International Journal of Mathematical Archive-5(4), 2014, 152-155
 (c) $\$$ MA Available online through www.ijma.info ISSN 2229-5046

ON SIMPLE (-1, 1) RINGS

${ }^{1}$ K. Jayalakshmi* and ${ }^{2}$ K. Hari Babu
${ }^{1}$ J. N. T. U. A College of Engg. Ananthapuramu - (A.P.), India. ${ }^{2}$ J. N. T. University Ananthapur College of Engg. Ananthapuramu - (A.P.), India.
(Received on: 03-04-14; Revised \& Accepted on: 16-04-14)

Abstract

If R be a 2-torsion free $(-1,1)$ ring with the associators in the middle nucleus N_{m} then $\left(N_{m}, R, R\right)=0$ and the ring becomes associative.

2010 Mathematics subject classification: 17A30.
Keywords: $(-1,1)$ ring, Middle Nucleus, Center, Simple ring, Weakly Novikov identity.

INTRODUCTION

Yen [7] considered 2-torsion free simple rings with associators in the left nucleus and showed that such type of ring is associative. Kleinfeld [2] studied the properties of the rings satisfying $(x, y, z)=(x, z, y)$ and proved that there exists simple Novikov rings which are not associative. Kleinfeld and Smith [4] generalized Novikov rings, which satisfy the condition $x(y z)=y(x z)$. Kleinfeld and Kleinfeld [3] have shown that a 2-torsion free simple ring with identity 1 must be associative. In [6] Suvarna and Subba Reddy have consider a generalization of $(1,1)$ rings. They proved that if R is a 2torsion free simple ring satisfying the identities $(x, y, z)=(x, z, y)$ and $(w,(y, x, x), z)=0$, then R is right alternative. Paul [5] studied the properties of prime rings satisfying $(x, y, z)-(x, z, y)=0$ and $(w,[y, z], x)=0$.

A ring R is said to be $(-1,1)$ ring if it satisfies the following two conditions:
$(x, y, z)=-(x, z, y)$
and $(x, y, z)+(y, z, x)+(z, x, y)=0$
for all $x, y, z \in R$.
In a nonassociative ring an associator is defined as $(x, y, z)=(x y) z-x(y z)$, commutator $[x, y]$ is defined as $x y-y x$ for all $x, y \in R$ and the middle nucleus is defined as $N_{m}=\{n \in R /(R, n, R)=0\}$. In this paper using the results of [5 and 6] we show that a semi prime ring generated by U square to zero and hence R must be associative.

Let the associator (R, R, R) be in the middle nucleus of $(-1,1)$ ring that is $(R,(R, R, R), R)=0$.
Throughout this paper R represents a 2 , 3 -torsion free ($-1,1$) ring.
We use the Teichmuller identity
$(w x, y, z)-(w, x y, z)+(w, x, y z)=w(x, y, z)+(w, x, y) z$
for all $x, y, z \in R$ which holds in any arbitrary ring.
Let $n \in N_{m}$ then (2) implies $(n, R, R)=0$.

${ }^{1}$ J. N. T. U. A College of Engg. Ananthapuramu - (A.P.), India.

E-mail: jayalakshmikaramsi@gmail.com

${ }^{1}$ K. Jayalakshmi* and ${ }^{2}$ K. Hari Babu / On Simple (-1, 1) Rings / IJMA- 5(4), April-2014.

For arbitrary $(x, y, z) n=(x, y, z n)$ from (4).
Again from (4) we get
$(x y, z, n)-(x, y z, n)+(x, y, z n)=x(y, z, n)+(x, y, z) n$
Implies $(x, y, z n)=(x, y, z) n$.
Thus from (1) $(x, y, z n)=-(x, z n, y)$.
Again (4) implies $(x z, n, y)-(x, z n, y)+(x, z, n y)=x(z, n, y)+(x, z, n) y$ which implies
$(x, z n, y)=(x, z, n y)$.
From (5), (6) and (7) we see that
$(x, z n, y)=-(x, y, z) n$.
$(x, z, n y)=-(x, y, z) n$.
$(x, n y, z)=-(x, y, z) n$.
Now $[n, y] \in N_{m}$.
$S(x, y, z) \in N_{m}$.
That is $(R,(x, y, z)+(y, z, x)+(z, x, y), R)=0$.
The following identity is valid in $(-1,1)$ ring [1]
$((a, x, y), b, c)=((a, b, c), x, y)-(a, b,(c, x, y))-(a,(b, x, y), c)+(a, b, c)[x, y]-(a, b, c[x, y])+(a, b,[x, y]) c=0$
for all $a, b, c, x, y \in R$.
Thus we get $0=-(a,(b, x, y), c)=(a,(b, x, y), c)$.
With $b \in N_{m}$ in (12) we obtain $-(a,(b, x, y), c)=0$.
That is $(b, x, y) \in N_{m}$.
Thus $\left(N_{m}, R, R\right) \subseteq N_{m}$.
Lemma: 1 Let $T=\{T \in R / R t=0\}$ then $T=0$.
Proof: Let $t \in R$. For every $x \in R, x t=0$, so $R T \subset T$. Also $y . t x=-(y, x, t)$ using equation (1). But $(y, x, t)=0$ as $x t=0$ thus $T R \subset T$ consequently T is an ideal and $T T \subset R T=0$, so $T=0$. We define $a \equiv b$ if and only if $a-b \in N_{m}$.

Lemma: $2\left(N_{m}, R, R\right)=0$.
Proof: Let $n \in N_{m}$ and $x, y, z \in R$ then (2) implies

$$
\begin{align*}
(z n, x, y) & =-(y, z n, x)-(x, y, z n) \\
& =-[(y, z, x) n+(x, y, z n)] \\
& =-[(y, z, x)+(x, y, z)] n \\
& =(z, x, y) n . \tag{14}
\end{align*}
$$

Using $N_{m} N_{m} \subset N_{m}$ and previous calculations we obtain (zn, $\left.x, y\right)=(z, x, y) n$.
However (4) implies (zn, $x, y)-(z, n x, y)+(z, n, x y)=z(n, x, y)+(z, n, x) y$

Implies $(z n, x, y)=(z, n x, y)+z(n, x, y)$.
Comparison of these two identities implies that $z(n, x, y)=0$.
From (15) we see that $(z n, x, y)=(z, n x, y)+z(n, x, y)$

$$
\begin{align*}
& =z(n, x, y)+(z, n x, y) \\
& =z(n, x, y)+(z, x, y) n \text { by equation }(11) . \tag{16}
\end{align*}
$$

Therefore subtracting (14) from (16) gives (zn, $x, y)-(z, x, y) n-(z n, x, y)+z(n, x, y)-(z, x, y) n=0$. That is $z(n, x, y)=0$. Equivalently $z(n, x, y) \in N_{m}$. Thus $(r, z(n, x, y), s)=0$ then (13) yields
$(r, z, s)(n, x, y)=0$.
The associator ideal of R may be characterized as $A=\Sigma(R, R, R)+R(R, R, R)$. As a result of (13) and (17) it is clear that $A\left(N_{m}, R, R\right)=0$. Since R is a simple and not associative, it follows that $A=R$, so that $R\left(N_{m}, R, R\right)=0$ and thus $\left(N_{m}, R, R\right) \subset T=0$. Hence $\left(N_{m}, R, R\right)=0$.

Definition: 4 The center C is defined as $C=\{c \in N /[c, R]=0\}$.
Lemma: 3 Middle nucleus equals the center in ($-1,1$) ring.
Proof: From equation (4) with $x, y, z \in R$ and $n \in N_{m}$ we obtain ($\left.x y, z,[y, n]\right)-(x, z y,[y, n])+(x, z, y[y, n])=x(z, y$, $[y, n])+(x, z, y)[y, n]$ implies $(x, z, y[y, n])=(x, z, y)[y, n]$. Multiply both sides by 2 we get
$2(x, z, y[y, n])=2(x, z, y)[y, n]$.
Now applying the semi Jacobi identity which is valid in any arbitrary ring we see that
$\left[y^{2}, n\right]=y[y, n]+[y, n] y+(y, y, n)+(n, y, y)-(y, n, y)$.
Implies $\left[y^{2}, n\right]=y[y, n]+[y, n] y+n[y, y]$.
Hence $\left(x,\left[y^{2}, n\right], z\right)=(x, y,[y, n], z)+(x,[y, n] y, z)+(x,(n, x, y), z)$.
That is $0=(x, y,[y, n], z)+(x,[y, n] y, z)$.
Thus $2(x, y, z)[y, z]=0$ and since the ring is 2 - torsion free we get $(x, y, z)[y, z]=0$.
Now (18) and (11) shows $A[w, n]=0$, so that $R[w, n]=0$ and so $[w, n] \in T=0$. Consequently $[R, n]=0$ and hence $n \in C$.

Lemma: 4 If R satisfies the weak Novikov identity then $(R, R, R)^{2}=0$.
Proof: R satisfies $(w, x, y z)=y(w, x, z)$ for all $w, x, y, z \in R$.
Let $u=(R, R, R)$. From (3) and Lemma (3) we see that $u \in C$. From (4) we obtain
$(w x, y, z)-(w, x y, z)+(w, x, y z)=w(x, y, z)+(w, x, y) z$.
$((w x, y, z), r, s)-((w, x y, z), r, s)+((w, x, y z), r, s)=(w(x, y, z), r, s)+((w, x, y) z, r, s)$.
Now using (2) in above we obtain

$$
\begin{align*}
-(r, s,(w x, y, z)) & -(s,(w x, y, z, r)+(r, s,(w, x y, z))+(s,(w, x y, z), r)-(r, s,(w, x, y z))-(s,(w, x, y z), r) \\
& =(w(x, y, z), r, s)+((w, x, y) z, r, s) . \text { Applying }(13) \text { we get }(w(x, y, z), r, s)+((w, x, y) z, r, s)=0 . \tag{20}
\end{align*}
$$

Thus $((w, x, y) z, r, s)=-(w(x, y, z), r, s)$.
Now a repeated applications of equations (19), (1), $[R, R] \subseteq N_{m}$ and (20) gives
$((x, y, z) w, r, s)=(w(x, y, z), r, s)$.

Then from (20) we obtain

$$
\begin{aligned}
((w, x, y) z, r, s) & =-(w(x, y, z), r, s) \\
& =-((x, y, w z), r, s) \\
& =-((x, y, z w), r, s) \\
& =-(z(x, y, w), r, s) \text { from }(19) \\
& =(z(x, w, y), r, s) \text { from }(1) \\
& =-((z, x, w) y, r, s) \\
& =((z, w, x) y, r, s) \\
& =-(z(w, x, y), r, s) \text { from }(4) \\
& =-((w, x, y) z, r, s)) . \text { from }(21)
\end{aligned}
$$

That is $((w, x, y) z, r, s)+((w, x, y) z, r, s)=0$.
Thus $0=2((w, x, y) z, r, s)$

$$
\begin{aligned}
& =((w, x, y) z, r, s) \\
& =(w, x, y)(z, r, s) \\
& =(R, R, R)(R, R, R) \\
& =(R, R, R)^{2} \\
& =U^{2} .
\end{aligned}
$$

Theorem: 1 Let R be a 2-torsion free $(-1,1)$ ring if the associator is in the middle nucleus then of R must be a associative.

Proof: Since $U=(R, R, R) \in C$ and $U^{2}=0$.Since the ideal generated by U square to zero we get $U=0$. Thus the ring must be associative.

REFERENCES

[1] Hentzel, I.R., The characterization of (-1, 1) rings, J. Algebra, (1974). 236-258.
[2] Kleinfeld, E., On rings satisfies $(x, y, z)=(x, z, y)$, Algebra groups and Geom., 4 (1987), 129-138.
[3] Kleinfeld, E and Kleinfeld, M., Simple rings with (R, R, R) in the left Nucleus, Tamkang Journal of Mathematics, (1999), 35-37.
[4] Kleinfeld, E., and Smith, H.F., A generalization of Novikov rings, Nonassociative algebra and its applications, (1994), 219 - 222.
[5] Paul, Y., Prime rings satisfying $(x, y, z)-(x, z, y)$, Proc. symposium on Algebra and Number Theory, Kochi, Kerala, India, (1990), 91-95.
[6] Suvarna, K., and Jaya Subba Reddy, C., A Generalization of (1, 1) Rings, Acta Ciencia Indica. (2007), 429.
[7] Yen, C.T., Simple ring of characteristic not equal to 2 with associators in the left nucleus are associative, Tamkang Journal of Mathematics, (2002), 93-95.

Source of support: Nil, Conflict of interest: None Declared

