3 n-3}\binom{3 n-3}{r} x^{r}+\binom{n}{2} \sum_{r=1}^{3 n-3}\binom{3 n-6}{r} x^{r} \\
& -\ldots+(-1)^{\mathrm{k}}\binom{\mathrm{n}}{\mathrm{k}} \sum_{r=1}^{3 \mathrm{n}-3}\binom{3 n-3 \mathrm{k}}{\mathrm{r}} x^{\mathrm{r}}+\sum_{\mathrm{r}=3 \mathrm{n}-2}^{3 \mathrm{n}}\binom{3 \mathrm{n}}{\mathrm{r}} x^{\mathrm{r}} \\
& =\binom{3 n}{1} x^{1}+\binom{3 n}{2} x^{2}+\ldots+\binom{3 n}{3 n-3} x^{3 n-3} \\
& -\binom{n}{1}\left[\binom{3 n-3}{1} x^{1}+\binom{3 n-3}{2} x^{2}+\ldots+\binom{3 n-3}{3 n-3} x^{3 n-3}\right] \\
& +\binom{\mathrm{n}}{2}\left[\binom{3 \mathrm{n}-6}{1} x^{1}+\binom{3 \mathrm{n}-6}{2} x^{2}+\ldots \ldots+\binom{3 \mathrm{n}-6}{3 \mathrm{n}-6} x^{3 \mathrm{n}-6}\right] \\
& -\ldots+(-1)^{\mathrm{k}}\binom{\mathrm{n}}{\mathrm{k}}\left[\binom{3 \mathrm{n}-3 \mathrm{k}}{\mathrm{r}} x^{1}+\ldots+\binom{3 \mathrm{n}-3 \mathrm{k}}{3 \mathrm{n}-3 \mathrm{k}} x^{3 \mathrm{n}-3 \mathrm{k}}\right] \\
& +\ldots+\binom{3 n}{3 n-2} x^{3 n-2}+\binom{3 n}{3 n-1} x^{3 n-1}+\binom{3 n}{3 n} x^{3 n} \\
& =1+\binom{3 n}{1} x^{1}+\binom{3 n}{2} x^{2}+\ldots+\binom{3 n}{3 n-3} x^{3 n-3}+ \\
& -1-\binom{\mathrm{n}}{1}\left[1+\binom{3 \mathrm{n}-3}{1} x^{1}+\binom{3 n-3}{2} x^{2}+\ldots+\binom{3 n-3}{3 n-3} x^{3 n-3}-1\right] \\
& +\binom{n}{2}\left[1+\binom{3 n-6}{1} x^{1}+\binom{3 n-6}{2} x^{2}+\ldots+\binom{3 n-6}{3 n-6} x^{3 n-6}-1\right]+\ldots+(-1)^{n}\binom{n}{n}
\end{aligned}
$$

$$
\begin{aligned}
& =(1+x)^{3 \mathrm{n}}-\binom{\mathrm{n}}{1}(1+x)^{3(\mathrm{n}-1)}+\binom{\mathrm{n}}{2}\left((1+x)^{3(\mathrm{n}-2)}\right)-\ldots+(-1)^{\mathrm{n}} \\
& -\left[\binom{n}{0}-\binom{n}{1}+\binom{n}{2}-\ldots+(-1)^{n}\binom{n}{n}\right] \\
& =\left[(1+x)^{3}-1\right]^{\mathrm{n}}-\left[\binom{\mathrm{n}}{0}-\binom{\mathrm{n}}{1}+\binom{\mathrm{n}}{2}-\ldots+(-1)^{\mathrm{n}}\binom{\mathrm{n}}{\mathrm{n}}\right] \\
& =\left[(1+x)^{3}-1\right]^{\mathrm{n}}-0 \\
& =\left[(1+x)^{3}-1\right]^{\mathrm{n}} \quad\left(\because\binom{\mathrm{n}}{0}-\binom{\mathrm{n}}{1}+\binom{\mathrm{n}}{2}-\ldots+(-1)^{\mathrm{n}}\binom{\mathrm{n}}{\mathrm{n}}=0\right) \\
& \mathrm{D}_{\text {ve }}\left(\mathrm{G} \text { o K } \mathrm{K}_{2}, x\right)=\left[(1+x)^{3}-1\right]^{\mathrm{n}}
\end{aligned}
$$

REFERENCES

[1] Alikhani.S and Peng Y.H, 2008, Introduction to Domination Polynomial of a Graph. arXiv: 0905 . 2251v1 [math.co] 14 may.
[2] Alikhani.S and Peng Y.H, 2008. Domination sets and Domination polynomial of cycles, Global Journal of Pure and Applied Mathematics Vol.4, no.2.
[3] Bondy J.A, Murthy. U.S.R., Graph theory with applications, Elsevier Science Publishing Co, sixth printing, 1984.
[4] Frucht. R, and Harary. F, On the Corona of two graphs, Aequations Math. 4 (1970) 322-324.
[5] Gray Chartand, Ping Zhang, 2005, Introduction to graph theory, Mc Graw Hill, Higher Education.
[6] Haynes T.W, Hedetniemi S.T., Slater P.J., Fundamentals of Domination in Graphs, Marcel Dekker, Newyork, 1998.

Source of support: Nil, Conflict of interest: None Declared

