VALUE DISTRIBUTION OF SMALL FUNCTIONS IN THE UNIT DISK

Renukadevi S. Dyavanal*

Department of Mathematics, Karnatak University, Dharwad - 580 003, India.

(Received on: 10-04-14; Revised & Accepted on: 25-04-14)

ABSTRACT

In this paper, we explore properties of value distribution of differential polynomials of certain class of functions in the disk

Keywords: Nevanlinna theory, Unit disk, Small functions, etc.

Subject Classification: 30D35.

1. INTRODUCTION AND MAIN RESULTS

If f is a <u>meromorphic</u> function in the complex plane. R. <u>Nevanlinna</u> noted that its characteristic function T(r,f) could be used to categorize f according to its rate of growth as $|z|=r\to\infty$. Later H. <u>Milloux</u> showed for a transcendental <u>meromorphic</u> function in the plane that for each positive integer k,

$$m\left(r, \frac{f^{(k)}}{f}\right) = o\left(T(r, f)\right) \text{ as } r \to \infty$$
 (1.1)

possibly outside a set of finite measure. If f is a <u>meromorphic</u> function in the unit disk $D = \{z: |z| < 1\}$, analogous results to (1.1) exit when

$$\limsup_{n \to \infty} \frac{T(r,f)}{-\log (1-r)} = +\infty$$
(1.2)

Definition: 1.1 (Class F) Class F in defined as

$$F = \{ f \in D : f \text{ is meromorphic and } \limsup_{r \to 1} \frac{T(r,f)}{-\log (1-r)} = \alpha < +\infty \}$$

Definition: 1.2 (Index of f**)** For functions f in class F, we say that the index of f denoted by $\alpha(f)$ and given by $\lim_{r \to 1} \frac{T(r,f)}{-\log (1-r)} = \alpha < +\infty$

Definition: 1.3 (Subclass P of F) Subclass P of F is defined as

$$P = \left\{ f \in F : m\left(r, \frac{f'}{f}\right) = o\left(T(r, f)\right) \text{ as } r \to 1 \text{ and } \lim_{r \to 1} T(r, f) = \infty \right\}$$

Definition: 1.4(Closure properties of F) If $f \in P$ and $c \neq 0$, then (i) $cf \in P$ (ii) $1/f \in P$ (iii) $f^n \in P$ (iv) g be a meromorphic functions not identically 0 such that $T(r,g) = o\left(T(r,f)\right)as \ r \to 1$ and $m\left(r,\frac{g'}{g}\right) = o\left(T(r,f)\right)as \ r \to 1$, then $f \in P$.

Remark: 1.5 The following theorem will show that there is a difference between the disk case and the plane case. In the plane case for transcendental functions, we are guaranteed not only that

$$m\left(r,\frac{f'}{f}\right) = o\left(T(r,f)\right)$$
 but also that $m\left(r,\frac{f^{(k)}}{f}\right) = o\left(T(r,f)\right)$

by the theory of Milloux. However, we are not guaranteed this for functions of slow growth in the disk as the following theorem shows.

Corresponding author: Renukadevi S. Dyavanal*
Department of Mathematics, Karnatak University, Dharwad - 580 003, India.
E-mail: renukadyavanal@gmail.com

Theorem: 1.6 There exists an analytic function $f \in P$ such that

$$m\left(r, \frac{f''}{f}\right) \neq o\left(T(r, f)\right) as \ r \to 1$$

Theorem: 1.7(First Fundamental Theorem of Nevanlinna) Let f be a meromorphic function in D. Then, for any $a \in C$

$$T(r,f) = m\left(r,\frac{1}{f-a}\right) + N\left(r,\frac{1}{f-a}\right) + O(1)$$
 as $r \to 1$

Theorem: 1.8 (Reformulation of the Second Fundamental Theorem): Let f be a nonconstant meromorphic function in F. Then $q \ge 3$ distinct values $a_1, a_2, ..., a_q \in C \cup \{\infty\}$, we have

$$(q-2) T(r,f) \le \sum_{i=1}^{q} \overline{N}(r,a_i) + \log \frac{1}{1-r} + O\left(\log \log \frac{1}{1-r}\right) \quad as \quad r \to 1$$

In the year 1986, Shea and Sons [4] explores varies results for admissible functions in class F be refined further by restricting the functions to class P. We now state a theorem from Shea and Sons that can be refined

Theorem: 1.9 Let f be a meromorphic function in D which is in class F and for which

$$N\left(r,\frac{1}{f}\right) + N(r,f) = o\left(T(r,f)\right) \text{ as } r \to 1$$

Let n be a positive integer and for k = 0,1,2...n, let a_k be a meromorphic function in D for which

$$T(r, a_k) = o(T(r, f))$$
 as $r \to 1$. If ψ is defined in D by

$$\psi = \sum_{k=0}^{n} a_k f^{(k)}$$

 $\psi = \sum_{k=0}^{n} a_k f^{(k)}$ and ψ is <u>nonconstant</u>, then ψ assumes every complex number except possibly zero infinitely often provided the index

of *f* is
$$\alpha > 1 + \frac{n(n+1)}{2}$$
.

Theorem: 1.10 Let f be a <u>meromorphic</u> function in D which is in class P and for which

$$N\left(r,\frac{1}{f}\right) + N(r,f) = o\left(T(r,f)\right) \text{ as } r \to 1$$

Let n be a positive integer and for k = 0,1,2,...,n, let a_k be a meromorphic function in D for which

 $T(r, a_k) = o(T(r, f))$ as $r \to 1$. Also, define E to be the set defined by

$$E = \left\{ k : m\left(r, \frac{f^{(k)}}{f}\right) = o\left(T(r, f)\right) \text{ as } r \to 1 \right\} \quad \text{and} \quad \psi = \sum_{k=0}^{n} f^{(k)} \text{ in } D.$$

And ψ is <u>nonconstant</u>, then ψ assumes every complex number except possibly zero infinitely often provided the index of f is $\alpha > 1 + \frac{n(n+1)}{2} - \sum E$, where $\sum E$ is the sum of the values of E.

In this paper, we extend Theorem 1.9 and Theorem 1.10 to general homogeneous differential polynomials and prove the following theorem.

Theorem: 1.11 Let f be a <u>meromorphic</u> function in D which is in class P and for which

$$N\left(r, \frac{1}{f}\right) + N(r, f) = o\left(T(r, f)\right) \text{ as } r \to 1$$
(1.3)

If non constant function ψ is defined in D as

$$\psi = \sum_{i=0}^{m} a_{i} f^{n_{0,i}} (f')^{n_{1,i}} (f'')^{n_{2,i}} \dots (f^{(s)})^{n_{s,i}}$$
(1.4)

Where $n = \sum_{i=0}^{s} n_{i,j}$ ($\forall j = 0,1,2,...,m$) and let a_k be a <u>meromorphic</u> function in D for which

$$T(r, a_k) = o(T(r, f)) \text{ as } r \to 1$$
(1.5)

and $E = \{k : m\left(r, \frac{f^{(k)}}{f}\right) = o\left(T(r, f)\right)\}$ as $r \to 1\}$ for k = 0, 1, 2, ..., s.

Then ψ assumes every complex number except possibly zero infinitely often provided the index of f is given by $n\alpha > 1 + \sum_{i=0}^{m} \sum_{k \neq E} k n_{k,i}$.

2. PROOF OF THEOREM: 1.1

Since Class F is closed under differentiation, addition and multiplication and ψ is in class F. Therefore we can apply the reformulation of the second fundamental theorem for class F to ψ

$$T(r, \psi) \leq \overline{N}\left(r, \frac{1}{\psi}\right) + \overline{N}\left(r, \frac{1}{\psi - c}\right) + \overline{N}(r, \psi) + \log\left(\frac{1}{1 - r}\right) + O\left(\log\log\left(\frac{1}{1 - r}\right)\right) \text{ as } r \to 1.$$
 (2.1)

From (1.4) and (1.5), we have

$$\overline{N}(r,\psi) \le \overline{N}(r,f) + \sum_{j=0}^{m} \overline{N}(r,a_j) \le \overline{N}(r,f) + o(T(r,f)) \quad as \ r \to 1.$$
 (2.2)

Also, since the index of f is greater than 0, we have $O(\log\log(\frac{1}{1-r})) = o(T(r,f))$ as $r \to 1$. Therefore, using (2.1) and (2.2) and the first fundamental theorem, we get as $r \to 1$

$$T(r,\psi) = m\left(r,\frac{1}{\psi}\right) + N\left(r,\frac{1}{\psi}\right) + O(1)$$

$$\leq \overline{N}\left(r,\frac{1}{\psi}\right) + \overline{N}\left(r,\frac{1}{\psi-c}\right) + \overline{N}(r,\psi) + \log\left(\frac{1}{1-r}\right) + O\left(\log\log\left(\frac{1}{1-r}\right)\right)$$

$$\leq \overline{N}\left(r,\frac{1}{\psi}\right) + \overline{N}\left(r,\frac{1}{\psi-c}\right) + \overline{N}(r,f) + \log\left(\frac{1}{1-r}\right) + o(T(r,f))$$

Now, solving for $m\left(r,\frac{1}{\psi}\right)$ in the above calculation, we have the following inequality

$$m\left(r, \frac{1}{\psi}\right) \leq \overline{N}\left(r, \frac{1}{\psi}\right) - N\left(r, \frac{1}{\psi}\right) + \overline{N}\left(r, \frac{1}{\psi - c}\right) + \overline{N}(r, f) + \log\left(\frac{1}{1 - r}\right) + o\left(T(r, f)\right) \text{ as } r \to 1.$$

$$\leq \overline{N}\left(r, \frac{1}{\psi - c}\right) + \overline{N}(r, f) + \log\left(\frac{1}{1 - r}\right) + o\left(T(r, f)\right) \text{ as } r \to 1.$$

$$(2.3)$$

By the first fundamental theorem, properties of the proximity function and (2.3) give us the following

$$nT(r,f) = m\left(r,\frac{1}{f^n}\right) + N\left(r,\frac{1}{f^n}\right) + O(1) \le m\left(r,\frac{1}{\psi}\frac{\psi}{f^n}\right) + N\left(r,\frac{1}{f^n}\right) + O(1)$$

$$\le m\left(r,\frac{1}{\psi}\right) + m\left(r,\frac{\psi}{f^n}\right) + N\left(r,\frac{1}{f^n}\right) + O(1)$$

$$\le \bar{N}\left(r,\frac{1}{\psi-c}\right) + \bar{N}(r,f) + \log\left(\frac{1}{1-r}\right) + m\left(r,\frac{\psi}{f^n}\right) + N\left(r,\frac{1}{f^n}\right) + o(T(r,f))as \ r \to 1.$$
(2.4)

Noticing the fact that $\overline{N}(r, f) \le N(r, f)$ and using (1.3)

$$N(r,f) + N\left(r, \frac{1}{f^n}\right) = N(r,f) + nN\left(r, \frac{1}{f}\right) = o\left(T(r,f)\right) \quad as \quad r \to 1$$

$$(2.5)$$

From (2.4) and (2.5), we have
$$n T(r,f) \leq \overline{N}\left(r, \frac{1}{\psi - c}\right) + m\left(r, \frac{\psi}{f^n}\right) + \log\left(\frac{1}{1-r}\right) + o\left(T(r,f)\right) \quad as \ r \to 1$$
 (2.6)

As $r \to 1$. We now estimate $m\left(r, \frac{\psi}{f^n}\right)$ as follows

$$m\left(r, \frac{\psi}{f^{n}}\right) = m\left[r, \frac{\sum_{j=0}^{m} a_{j} f^{n_{0,j}} \left(f^{'}\right)^{n_{1,j}} \left(f^{''}\right)^{n_{2,j}} \dots \left(f^{(n)}\right)^{n_{n,j}}}{f^{n}}\right]$$

$$= \sum_{j=0}^{m} m\left(r, \frac{a_{j} f^{n_{0,j}} \left(f^{'}\right)^{n_{1,j}} \left(f^{''}\right)^{n_{2,j}} \dots \left(f^{(n)}\right)^{n_{n,j}}}{f^{n}}\right) + \log(m+1)$$

$$= \sum_{j=0}^{m} m\left(r, a_{j} \left(\frac{f^{n_{0,j}}}{f}\right) \left(\frac{f^{'}}{f}\right)^{n_{1,j}} \left(\frac{f^{''}}{f}\right)^{n_{2,j}} \dots \left(\frac{f^{(n)}}{f}\right)^{n_{n,j}}\right) + \log(m+1)$$

$$= \sum_{j=0}^{m} \left\{m\left(r, a_{j}\right) + \sum_{k=1}^{n} m\left(r, \left(\frac{f^{(k)}}{f}\right)^{n_{k,j}}\right)\right\} + \log(m+1)$$

$$= \sum_{j=0}^{m} \sum_{k=1}^{n} m\left(r, \left(\frac{f^{(k)}}{f}\right)^{n_{k,j}}\right) + o\left(T(r, f)\right) + \log(m+1)$$

$$= \sum_{j=0}^{m} \left\{\sum_{k\in E} m\left(r, \left(\frac{f^{(k)}}{f}\right)^{n_{k,j}}\right) + \sum_{k\notin E} m\left(r, \left(\frac{f^{(k)}}{f}\right)^{n_{k,j}}\right)\right\} + o\left(T(r, f)\right)$$

$$= \sum_{j=0}^{m} \sum_{k\notin E} m\left(r, \left(\frac{f^{(k)}}{f}\right)^{n_{k,j}}\right) + o\left(T(r, f)\right)$$

$$= \sum_{j=0}^{m} \sum_{k\notin E} n_{k,j} m\left(r, \frac{f^{(k)}}{f}\right) + o\left(T(r, f)\right)$$

$$(2.7)$$

By using (4.5.1) in Chapter 4 of [1], we have

$$m\left(r, \frac{f^{(k)}}{f}\right) \le k\log\left(\frac{1}{1-r}\right) + k\left(2 + o(1)\right)\log\log\left(\frac{1}{1-r}\right) as \quad r \to 1$$
(2.8)

Hence by (2.7) and (2.8), we get

$$m\left(r, \frac{\psi}{f^n}\right) = \sum_{j=0}^m \sum_{k \notin E} k n_{k,j} \log\left(\frac{1}{1-r}\right) + o\left(T(r, f)\right) \quad as \quad r \to 1$$

$$\tag{2.9}$$

Then, by (2.6) and (2.9), we can write

$$n\,T(r,f)\,\leq\,\overline{N}\left(r,\frac{1}{\psi-c}\right)+\left[\textstyle\sum_{j=0}^{m}\sum_{k\,\notin\,E}k\,n_{k,\,j}\,\,+\,1\,\right]\log\left(\frac{1}{1-r}\right)+\,o\bigl(T(r,f)\bigr)\ as\ r\to 1$$

Since the index α of f is given by $n\alpha > \sum_{i=0}^{m} \sum_{k \notin E} k n_{k,i} + 1$, we have

$$vT(r,f) \le \overline{N}\left(r,\frac{1}{\psi-c}\right) + o\left(T(r,f)\right) \text{ as } r \to 1$$

Where v > 0. Since T(r, f) is unbounded, we have proved the claim that ψ assumes every complex number except possibly zero infinitely often.

REFERENCES

- [1] P. A. Gunsul, "A Class of Small Functions in the Unit Disk", PhD Thesis, Northern Illinois University, 2009.
- [2] W. K. Hayman, "Meromorphic Functions", Oxford University Press, London, 1964.
- [3] R. Korhonen and J. Ratty, "Finite order solutions of linear differential equations in the unit disk", J. Math. Anal. Appl. 349(2009), 43-54.
- [4] D. Shea and L. R. Sons, "Value distribution theory for meromorphic functions of slow growth in the unit disk", Houston. J. Math. 12(2) (1886), 249-226.
- [5] L. R. Sons, "Values for differential polynomials in the disk", Abstracts of the AMS. Vol. 28 (2007), P-640.
- [6] L. Yang, "Value Distribution Theory", Springer-Verlag, Beijing, 1993.

Source of support: Nil, Conflict of interest: None Declared