VERTEX- EDGE DOMINATION POLYNOMIALS OF GRAPHS

¹A. Vijayan* and ²T. Nagarajan

¹Associate Professor, Department of Mathematics, Nesamony Memorial Christian College, Marthandam, Tamil Nadu, India.

²Assistant Professor, Department of Mathematics, Sivanthi Aditanar College, Pillayarpuram, Nagercoil, Tamil Nadu, India.

(Received on: 10-02-14; Revised & Accepted on: 25-02-14)

ABSTRACT

In this paper, we introduce the concept of vertex-edge domination polynomial for any Graph. The vertex-edge domination polynomial of a graph G of order n is the polynomia $D_{ve}(G, x) = \sum_{i=\gamma_{ve}(G)} d_{ve}(G, i) x^i$, where $d_{ve}(G, i)$

is the number of vertex-edge dominating sets of G of size i, and $\gamma_{ve}(G)$ is the vertex-edge domination number of G. We obtain some properties of $D_{ve}(G, x)$ and its co-efficients. Also, we find the vertex-edge domination polynomial for the complete Graph K_n , G o K_1 and G o K_2 .

Keywords: Vertex-edge dominating sets, vertex-edge domination number, vertex-edge domination polynomial.

1. INTRODUCTION

Let G=(V,E) be a Graph. For any vertex $v\in V$, the open neighbourhood of v is the set $N(v)=\{u\in V\mid u\ v\in E\}$ and the closed neighbourhood of v is the set $N[v]=N(v)\cup\{v\}$. For a set $S\subseteq V$, the open neighbourhood of S is

 $N(S) = \bigcup_{v \in S} N(v)$ and the closed neighbourhood of S is $N[S] = N(S) \cup S$. A set S of vertices in a Graph G is said to

be a dominating set if every vertex $u \in V$ is $\ \, \text{either}$ an element of S or is adjacent to an element of S. The minimum cardinality of a dominating set of G is said to be domination number and is denoted by $\gamma(G)$.

A set S of vertices in a Graph G is said to be a vertex-edge dominating set, if for every edge $e \in E(G)$, there exists a vertex $v \in S$ such that v dominates e. In other words, for a Graph G = (V, E), a vertex $u \in V(G)$ vertex-edge dominates an edge $vw \in E(G)$ if (i) u = v or u = w (u is incident to vw), or (ii) uv or uw is an edge in G (u is incident to an edge is adjacent to vw).

The minimum cardinality of a vertex-edge dominating set of G is called vertex-edge domination number of G, and is denoted by $\gamma_{vo}(G)$.

The join of two Graphs G_1 and G_2 , denoted by $G_1 \vee G_2$ is a graph with the vertex set $V = V_1 \cup V_2$ and edge set $E_1 \cup E_2 \cup \{uv|u \in V_1 \text{ and } v \in V_2\}$. The corona of two graphs G_1 and G_2 is the graph $G_1 = G_1$ or G_2 formed from one copy of G_1 and $G_2 = G_1$ or $G_2 = G_2$ formed from one copy of $G_2 = G_1$ or $G_2 = G_2$ formed from one copy of $G_2 = G_2$ formed from one copy of $G_3 = G_2$ formed from one copy of $G_3 = G_3$ formed from one copy of $G_3 = G_3$

2. INTRODUCTION TO VERTEX-EDGE DOMINATION POLYNOMIAL

In this section, we are going to state the definition of vertex-edge domination polynomial and derive some properties.

Definition: 2. 1 Let $D_{ve}(G, i)$ be the family of vertex-edge dominating sets of a graph G with cardinality i and let $d_{ve}(G, i) = |D_{ve}(G, i)|$. Then the vertex-edge domination polynomial, $D_{ve}(G, x)$ of G is defined as

Corresponding author: ¹A. Vijayan*

¹Associate Professor, Department of Mathematics,
Nesamony Memorial Christian College, Marthandam, Tamil Nadu, India.
E-mail: naacnmccm@gmail.com

$$D_{ve}(G, x) = \sum_{i=\gamma_{ve}(G)}^{|V(G)|} d_{ve}(G, i) x^{i},$$

where $\gamma_{ve}(G)$ is the vertex-edge domination number of G.

Example: 2.2 Consider K₄

Vertex-edge dominating sets of cardinality 1 are {1}, {2}, {3}, {4}.

- $\therefore \ K_4 \ \text{has 4 vertex-edge dominating sets of cardinality 1 and } \\ \gamma_{ve}(K_4) = 1 \\ \text{Vertex-edge dominating sets of cardinality 2 are } \{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \{2,4\}, \{3,4\}.$
- \therefore K₄ has 6 vertex-edge dominating sets of cardinality 2 Vertex-edge dominating sets of cardinality 3 are $\{1, 2, 3\}$, $\{1, 2, 4\}$, $\{1, 3, 4\}$, $\{2, 3, 4\}$.
- :. K₄ has 4 vertex-edge dominating sets of cardinality 3. Vertex-edge dominating sets of cardinality 4 is {1, 2, 3, 4}
- ∴ K₄ has 1 vertex-edge dominating set of cardinality 4.
- .. The vertex-edge domination polynomial is

$$D_{ve}(K_4, x) = \frac{\begin{vmatrix} K_4 \\ \Sigma \\ i = \gamma_{ve}(K_4) \end{vmatrix}}{\sum_{i=1}^{4} d_{ve}(K_4, i)x^i}$$

$$= \frac{4}{i=1} d_{ve}(K_4, i)x^i$$

$$= d_{ve}(K_4, 1)x^1 + d_{ve}(K_4, 2)x^2 + d_{ve}(K_4, 3)x^3 + d_{ve}(K_4, 4)x^4$$

$$= 4x^1 + 6x^2 + 4x^3 + 1.x^4$$

$$= x^4 + 4x^3 + 6x^2 + 4x + 1 - 1$$

$$= (1 + x)^4 - 1$$

Theorem: 2.2 If G is a Graph without isolated vertices, consisting of two components G_1 and G_2 , then $D_{ve}(G, x) = D_{ve}(G_1, x)$. $D_{ve}(G_2, x)$.

Proof: Let G_1 and G_2 be the components of a Graph G without isolated vertices. Let the vertex-edge domination number of G_1 and G_2 be $\gamma_{ve}(G_1)$ and $\gamma_{ve}(G_2)$. For any $k \ge \gamma_{ve}(G)$, the vertex-edge dominating set of k vertices in G arises by choosing a vertex-edge dominating set of j vertices of G_1 and a vertex-edge dominating set of k-j vertices in G_2 .

The number of vertex-edge dominating sets in $G_1 \cup G_2$ is equal to the coefficient of x^k in $D_{ve}(G_1, x)$. $D_{ve}(G_2, x)$. The number of vertex-edge dominating sets of G is the co-efficient of x^k in $D_{ve}(G_2, x)$.

Hence the co-efficient of x^k in $D_{ve}(G, x)$ and $D_{ve}(G_1, x)$. $D_{ve}(G_2, x)$ are equal. $\therefore D_{ve}(G, x) = D_{ve}(G_1, x)$. $D_{ve}(G_2, x)$.

Theorem: 2.3 If G is a Graph without isolated vertices consists of m components G_1, G_2, \ldots, G_m . Then $D_{ve}(G, x) = D_{ve}(G_1, x)$. $D_{ve}(G_2, x) \ldots D_{ve}(G_m, x)$.

Proof: The proof of the theorem follows from theorem 2.2.

Example: 2.4 Consider the graph given in figure 1.

Figure 1

 $\gamma_{ve}(G) = \gamma_{ve}(G_1) + \gamma_{ve}(G_2) = 1 + 1 = 2$ a vertex-edge dominating sets of k=2 vertices in G arises by choosing a vertex-edge dominating set of j=1 in G_1 ($j \in \{1, 2, 3, 4\}$) and a vertex edge dominating set k-j=2-1=1 vertex in G_2

$$D_{ve}(G_{1}, x) = \frac{\begin{vmatrix} V(G_{1}) \\ \sum \\ i = \gamma_{ve}(G_{1}) \end{vmatrix}}{\sum_{i=1}^{4} d_{ve} (G_{1}, i) x^{i}}$$

$$= \sum_{i=1}^{4} d_{ve} (G_{1}, i) x^{i}$$

$$= d_{ve}(G_{1}, 1) x^{1} + d_{ve}(G_{1}, 2) x^{2} + d_{ve}(G_{1}, 3) x^{3} + d_{ve}(G_{1}, 4) x^{4}$$

$$= 2x + 6x^{2} + 4 x^{3} + x^{4}$$

$$= x^{4} + 4 x^{3} + 6 x^{2} + 2 x$$

$$D_{ve}(G_{2}, x) = \frac{\left|V(G_{2})\right|}{\sum_{i=\gamma_{ve}(G_{2})}^{\infty} d_{ve}(G_{2}, i) x^{i}}$$

$$= \sum_{i=1}^{4} d_{ve}(G_{2}, i) x^{i}$$

$$= d_{ve}(G_{2}, 1) x^{1} + d_{ve}(G_{2}, 2) x^{2} + d_{ve}(G_{2}, 3) x^{3} + d_{ve}(G_{2}, 4) x^{4}$$

$$= 4x^{1} + 6x^{2} + 4 x^{3} + 6 x^{2} + 4 x$$

$$= x^{4} + 4 x^{3} + 6 x^{2} + 4 x$$

$$D_{ve}(G_1, x) \cdot D_{ve}(G_2, x) = (x^4 + 4x^3 + 6x^2 + 2x) \times (x^4 + 4x^3 + 6x^2 + 4x)$$

Coefficient of x^2 in $D_{ve}(G_1, x)$. $D_{ve}(G_2, x)$ is

$$j_1 = 1, k - j_1 = 2 - 1 = 1$$

The vertex-edge dominating set of cardinality 2 of

$$G = \{\{2,5\},\{2,6\},\{2,7\},\{2,8\},\{3,5\},\{3,6\},\{3,7\},\{3,8\}\}\}$$

$$d_{ve}(G, 2) = 8$$

 \therefore coefficient of x^2 in $D_{ve}(G, x)$ is 8

 \therefore coefficient of x^2 in $D_{ve}(G, x)$ is same as coefficient of x^2 in

$$D_{ve}(G_1, x)$$
 . $D_{ve}(G_2, x)$

$$D_{ve}(G, x) = D_{ve}(G_1, x).D_{ve}(G_2, x)$$

$$k = 3$$

$$j_1 = 1, k - j_1 = 3 - 1 = 2$$

$$G = G_1 \cup G_2$$

$$d_{ve}(G_1, 1) = \{\{2\}, \{3\}\}=2$$

The coefficient of x^1 in $D_{ve}(G_1, x)$ is 2

$$d_{ve}(G_2, 2) = \{\{5, 6\}, \{5, 7\}, \{5, 8\}, \{6, 7\}, \{6, 8\}, \{7, 8\}\} = 6$$

 \therefore The coefficient of x^2 in $D_{ve}(G_2, x)$ is 6

 \therefore The coefficient of x^3 in $D_{ve}(G_1, x)$. $D_{ve}(G_2, x)$ is 2 x 6 = 12 G = $G_1 \cup G_2$

$$\begin{array}{l} d_{ve}(G,\,3) = \, \{\{2,\,5,\,6\},\,\{2,\,5,\,7\},\,\,\{2,\,5,\,8\},\,\,\{2,\,6,\,7\},\,\,\{2,\,6,\,8\},\,\,\{2,\,7,\,8\},\,\,\{3,\,5,\,6\},\,\,\{3,\,5,\,7\},\{3,\,5,\,8\},\\ & \{3,\,6,\,7\},\,\,\{3,\,6,\,8\},\,\,\{3,\,7,\,8\}\} \\ = \, 12 \end{array}$$

 \therefore The coefficient of x^3 in $D_{ve}(G, x)$ is 12

$$D_{ve}(G, x) = D_{ve}(G_1, x) D_{ve}(G_2, x)$$

$$k = 3$$

$$j_1 = 2, k - j_1 = 3 - 2 = 1$$

$$G = G_1 \cup G_2$$

$$d_{ve}(G_1,\,2) = \{\{1,\,2\},\,\{1,\,3\},\,\{1,\,4\},\,\{2,\,3\},\,\{2,\,4\},\,\{3,\,4\}\}$$

 \therefore The coefficient of x^2 in $D_{ve}(G_1, x)$ is 6

$$d_{ve}(G_2, 1) = \{\{5\}, \{6\}, \{7\}, \{8\}\} = 4$$

 \therefore The coefficient of x^1 in $D_{ve}(G_2, x)$ is 4

Coefficient of x^3 in $D_{ve}(G_1, x)$. $D_{ve}(G_2, x) = 6 \times 4 = 24$

$$G = G_1 \cup G_2$$

$$\begin{split} d_{ve}(G,3) &= \; \{\{1,2,5\}, \, \{1,2,6\}, \, \{1,2,7\}, \, \{1,2,8\}, \, \{1,3,5\}, \, \{1,3,6\}, \, \{1,3,7\}, \\ &\{1,3,8\}, \, \{1,4,5\}, \, \{1,4,6\}, \, \{1,4,7\}, \, \{1,4,8\}, \, \{2,3,5\}, \, \{2,3,6\}, \\ &\{2,3,7\}, \, \{2,3,8\}, \, \{2,4,5\}, \, \{2,4,6\}, \, \{2,4,7\}, \, \{2,4,8\}, \, \{3,4,5\}, \\ &\{3,4,6\}, \, \{3,4,7\}, \, \{3,4,8\}\}. \end{split}$$

 \therefore The coefficient of x^3 in $D_{ve}(G, x)$ is 24

$$\therefore D_{ve}(G, x) = D_{ve}(G_1, x) \cdot D_{ve}(G_2, x)$$

Theorem: 2.5 If G_1 and G_2 are Graphs of order n_1 and n_2 respectively, then

$$D_{ve}(G_1 \vee G_2, x) = [((1+x)^{n1}-1)((1+x)^{n2}-1)] + D_{ve}(G_1, x) + D_{ve}(G_2, x)$$

Proof: From the definition of $G_1 \vee G_2$, if D_1 is any vertex-edge domination set of G_1 , then D_1 is a vertex-edge domination set of $G_1 \vee G_2$. Similarly, if D_2 is any vertex-edge domination set of G_2 , then D_2 is a vertex-edge domination set of $G_1 \vee G_2$.

Also, the sets consist of any one vertex of G_1 and any one vertex of G_2 , forms the vertex-edge Dominating sets of $G_1 \vee G_2$ of cardinality two. There are $\begin{pmatrix} n_1 \\ 1 \end{pmatrix} \begin{pmatrix} n_2 \\ 1 \end{pmatrix}$ such sets. Similarly, the number of vertex-edge dominating sets of cardinality three other than the first two cases is $\begin{pmatrix} n_1 \\ 1 \end{pmatrix} \begin{pmatrix} n_2 \\ 2 \end{pmatrix} + \begin{pmatrix} n_2 \\ 1 \end{pmatrix} \begin{pmatrix} n_1 \\ 2 \end{pmatrix}$.

Proceeding like this, we obtain the other vertex-edge dominating sets of cardinality $n_1 + n_2$.

Therefore,
$$D_{ve}\left(G_{1} \vee G_{2},x\right) = D_{ve}\left(G_{1},x\right) + D_{ve}(G_{2},x) + \begin{pmatrix} n_{1} \\ 1 \end{pmatrix} \begin{pmatrix} n_{2} \\ 1 \end{pmatrix} x^{2} + \begin{bmatrix} n_{1} \\ 1 \end{pmatrix} \begin{pmatrix} n_{2} \\ 2 \end{pmatrix} + \begin{pmatrix} n_{1} \\ 2 \end{pmatrix} \begin{pmatrix} n_{2} \\ 1 \end{pmatrix} x^{3} + \begin{bmatrix} n_{1} \\ 1 \end{pmatrix} \begin{pmatrix} n_{2} \\ 3 \end{pmatrix} + \begin{pmatrix} n_{1} \\ 1 \end{pmatrix} \begin{pmatrix} n_{2} \\ n_{1} + n_{2-1} \end{pmatrix} + \begin{pmatrix} n_{1} \\ n_{1} + n_{2-1} \end{pmatrix} \begin{pmatrix} n_{2} \\ 1 \end{pmatrix} x^{4} + \dots + \begin{bmatrix} n_{1} \\ 1 \end{pmatrix} \begin{pmatrix} n_{2} \\ n_{1} + n_{2-1} \end{pmatrix} + \dots + \begin{pmatrix} n_{2} \\ n_{1} + n_{2-1} \end{pmatrix} \begin{pmatrix} n_{2} \\ 1 \end{pmatrix} x^{n_{1}} + \sum_{n=2}^{n_{2}} D_{ve}\left(G_{1},x\right) + D_{ve}\left(G_{2},x\right) + \begin{bmatrix} n_{1} \\ 1 \end{pmatrix} x + \begin{pmatrix} n_{2} \\ 2 \end{pmatrix} x^{2} + \dots + \begin{pmatrix} n_{1} \\ n_{1} \end{pmatrix} x^{n_{1}} \end{bmatrix} \times \begin{bmatrix} n_{1} \\ n_{2} \end{pmatrix} x^{n_{2}} + \dots + \begin{bmatrix} n_{1} \\ n_{2} \end{pmatrix} x^{n_{2}} + \dots + \begin{bmatrix} n_{1} \\ n_{2} \end{pmatrix} x^{n_{2}} + \dots + \begin{bmatrix} n_{1} \\ n_{2} \end{pmatrix} x^{n_{2}} \end{bmatrix}$$

$$= D_{ve}\left(G_{1},x\right) + D_{ve}\left(G_{2},x\right) + \begin{bmatrix} n_{1} \\ 1 \end{pmatrix} x + \begin{pmatrix} n_{1} \\ 2 \end{pmatrix} x^{2} + \dots + \begin{pmatrix} n_{1} \\ 1 \end{pmatrix} x^{n_{1}} - \begin{pmatrix} n_{1} \\ 0 \end{pmatrix} \end{bmatrix}$$

$$= D_{ve}\left(G_{1},x\right) + D_{ve}\left(G_{2},x\right) + \begin{bmatrix} n_{1} \\ 1 \end{pmatrix} x + \begin{pmatrix} n_{1} \\ 2 \end{pmatrix} x^{2} + \dots + \begin{pmatrix} n_{1} \\ 1 \end{pmatrix} x^{n_{1}} - \begin{pmatrix} n_{1} \\ 0 \end{pmatrix} \end{bmatrix}$$

 $\times \left| \begin{pmatrix} n_2 \\ 0 \end{pmatrix} + \begin{pmatrix} n_2 \\ 1 \end{pmatrix} x + \begin{pmatrix} n_2 \\ 2 \end{pmatrix} x^2 + \ldots + \begin{pmatrix} n_2 \\ n_2 \end{pmatrix} x^{n_2} - \begin{pmatrix} n_2 \\ 0 \end{pmatrix} \right|$

$$\therefore D_{ve}(G_1, \vee G_2, x) = D_{ve}(G_1, x) + D_{ve}(G_2, x) + [(1+x)^{n1} - 1][(1+x)^{n2} - 1]$$

$$\therefore D_{ve}(G_1 \vee G_2, x) = [(1+x)^{n_1} - 1][(1+x)^{n_2} - 1] + D_{ve}(G_1, x) + D_{ve}(G_2, x)$$

3. CO-EFFICIENT OF VERTEX-EDGE DOMINATION POLYNOMIAL

Theorem: 3.1 Let G be a graph with |V(G)| = n. Then

- (i) If G is connected, then $d_{ve}(G, n) = 1$ and $d_{ve}(G, n 1) = n$.
- (ii) $d_{ve}(G, i) = 0$ iff $i < \gamma_{ve}(G)$ or i > n.

- (iii) $D_{ve}(G, x)$ has no constant term.
- (iv) $D_{ve}(G, x)$ is a strictly increasing function in $[0, \infty)$.
- (v) Let G be a Graph and H be any induced subgraph of G. Then, $deg(D_{ve}(G, x)) \ge deg(D_{ve}(H, x))$
- (vi) Zero is a root of $D_{ve}(G, x)$ with multiplicity $\gamma_{ve}(G)$.

Proof:

- (i) Since G has n vertices, there is only one way to choose all these vertices and it dominates all the vertices and edges. Therefore, $d_{ve}(G, n) = 1$. If we delete one vertex v, the remaining n 1 vertices dominate all the vertices and edges of G. (This is done in n ways). Therefore, $d_{ve}(G, n 1) = n$.
- (ii) Since $D_{ve}(G, i) = \phi$ if $i < \gamma_{ve}(G)$ or $D_{ve}(G, n + k) = \phi$, $k = 1, 2, \ldots$ Therefore, we have $d_{ve}(G, i) \square = 0$ if $i < \gamma_{ve}(G)$ or i > nConversely, if $i < \gamma_{ve}(G)$ or i > n, $d_{ve}(G, i) = 0$. Hence the result.
- (iii) Since $\gamma_{ve}(G) \ge 1$, the vertex-edge domination polynomial has no term of degree 0. Therefore, it has no constant term. The proof of (iv) follows from the definition of vertex-edge domination polynomial.
- (v) We have deg $(D_{ve}(H, x))$ = Number of vertices in H, Also, deg $(D_{ve}(G, x))$ = Number of vertices in G since Number of vertices in H \leq Number of vertices in G, deg $(D_{ve}(H, x)) \leq$ deg $(D_{ve}(G, x))$

4. Vertex-edge Domination Polynomial of G o K₁

Lemma: 4.1 Let G be an empty graph of order n. Then, γ_{ve} (G o K_1) = n

Proof: Since G has n vertices, G o K_1 has 2n vertices. Let $V(G) = \{u_1, u_2, \dots u_n\}$. Clearly $\{u, u_2, \dots, u_n\}$ is the minimal vertex-edge dominating set of G o K_1 .

Therefore, γ_{ve} (G o K_1) = n

(Empty graph with 3 vertices)

Example: 4.2

 K_1 G G

There are three vertices required to cover all the vertices and edges of G o K₁.

Therefore, Minimum cardinality =3

$$\gamma_{ve} (G \circ K_1) = 3.$$

Example: 4.3 Let G be a complete Graph with n vertices. First, let n = 1.

 $d_{ve}(G o K_1, 1) = 2$

 $d_{ve}(G \circ K_1, 2) = 1$

$$\therefore D_{ve}(G \circ K_{1}, x) = \sum_{i=\gamma_{ve}(G \circ K_{1})}^{|V(G \circ K_{1})|} d_{ve}(G \circ K_{1}, i) x^{i}$$

$$= \sum_{i=1}^{2} d_{ve}(G \circ K_{1}, i) x^{i}$$

$$= d_{ve}(G \circ K_{1}, 1) x^{1} + d_{ve}(G \circ K_{1}, 2) x^{2}$$

$$= 2x + x^{2}$$

$$= (1 + x)^{2} - 1$$

$$= (1 + x)^{2} - \left(\frac{1}{0}\right)$$

Let n = 2,

$$d_{ve}(G \circ K_1, 1) = 2$$

$$d_{ve}(G \circ K_1, 2) = 6$$

$$d_{ve}(G \circ K_1, 3) = 4$$

$$d_{ve}(G \circ K_1, 4) = 1$$

$$\therefore D_{ve}(G \circ K_{1}, x) = \sum_{i=\gamma_{ve}(G \circ K_{1})}^{|V(G \circ K_{1})|} d_{ve}(G \circ K_{1}, i) x^{i}$$

$$= \sum_{i=1}^{4} d_{ve}(G \circ K_{1}, i) x^{i}$$

$$= 2x + 6x^{2} + 4x^{3} + x^{4}$$

$$= (1+x)^{4} - (2x+1)$$

$$= (1+x)^{4} - \left(\binom{2}{1}x + \binom{2}{0}\right)$$

n = 3,

 $d_{ve}(G \ o \ K_1, \ 1) = 3$

$$d_{ve}(G \circ K_1, 2) = 12$$

$$d_{ve}(G \circ K_1, 3) = 20$$

$$d_{ve}(G \circ K_1, 4) = 15$$

$$d_{ve}(G \circ K_1, 5) = 6$$

$$d_{ve}(G \circ K_1, 6) = 1$$

$$\therefore D_{ve}(G \circ K_1, x) = \sum_{i=\gamma_{ve}(G \circ K_1)}^{|V(G \circ K_1)|} d_{ve}(G \circ K_1, i) x^i$$

$$= \sum_{i=1}^{6} d_{ve}(G \circ K_1, i) x^i$$

$$= 3x + 12x^2 + 20 x^3 + 15 x^4 + 6 x^5 + x^6$$

$$= (1+x)^6 - (1+3x+3x^2)$$

$$= (1+x)^6 - \left(\left(\frac{3}{2}\right)x^2 + \left(\frac{3}{1}\right)x + \left(\frac{3}{0}\right)\right)$$

n = 4,

• K₁

$$d_{ve}(G \ o \ K_1, \ 1) = 4$$

$$d_{ve}(G \circ K_1, 2) = 22$$

$$d_{ve}(G \circ K_1, 3) = 52$$

$$d_{ve}(G \circ K_1, 4) = 70$$

$$d_{ve}(G \ o \ K_1, 5) = 56$$

$$d_{ve}(G \circ K_1, 6) = 28$$

$$d_{ve}(G \text{ o } K_1, 7) = 8$$

$$d_{ve}(G \text{ o } K_1, 8) = 1$$

n = 5

• K₁

$$d_{ve}(G \circ K_1, 1) = 5$$

$$d_{ve}(G \circ K_1, 2) = 35$$

$$d_{ve}(G \circ K_1, 3) = 110$$

$$d_{ve}(G \circ K_1, 4) = 205$$

$$d_{ve}(G \ o \ K_1, 5) = 252$$

$$d_{ve}(G \circ K_1, 6) = 210$$

$$d_{ve}(G \circ K_1, 7) = 120$$

$$d_{ve}(G \circ K_1, 8) = 45$$

$$d_{ve}(G \circ K_1, 9) = 10$$

$$d_{ve}(G \circ K_1, 10) = 1$$

$$\therefore D_{ve}(G \circ K_1, x) = \sum_{i=\gamma_{ve}(G \circ K_1)}^{|V(G \circ K_1)|} d_{ve}(G \circ K_1, i) x^i$$

$$= 5x + 35x^2 + 110 x^3 + 205 x^4 + 252 x^5 + 210 x^6 + 120 x^7 + 45x^8 + 10x^9 + x^{10}$$

$$= (1+x)^{10} - (5x^4 + 10x^3 + 10x^2 + 5x + 1)$$

$$= (1+x)^{10} - \left(\left(\frac{5}{4}\right)x^4 + \left(\frac{5}{3}\right)x^3 + \left(\frac{5}{2}\right)x^2 + \left(\frac{5}{1}\right)x + \left(\frac{5}{0}\right)\right)$$

Now, we generalize the vertex-edge domination polynomial of G o $K_{1,}$ where G is the complete graph with n vertices as

$$D_{ve}(G \circ K_1, x) = (1+x)^{2n} - \left(\binom{n}{0} + \binom{n}{1} x + \ldots + \binom{n}{n-1} x^{n-1} \right)$$
$$= (1+x)^{2n} - \sum_{k=0}^{n-1} \binom{n}{k} x^k.$$

Theorem: 4.4 G is a complete Graph of order n. We have

$$d_{ve}(G\ o\ K_1,\,r) = \begin{cases} \left(\begin{array}{c} 2n \\ r \end{array} \right) - \left(\begin{array}{c} n \\ r \end{array} \right), \ r < n \\ \left(\begin{array}{c} 2n \\ r \end{array} \right), \ r \geq n \end{cases}$$

Hence,
$$D_{ve}(G \circ K_1, x) = (1+x)^{2n} - \sum_{r=0}^{n-1} {n \choose r} x^r$$
.

Proof: Since G has n vertices, G o K_1 has 2n vertices. One vertex of G o K_1 is enough to cover all the vertices and edges of G o K_1 . Therefore the minimum cardinality is one.

Therefore, $\gamma_{ve}(G \ o \ K_1) = 1$. If r < n, then the $V(G) = \{u_1 \ldots u_n\}$ and $V(G \ o \ K_1) = \{u_1 \ldots u_n, \ v_1 \ldots v_n\}$ consists of any r vertices from $\{u_1 \ldots u_n, \ v_1 \ldots v_n\}$ excluding sets having any r vertices from $\{v_1 \ldots v_n\}$.

Thus, If r < n, then the vertex-edge dominating sets of G o K_1 is $\binom{2n}{r} - \binom{n}{r}$.

 $\therefore \text{ The number of vertex } - \text{ edge dominating sets is } \binom{2n}{r} - \binom{n}{r}. \text{ Let } r \geq n, \text{ we know that any set of } n \text{ vertices in } \{u_1, u_2, \ldots, u_n, v_1, v_2 \ldots v_n\} \text{ is a vertex-edge dominating set of } G \text{ o } K_1. \text{ Then the number of vertex-edge dominating sets of } G \text{ o } K_1 \text{ is } \binom{2n}{r} \ .$

$$\begin{split} & \mathsf{D}_{\mathsf{ve}}(\mathsf{G} \circ \mathsf{K}_1 \;, x) = \sum_{i = \gamma_{\mathsf{ve}}(\mathsf{G} \circ \mathsf{K}_1)}^{|\mathsf{V}|} d_{\mathsf{ve}}(\mathsf{G} \circ \mathsf{K}_1 \;, r) x^r \\ &= \sum_{r = 1}^{2n} d_{\mathsf{ve}}(\mathsf{G} \circ \mathsf{K}_1 \;, r) x^r \\ &= \sum_{r = 1}^{n-1} d_{\mathsf{ve}}(\mathsf{G} \circ \mathsf{K}_1 \;, r) x^r + \sum_{r = n}^{2n} d_{\mathsf{ve}}(\mathsf{G} \circ \mathsf{K}_1 \;, r) x^r \\ &= \sum_{r = 1}^{n-1} \left[\binom{2n}{r} - \binom{n}{r} \right] x^r + \sum_{r = n}^{2n} \binom{2n}{r} x^r \\ &= \left[\binom{2n}{1} - \binom{n}{1} \right] x^1 + \left[\binom{2n}{2} - \binom{n}{2} \right] x^2 + \dots + \\ &= \left[\binom{2n}{n-1} - \binom{n}{n-1} \right] x^{n-1} + \binom{2n}{n} x^n + \binom{2n}{n+1} x^{n+1} + \dots + \binom{2n}{2n} x^{2n} \\ &= \binom{2n}{1} x^1 + \binom{2n}{2} x^2 + \binom{2n}{3} x^3 + \dots + \binom{2n}{n} x^n + \binom{2n}{n+1} x^{n+1} + \dots + \binom{2n}{2n} x^{2n} \\ &- \binom{n}{1} x^1 + \binom{n}{2} x^2 + \dots + \binom{n}{n-1} x^{n-1} \right] = \binom{2n}{0} + \binom{2n}{1} x^1 + \binom{2n}{2} x^2 + \binom{2n}{3} x^3 \\ &+ \dots + \binom{2n}{n} x^n + \binom{2n}{n+1} x^{n+1} + \dots + \binom{2n}{2n} x^{2n} - \binom{n}{0} + \binom{n}{1} x^1 \\ &+ \binom{n}{2} x^2 + \dots + \binom{n}{n-1} x^{n-1} \right) \\ &= (1 + x)^{2n} - \sum_{n = 1}^{n-1} \binom{n}{r} x^r \end{split}$$

5. VERTEX-EDGE DOMINATION POLYNOMIAL OF G o K2

Theorem: 5.1 If G is a complete Graph of order n. we have

$$d_{ve}(GoK_2, r) = \begin{cases} \binom{3n}{r} - \binom{n}{1} \binom{3n-3}{r} + \binom{n}{2} \binom{3n-6}{r} - \dots + (-1)^k \binom{n}{k} \binom{3n-3k}{r} \\ \text{k is the largest integer satisfying } 3n - 3k \ge r, \text{ if } r \le 3n - 3 \\ \binom{3n}{r}, \text{ if } r > 3n - 3 \end{cases}$$

Hence, $D_{ve}(G \circ K_2, x) = [(1+x)^3 - 1]^n$

Proof: Since G has n vertices, G o K_2 has 3n vertices. The n vertices of G cover all the vertices and edges of G o K_2 . Therefore, the minimum cardinality of vertex-edge dominating sets is n.

$$\therefore \gamma_{ve} (G \circ K_2) = n$$

If $r \le 3n - 3$, then, The number of vertex-edge dominating sets of G o K_2 of cardinality r is

$$\left(\begin{array}{c} 3n \\ r \end{array} \right) \ - \ \left(\begin{array}{c} n \\ 1 \end{array} \right) \left(\begin{array}{c} 3n-3 \\ r \end{array} \right) + \left(\begin{array}{c} n \\ 2 \end{array} \right) \left(\begin{array}{c} 3n-6 \\ r \end{array} \right) - \ \ldots \ + \ (-1)^k \ \left(\begin{array}{c} n \\ k \end{array} \right) \left(\begin{array}{c} 3n-3k \\ r \end{array} \right)$$

When r > 3n - 3, The number of vertex-edge dominating sets of G o K_2 of cardinality r is $\begin{pmatrix} 3n \\ r \end{pmatrix}$.

Therefore,

$$\begin{split} D_{ve}\left(G\circ K_{2},x\right) &= \frac{\sum\limits_{r=1}^{N} \sum\limits_{Q_{ve}} \sum\limits_{Q_{ve}} \left(G\circ K_{2}\right)}{\sum\limits_{r=r}^{N} \sum\limits_{Q_{ve}} \left(G\circ K_{2},r\right)x^{r}} \\ &= \frac{3n}{\sum\limits_{r=1}^{n} \sum\limits_{Q_{ve}} \left(G\circ K_{2},r\right)x^{r}} \left(Since, \ d_{ve}\left(G\circ K_{2},r\right) = 0 \ \text{ for } r=1,2,\ldots,n-1\right) \\ &= \frac{3n}{\sum\limits_{r=1}^{n} \sum\limits_{Q_{ve}} \left(G\circ K_{2},r\right)x^{r}} \left(\frac{3n}{\sum\limits_{r=3}^{n} \sum\limits_{Q_{ve}} \left(G\circ K_{2},r\right)x^{r}} + \frac{3n}{\sum\limits_{r=3}^{n} \sum\limits_{Q_{ve}} \left(G\circ K_{2},r\right)x^{r}} \right) \\ &= \frac{3n}{\sum\limits_{r=1}^{n} \sum\limits_{Q_{ve}} \left(\frac{3n}{\sum\limits_{Q_{ve}} \left(G\circ K_{2},r\right)x^{r}} + \frac{3n}{\sum\limits_{Q_{ve}} \sum\limits_{Q_{ve}} \left(G\circ K_{2},r\right)x^{r}} \right) \\ &= \frac{3n}{\sum\limits_{P=1}^{n} \sum\limits_{Q_{ve}} \left(\frac{3n}{\sum\limits_{Q_{ve}} \left(G\circ K_{2},r\right)x^{r}} + \frac{3n}{\sum\limits_{Q_{ve}} \sum\limits_{Q_{ve}} \left(\frac{3n}{\sum\limits_{Q_{ve}} \left(G\circ K_{2},r\right)x^{r}} \right) \\ &= \frac{3n}{\sum\limits_{P=1}^{n} \sum\limits_{Q_{ve}} \left(\frac{3n}{\sum\limits_{Q_{ve}} \left(\frac{3n-3}{\sum\limits_{Q_{ve}} \left(G\circ K_{2},r\right)x^{r}} + \frac{3n}{\sum\limits_{Q_{ve}} \sum\limits_{Q_{ve}} \left(\frac{3n}{\sum\limits_{Q_{ve}} \left(\frac{3n}{\sum\limits_{Q_{ve}} \left(G\circ K_{2},r\right)x^{r}} \right) \right) \right) \\ &= \frac{3n}{\sum\limits_{P=1}^{n} \sum\limits_{Q_{ve}} \left(\frac{3n}{\sum\limits_{Q_{ve}} \left(\frac{3n-3}{\sum\limits_{Q_{ve}} \left(\frac{3n-3}{\sum\limits$$

$$= (1+x)^{3n} - \binom{n}{1} (1+x)^{3(n-1)} + \binom{n}{2} ((1+x)^{3(n-2)}) - \dots + (-1)^{n}$$

$$- \left[\binom{n}{0} - \binom{n}{1} + \binom{n}{2} - \dots + (-1)^{n} \binom{n}{n} \right]$$

$$= [(1+x)^{3} - 1]^{n} - \left[\binom{n}{0} - \binom{n}{1} + \binom{n}{2} - \dots + (-1)^{n} \binom{n}{n} \right]$$

$$= [(1+x)^{3} - 1]^{n} - 0$$

$$= [(1+x)^{3} - 1]^{n} - 0$$

$$= [(1+x)^{3} - 1]^{n} - 0$$

 $D_{ve} (G \circ K_2, x) = [(1+x)^3 - 1]^n$

REFERENCES

- [1] Alikhani.S and Peng Y.H, 2008, Introduction to Domination Polynomial of a Graph. arXiv: 0905 . 2251v1 [math.co] 14 may.
- [2] Alikhani.S and Peng Y.H, 2008. Domination sets and Domination polynomial of cycles, Global Journal of Pure and Applied Mathematics Vol.4, no.2.
- [3] Bondy J.A, Murthy. U.S.R., Graph theory with applications, Elsevier Science Publishing Co, sixth printing, 1984.
- [4] Frucht. R, and Harary. F, On the Corona of two graphs, Aequations Math.4 (1970) 322-324.
- [5] Gray Chartand, Ping Zhang, 2005, Introduction to graph theory, Mc Graw Hill, Higher Education.
- [6] Haynes T.W, Hedetniemi S.T., Slater P.J., Fundamentals of Domination in Graphs, Marcel Dekker, Newyork, 1998.

Source of support: Nil, Conflict of interest: None Declared