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ABSTRACT
In this paper, we introduce the concept of vertex-edge domination polynomial for any Graph. The vertex-edge

domination polynomial of a graph G of order n is the polynomia D, (G, X) = X d\,e ( G, i )Xi, where dy(G, i)
1=Yye(G)

is the number of vertex-edge dominating sets of G of size i, and x.(G) is the vertex-edge domination number of G. We

obtain some properties of D,(G, x) and its co-efficients. Also, we find the vertex-edge domination polynomial for the

complete Graph K, Go K; and G 0 K,.
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1. INTRODUCTION

Let G = (V, E) be a Graph. For any vertex v € V, the open neighbourhood of v is the set N(v) ={u € V |u Vv € E} and
the closed neighbourhood of v is the set N[v] = N(v) u {v}. For a set S < V, the open neighbourhood of S is

N(S) = US N (V) and the closed neighbourhood of S is N[S] = N(S) U S. A set S of vertices in a Graph G is said to
ve

be a dominating set if every vertex u € V is either an element of S or is adjacent to an element of S. The minimum
cardinality of a dominating set of G is said to be domination number and is denoted by y(G).

A set S of vertices in a Graph G is said to be a vertex-edge dominating set, if for every edge ecE(G), there exists a
vertex v e S such that v dominates e. In other words, for a Graph G = (V, E), a vertex u € V(G) vertex-edge dominates
anedge vw € E(G) if (i) u=voru=w (uis incident to vw), or (ii) uv or uw is an edge in G (u is incident to an edge is
adjacent to vw).

The minimum cardinality of a vertex-edge dominating set of G is called vertex-edge domination number of G, and is
denoted by y,.(G).

The join of two Graphs G; and G,, denoted by G; v G, is a graph with the vertex set V = V; U V, and edge set E; U E,
w {uvju € V; and veV,}. The corona of two graphs G; and G, is the graph G = G; 0 G, formed from one copy of G;
and |V/(G,)| copies of G,, where the i'" vertex of G; is adjacent to every vertex in the i" copy of G,. A graph is an empty
graph if it contains no edges.

2. INTRODUCTION TO VERTEX-EDGE DOMINATION POLYNOMIAL

In this section, we are going to state the definition of vertex-edge domination polynomial and derive some properties.

Definition: 2. 1 Let D(G, i) be the family of vertex-edge dominating sets of a graph G with cardinality i and
let dye(G, i) = | Dye(G, i) |. Then the vertex-edge domination polynomial, D,¢(G, x) of G is defined as
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|V(G)| Ny
Dwe(G )= X  dy(G, i)x,
iI=Yye(G)
where v,(G) is the vertex-edge domination number of G.

Example: 2.2 Consider K4

Vertex-edge dominating sets of cardinality 1 are {1}, {2}, {3}, {4}.

". K, has 4 vertex-edge dominating sets of cardinality 1 and y,.(K4)=1
Vertex-edge dominating sets of cardinality 2 are {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}.

. K4 has 6 vertex-edge dominating sets of cardinality 2
Vertex-edge dominating sets of cardinality 3 are {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}.

. K4 has 4 vertex-edge dominating sets of cardinality 3.
Vertex-edge dominating sets of cardinality 4 is {1, 2, 3, 4}

..Kg4has 1 vertex-edge dominating set of cardinality 4.

.. The vertex-edge domination polynomial is

Due(Ka, X) = |Kz4| dye ( Ky, )X’
ve 4, |:f\{ve(K4) ve 4
4
= izld\,e( Ky, i )X

= dye (Kg 1) X+ dye(Ka, 2) X%+ dye(Ky, 3) X3+ dye(Ky, 4) x*
=4x'+ 6+ 4+ 1 x!

=x*+4x°+6x°+4x+1-1

=(1+x)*-1

Theorem: 2.2 If G is a Graph without isolated vertices, consisting of two components G; and G,, then
Dye(G, X) = Dye(G1, X). Dye(G2, X).

Proof: Let G; and G, be the components of a Graph G without isolated vertices. Let the vertex-edge domination

number of G; and G, be y(G1) and y.(G,). For any k > 7, (G), the vertex—edge dominating set of k vertices in G
arises by choosing a vertex-edge dominating set of j vertices of G; and a vertex-edge dominating set of k-j vertices

in G,.

The number of vertex-edge dominating sets in G;UG; is equal to the coefficient of X< in Dye(G1, X). Dye(Ga, X).
The number of vertex-edge dominating sets of G is the co-efficient of x* in Dy, (G,X).

Hence the co-efficient of x¥ in Dye(G, X) and Dy e(Gy, X). Dye(G,, x) are equal.
. Dve(G: X) = Dve(Gln X)- Dve(GZ’ X)-

Theorem: 2.3 If G is a Graph without isolated vertices consists of m components G;, G,, . . . ,Gy. Then
Dve(G: X) = Dve(Gln X)- Dve(GZ’ X) Ca Dve(Gm, X)-

Proof: The proof of the theorem follows from theorem 2.2.
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Example: 2.4 Consider the graph given in figure 1.

N

G= r_i||_l Li]
Figure 1

Tve(G) = Yve(G1)+ye(G2)=1+1=2 a vertex-edge dominating sets of k=2 vertices in G arises by choosing a
vertex-edge dominating set of j = 1 in G; (je{1, 2, 3, 4}) and a vertex edge dominating setk - j=2 -1=1
vertex in G,

|V(Gl)| _
Dye(Gy, x) = X dve(Gl, i)x'
'ZYve(Gl)

4 L
iEldve(Gl, i )X

= 0ye(G1, 1) X+ dye(Gy, 2) X* + dye(Gy, 3) X° + dye(Gy, 4) X*
=2x+ 62+ 4+ x*
=x*+4x3+6 X%+ 2x

|V(G2)|

Dw(Gn )= ¥  d.(G,, i)X
2 iZYve(GZ) ve( 2 )

=_§ dye ( Gy, i )X'
i=1
= dve(Gy, 1) X+ die(Ga, 2) X2+ dye(Ga, 3) X2 + dye(Gy, 4) X*
=4x' + 6x2+ 4 X3+ X
=x*+4x3+6x°+4x
Due(G1, X) - Dye(Gp, X) = (X*+4 X3+ 6x%+2x) x (X*+4 x>+ 6 X2+ 4 X)
Coefficient of x? in Dée(Gl, X) . Dye(Gp, X) is

k=2
jlzl,k—j1:2—1:1

G=G,uG, G:
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The vertex-edge dominating set of cardinality 2 of

G ={{2,5}.{2,6}{2,7}.{2,8}.{3,5}.{3,6}.{3,7}.{3.8}}
dwe(G, 2) = 8
-, coefficient of x? in Dye(G, x) is 8
~. coefficient of x? in D\e(G, x) is same as coefficient of x* in
DVS(G1! X) . Dve(GZy X)
. Dye(G, X) = Dye(Gy, X).Dye(G2, X)
k=3
j1=1,k—j1=3—1=2

[

(3]

{54
G=G,UG,
dve(G1, 1) = {{2}, {3}}=2
The coefficient of x* in Dye(Gy, X) is 2
dve(Gz, 2) = {{5, 6}.{5, 7}.{5, 8}.{6, 7}.{6, 8}.{7, 8}}= 6
- The coefficient of x? in Dye(G>, X) is 6

. The coefficient of x* in Dye(G1, X). Dye(G2, X) is2Xx6=12G =G, U G,

dv(G, 3) = {{2, 5, 6}, {2, 5, 7}, {2, 5, 8}, {2, 6, 7}, {2 6, 8} {2, 7, 8} {8, 5, 6}, {3, 5, 7}.{3, 5, 8},

{3,6,7}, {3,6,8} {3,7,8}}
=12

. The coefficient of x% in Dy(G, x) is 12
~ Dve(G: X) = Dve(Gl’ X) Dve(GZ: X)

k=3
ji=2,k-j=3-2=1

G =G,UG,
dve(G1, 2) = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}
=6
. The coefficient of x? in Dye(Gy, X) is 6
dve(Gz, 1) ={{5} {6}, {7}. {83} =4
. The coefficient of x* in Dy(G,, x) is 4

Coefficient of x* in Dye(G1, X) . Due(G2, X) = 6 x 4 = 24
© 2014, 1IMA. All Rights Reserved
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G= Gl \ G2

dve(G, 3) = {{1, 2,5}, {1, 2, 63}, {1, 2, 7}, {1, 2, 8}, {1, 3,5}, {1, 3, 6}, {1, 3, 7},

{1, 3,8}, {1, 4,5} {1,4,6}, {1, 4, 7}, {1, 4, 8}, {2, 3, 5}, {2, 3, 6},
{2,3,7}, {2, 3,8}, {2,4,5}, {2, 4, 6}, {2, 4, 7}, {2, 4, 8}, {3, 4, 5},
{3, 4,6}, {3, 4,7}, {3, 4, 8}}.

=24
. The coefficient of x* in Dy(G, x) is 24
Dve(G, X) = Dye(G1, X) . Dye(G2, X)
Theorem: 2.5 If G, and G, are Graphs of order n; and n, respectively, then
Dve (G1v G, X) = [((1 +%) ™= 1) (1 +x) ™= 1)] + Die (Gy, X) + Dye(Go, X)
Proof: From the definition of G; v G,, if D; is any vertex-edge domination set of G, then D; is a vertex-edge

domination set of G; v G,. Similarly, if D, is any vertex-edge domination set of G,, then D, is a vertex-edge
domination set of G; v G,.

Also, the sets consist of any one vertex of G; and any one vertex of G,, forms the vertex-edge Dominating sets of

G, v G, of cardinality two. There are ( nll ) ( an ] such sets. Similarly, the number of vertex-edge dominating sets of

cardinality three other than the first two cases is ( nll j ( n22 )+( an j ( n21 )

Proceeding like this, we obtain the other vertex-edge dominating sets of cardinality n, + n,.

Therefore, Dye (G1 v Gy, X) = Dye (G, X) + Dye(Gy, X) + (qu (rlz )x2+ [(?)(“ﬁj + (nzlj(”lzﬂ o
(20 )- () (%) - (3) (7))
1 3 2 2 3 1
(1)) (o )]
1 n1+n2_1 n1+n2_1 1
Dve(leX) + Dve(GZaX) +|:(n1jx+ (nzsz + ...+ (nlJan:|
1 2 n
x[(n2jx+ (n2)x2 + ..t (nz)xnz}
1 2 n2
D (Gll X) + Dve (GZ! X)

{5 (3 (e () (3)]
() () ()7 ()22 ()]

2. Die (Gy, v Ga, X) = Dye (Gy, X) + Dy (G, X) + [ (1 +)™ = 1] [(1 +X)™ - 1]
Dy (G1v Gy, X) = [(1+X)™=1][(L+ %)™ = 1] + Dy (Gy, X) + Dye (G2, X)
3. CO-EFFICIENT OF VERTEX-EDGE DOMINATION POLYNOMIAL
Theorem: 3.1 Let G be a graph with [V(G)| =n. Then
(i)  If Gis connected, then dy(G, n) =1and d,(G,n—-1) =n.
(i) dwe(G,i)=0iffi<y,.(G)ori >n.
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(iii)  Dye(G, x) has no constant term.
(iv)  Dye(G, x) is a strictly increasing function in [0, ).

(v) Let G be a Graph and H be any induced subgraph of G. Then, deg (D..(G, X)) > deg (Dye(H, X))

(vi) Zero is a root of De(G, x) with multiplicity y,(G).

Proof:

(i) Since G has n vertices, there is only one way to choose all these vertices and it dominates all the vertices
and edges. Therefore, d(G, n) = 1. If we delete one vertex v, the remaining n — 1 vertices dominate all the
vertices and edges of G. (This is done in n ways). Therefore, d,(G, n —1) = n.

(i) Since Dye(G, i)=¢ if i <y,(G)or Dye(G,n+k)=¢,k=1,2,....
Therefore, we have dy(G, i)Y 1=01ifi< yw(G)ori>n
Conversely, if i <7y,(G) or i >n, dy(G, i) = 0 .Hence the result.

(iii) Since y,(G)>1, the vertex-edge domination polynomial has no term of degree 0. Therefore, it has no
constant term. The proof of (iv) follows from the definition of vertex-edge domination polynomial.
(v) We have deg (Dye(H, x))= Number of vertices in H, Also, deg (D.e(G, x)) = Number of vertices in G since

Number of vertices in H < Number of vertices in G,
deg (Dve (H, X)) < deg (D.e (G, X))

4. Vertex-edge Domination Polynomial of G o K;

Lemma: 4.1 Let G be an empty graph of order n. Then, yy. (G o K;) =n

Proof: Since G has n vertices, G o Ky has 2n vertices. Let V(G)={uy, Uy, . .

minimal vertex-edge dominating set of G o K;.

Therefore, vy (G o Ki)=n

Example: 4.2
] L L L
K
G
(Empty graph with 3 vertices)
Gok,

. up}. Clearly {u, u,, ..., uy} is the

There are three vertices required to cover all the vertices and edges of G o K;.

Therefore, Minimum cardinality =3
Yve (G o Kl) =3.

Example: 4.3 Let G be a complete Graph with n vertices. First, let n = 1.

G K|

]

Gok,

dve(G 0 Ky , 1) =2

dVE(GO Kl 52):1

© 2014, 1IMA. All Rights Reserved
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IV(GoK,)

© Du(G o Ky , X) = > d. (GoK, , i)x'
( 0 K1 ) izyve(GOKl) ve( 1 )

2 .
= _zldve(GoKl , )X
i=

= dVE(G o Kl ' 1)Xl + dVE(G o Kl ’ Z)Xz

=2x+x2

=(1+x°-1

:(1+X)2_(]6)

Letn=2,
= .
1 G 2 K,
3 4
| 2
Gok,
dVE(G o Kll 1) =2
dve(G o Ky, 2) =6
dwe(Go Ky 3)=4
dwe(Go Ky, 4)=1
IV(GoK,)| o
~Dw(GoK;y,x)=_ X d,. (GoK, , i)x'

4 )
= _zldve (GoK, , i)X'
i=

=2x + 6x% + 4x% + x*

=(1+x)*-(2x +1)

o {[+(3)

dve(G 0 Ky, 1) = 3
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dve(G 0 Ky, 2) = 12
dve(G 0 Ky, 3) = 20
dve(G 0 Ky, 4) =15
dvwe(G oKy 5)=6
dwe(Go Ky 6)=1
IV(GoKy)|

- Duw(G o Ky , X) = » d. (GoK, , i)x'
( 0 K1 ) izyve(GOKl) ve( 1 )

6 .
- _zldve(GoK1 , )X
i=

=3x + 12x% +20 X3+ 15 x* + 6 x> +x°

=(1+x)°-(1+3x +3x9)

won((3)2 (2)e ()

K, 1 2

Gn K,

dve(G 0 Ky, 1) = 4
dve(G 0 Ky, 2) = 22
dve(G 0 Ky, 3) = 52
dve(G 0 Ky, 4) = 70
dve(G 0 Ky, 5) = 56
dve(G 0 Ky, 6) = 28
dve(G 0 Ky, 7) = 8
dve(G 0 Ky, 8) = 1
IV(GoK,)| :
. Dwe(G o Ky , x) = ) d,. (GoK, , i)x'

) )
- _zldve (GoK, , i)x'
i=

=A4x +22x2 +52 X3+ 70 x* + 56 x>+ 28 x® + 8 x" + x®

= (1 +x)°- (4 +6x2 + 4x + 1)

G (HEHERHEH)
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dve(G o Ky, 1) =5
dve(G 0 Ky, 2) = 35
dve(G 0 Ky, 3) = 110
dve(G 0 Ky, 4) = 205
dve(G 0 Ky, 5) = 252
dve(G 0 Ky, 6) =210
dve(G 0 Ky, 7) =120
dve(G 0 Ky, 8) =45
dve(G 0 Ky, 9) =10
dve(G 0 Ky, 10)= 1

IV(GoK,)| _
“Dwe(GoK;,x)= X d,. (GoK, , i)x'

i=yye(GoK,)
= 5x + 35x% +110 x® + 205 x* +252 x* + 210 x° + 120 x” + 45x%+ 10x°+ x *°

=(1+x)0-(5x* +10x% + 10x* + 5x + 1)

Sl (HA HEHES IR

Now, we generalize the vertex-edge domination polynomial of G o K;, where G is the complete graph with n vertices
as

Dw(GoK; ,X) = (1+x)2”—((8)+(1n)x+...+(nn_l)xn_lj

-1
= (L+xP- %3(E%K

Theorem: 4.4 G is a complete Graph of order n. We have

2n _(n) r<n
de(GoKyn=4) " {\f

, r=n

_ n -1 Ny r
Hence, Dve(G 0 Ky, X) = (1 +x) ZO P
r=

Proof: Since G has n vertices, G o K; has 2n vertices. One vertex of G o K; is enough to cover all the vertices and
edges of G o K;. Therefore the minimum cardinality is one.
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Therefore, y,.(G o K;) = 1. If r < n, then the V(G) = {u; . . . u} and V(G o Ky) ={us. . . Uy, V1 ... V,} consists
of any r vertices from{u; . . . u,, v . . . vV} excluding sets having any r vertices from {v; ... v,}.

Thus, If r < n, then the vertex-edge dominating sets of G o K, is( 2rn )—( :‘ )

.. The number of vertex — edge dominating sets is( 2rn )—( rr1 ) Let r > n, we know that any set of n vertices in

{uy, Uy,..... Up, Vg, Vo . ..V} is a vertex-edge dominating set of G o K;. Then the number of vertex-edge dominating

sets of G o K, is(zrn) .

IV(GoK))| 0. (GoK. . DX’
)y oK, , rx
i=yye(GoKy) !

DVE(G o Kl ’ X)

2n
Zldve (GoK, , r)x’
r=

Zdve(eoKl, X"+ 2 d,. (GoK,, r)x"
L) () S
() () L) - (3o
Y e PO B L Bl L PO Tt o )X
[( 2n) (n”nl (Zn)n (2n)n+1 (2n)2n
e (2312 il e o)
e e )
e (2 ()

=(1+x)" - nil (n )xr

r=0 \Tf
5. VERTEX-EDGE DOMINATION POLYNOMIAL OF G o K;

Theorem: 5.1 If G is a complete Graph of order n. we have

PO (3

k is the largest integer satisfying 3n —3k > r,ifr < 3n - 3
(f”) ifr>3n -3

d,(GoK, , r)=

Hence, D.(Go Ky x)= [(1+x)°*1]"
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Proof: Since G has n vertices, G o K, has 3n vertices. The n vertices of G cover all the vertices and edges of G o K.
Therefore, the minimum cardinality of vertex-edge dominating sets is n.

- Ve (G Y KZ) =n

If r <3n- 3, then, The number of vertex-edge dominating sets of G o K, of cardinality r is
3n] _[n}){3n-3 n\[3n-6 | _ Kk [n}|[3n-3k
R Rl ) e R )
When r > 3n — 3, The number of vertex-edge dominating sets of G o K, of cardinality r is( Srn )

Therefore,
V(G 0Ky)|

Dee (G 0 Ky, X) = Y dye (GO Ky, N X
r=yye(G 0 K,)

3n r
2 dye (GO Ky, 1) X
r=n

3n
= Y dye (G0K2,r)xr(8ince, de(GoKy, =0 forr=1,2,...,n-1)
r=1

MY e GoKy X+ 3 dye (GoKy 0!
= 0 , N x + 0 , )X

1 ve 2 r=3n_ 2 ve 2

3n-3
_ 3n n 3n-3 n 3n-6
S (5 ()
et e 30
k r r=3n-2 r
:3nz-3 (3n)xr _(n)Snz-S (3”‘3)xr . (n)3“z'3 (Bn—G)Xr
r=1 \T 1) ra r 2) 2 r
___.+(_1)k (n)?’nz'ls (3n—3k )xr N 3£ (3n )Xr
k) ra r r=3n-2 \ T
_[{3n)1 3n|,2 3n 3n-3
(TP ()
3n-3}.1 3n-31.2 3n-3).3n-3
G L R G i
3n-6).1 3n-61,2 3n-6).3n-6
(6]t (6] o (o) ]

kK [n 3n-3k | 1 3n-3k |.,3n-3k
- ..+ (-] (k)[( . )x +"'+(3n—3k)x }

3n 3n-2 3n 3n-1 3n}|,3n
ot (3n—2)x * (3n—1)X +(3n)X

=1+ 30+ (30 )k e |30 )33
3n-3

-1 —(?) {1 +(3n1—3 )x1+ (3n£3 )x2 +.o..0F (22:3 )x3n'3 —1}
+ (2 ) l:1 +(3n1—6 )x1+ (SHEG )x2 +oF (gg:g )x3n'6—1}+... + (—1)n (2 )
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= (L™~ (f) (14X + (g) (@+x°)— o+ (1)
)2+ 2] e () |

sweorar () (7) ¢ () e ()|

=[(1+x)°-11"-0

=[(@+%° 17" ( (8) - (? ) + (2 ) Tt ('1)n(2 ) :O)

" Due (GOKy x) =[(1+x)°-1]"
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