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ABSTRACT 
The paper contains an investigation of zeros Of Bargmann analytic representation. A brief introduction to Harmonic 
oscillator formalism is given. The Bargmann analytic representation has been studied. The zeros of Bargmann analytic 
function are considered. The Q  or Husimi functions are introduced. The The Bargmann functions and the Husimi 

functions have the same zeros. The Bargmann functions )(zf  have exactly q zeros. The evolution time of the zeros nµ  
are discussed. Various examples have been given.  
 
 
1. INTRODUCTION 
 
This Paper is devoted to study the zeros of Bargmann analytic representation in the complex plane. The Bargmann 
function is very important kind of analytic functions [1, 2, 3] in the complex plane [4, 5, 6]. The zeros of Bargmann 
functions and the zeros of the Q  or Husimi function which are identical, have been used to consider of various models 
[7, 8, 9, 10, 11, 12, 13]. The analytic Bargmann functions )(zf have exactly q zeros which subjected to the 
constraint.(33). The growth of an entire function )(zf  is described by the order ρ  and type σ  [14, 15, 16, 17]. The 
entire function )(zf  is polynomial of order q  and has q  zeros. The q  zeros of the analytic functions )(zf  

depends on the distribution of the coefficients .,...,, 10 nfff  If the coefficients nfff ,...,, 10  are real then the zeros 

nµ  are real or appear as complex conjugate pairs and draw symmetric graph with respect to the rz  axis. 
 
2. HARMONIC OSCILLATOR IN ONE-MODE SYSTEMS 
 
Let qH  be the Hilbert space with number eigenstates 〉n| . We consider a harmonic oscillator corresponding the 
Hamiltonian:  

 );(
2
1= 22 pxH +                                                                         (1) 

where ;; px  the position and momentum operators with 1.=],[ ipx  
 
Let †,aa  be the creation and annihilation operators:  

 ;
2

=;
2

= † ipxaipxa −+
                                                               (2) 

 where  
 .|=|† 〉〉 nnnaa                                                                         (3) 

 
These two operators obey the canonical commutation relation  

 1;=],[ †aa                                                                                  (4) 
and act on the number state as follows:  

 ;1|1)(=| 1/2† 〉++〉 nnna  

 ;1|=| 1/2 〉−〉 nnna                                                                (5) 
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The displacement operators are defined as  

 .2)/(=);(e=)( † ipxzazzaxpzD +− ∗                                              (6) 
 
We consider the coherent states  

 .|)!(||
2
1e=| 1/2

0=

2 〉





−〉 −

∞

∑ nznzxpz n

n

                                                      (7) 

 
The coherent states are defined as the eigenstate of the annihilation operator a   
         ;|=| 〉〉 zzza                                                                                  (8)  
 
and the position representation of the coherent state is a Gaussian function  

 .=);2
2

(=)(
2

1/4
IRRz izzzzzzxxexpxf +−+−−π                                     (9) 

 
The inner product of two coherent states 〉1| z  and 〉2| z  is  

 2 2
1 2 1 2 1 2

1 1| = | | | | .
2 2

z z exp z z z z∗ 〈 〉 − − + 
 

                                            (10) 

 
3. HARMONIC OSCILLATOR IN TWO-MODE SYSTEMS 
 
Let 21= HHHq ⊗  be the two-mode Hilbert space. We consider the two-mode orthonormal basis  
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                                                     (11) 

 
where nH  is the Hermite polynomials. 
 
Let †

22 ,aa  be the creation and annihilation operators in two-mode systems:  

 ,1=,1= ††
22 aaaa ⊗⊗ 1.=],[ †

22 aa                                                        (12) 
 
The displacement operators are defined as  

 .2)/(=),(e=)( 2
†
22 ipxzazzaxpzD +− ∗                                             (13) 

 
We consider the coherent states  
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!!

)|||(|
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                                   (14) 

 
The state 〉f|  can be analyzed in above basis 11 as follows  

 1=||,,|=| 2

,,
nm

mn
nm

mn
fmnff ∑∑ 〉〉  

 〉〉 ∑ mnff nm
mn

,|=| *

,

*  

 .|,=|
,

* mnff nm
mn

〈〈 ∑                                                                        (15) 

 
4. BARGMANN ANALYTIC REPRESENTATION OF ONE VARIABLE 
 
We cosider an arbitrary 〉f|  state  

 1.=||;|=| 2

0=0=
n

n
n

n
fnff ∑∑

∞∞

〉〉                                                               (16) 
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In The Bargmann representation [2, 4, 5, 6] , the state 〉f|  is represented by  

 ;
!

=|)
2
||(=)(

0=

2

n
zffzzexpzf

n
n

n
∑
∞

∗ 〉〈                                                      (17) 

 
which is an entire function (i.e. analytic function in the complex plane C ) defined on a torus, satisfying the 
quasi-periodic condition [7]  

 [ ] );())2
2
1((exp=21/ zfzqzf ++ π  

 [ ] ).())2
2
1((exp=2/ zfizqizf −+ π                                                      (18) 

 
The inner product of the two states[2] is given by  

ππ
zdzexpzgzfgf

2
2 )||()()]([1=| −〉〈 ∗∫C  

         
.=,= 2*

IRnn
n

dzdzzdgf∑                                                                        (19) 

 
Therefore we can represent the creation and annihilation operators by the two variable analytic functions in the Bargmann 
analytic [18] representation (see [1])as following  
 

)(exp);(exp *†** µµµ zzaza →→                                                                        (20) 
 
The Bargmann analytic representation of the creation and annihilation operator is  
 

.; † zaa z →∂→                                                                                          (21) 
 
5. BARGMANN ANALYTIC REPRESENTATION OF TWO VARIABLE 
 
The Bargmann analytic representation of the state 〉f|  is given by  

〉〈
+

21
*

2
2

2
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21 ,|)
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||||(exp=),( zzfzzzzf  

   ;
!!

= 21
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which is an entire function. 
 
The inner product of the two states 〉f|  and 〉g|  see [19] is given by  

.))|||(|(exp),()],([=| 2
2

1
2

2
2

2
12121 ππ

zdzdzzzzgzzfgf +−〉〈 ∗∫                                    (23) 

 
We can represent the creation and annihilation operators [19] as following 
 2211 , zaa z →∂→  

 .,
2

†
21

†
1 zz aa ∂→∂→                                                                                 (24) 

 
5.1 The growth of Bargmann analytic functions of one variable 
 
The growth of an entire function )(zf  is described by the order ρ  and type σ  [14, 15, 16, 17, 18]:  

,)(
lim=,)(

lim= ρσρ
R

RlnMsup
lnR

RlnlnMsup
RR ∞→∞→

                                                     (25) 

where )(RM  is the maximum value of )(zf  on Rz |=| . The space ),( σρH  is a subspace of ),( '' σρH  if 
'< ρρ  or if .<;= '' σσρρ  
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We can now derive the Bargmann analytic representation of some quantum states as examples. 
 
•  The number state 〉n|  is represented as  

 .
!

=)(
n

zzf
n

                                                                                         (26) 

It is of order 0 . 
•  The coherent state 〉α|  is represented as  

 ).||
2
1(=)( 2αα −zexpzf                                                               (27) 

It is of order 1=ρ  and type ||α . 
 
5.2 The growth of Bargmann analytic functions of two variables 
 
The growth of an entire function ),( 21 zzf  is described by the order ρ  and type σ  [14, 15, 16, 17, 18]. 
 

let )(RM  be the maximum value of ),( 21 zzf  on the shere Rzz =|||| 2
2

2
1 + . As ∞→+ 2

2
2

1 |||| zz  the 
function grows as following 

 /22
2

2
121 )|||(|[exp|),(| ρσ zzzzf +≈  

see [19].  
 
We can now derive the Bargmann analytic representation of some quantum states as examples. 
 
•  The number state 〉mn,|  is represented as  

 .
!!

=),( 21
21 mn

zzzzf
mn

 (28) 

It is of order 0 . 
•  The coherent state 〉21,| ωω  is represented as  

 .)
2

)|||(|(exp=),( 2211
2

2
2

1
21

zz eezzf ωωωω +−
 (29) 

 
6. ZEROS OF BARGMANN ANALYTIC FUNCTIONS OF ONE VARIABLE 
 
We denote as nµ  the zeros of )(zf , i.e. 0=)( nf µ . Let   be the boundary of the fundamental domain of 

analyticity, ].2[0,1/]2[0,1/= ×S  We consider the integrals  

 .
)(
)(

2
=;

)(
)(

2
=

''

z
zf
zf

i
dzJ

zf
zf

i
dzI

ππ ∫∫


 (30) 

I  is equal to the number of zeros of this function (with the multiplicities taken into account), inside the contour  . J  
is equal to the sum of these zeros. Using the quasi-periodicity of Eq. (18) we prove that the integral I , for a contour 
along the boundary  , is equal to q . Therefore the analytic functions )(zf  have exactly q  zeros [7, 8].  

 .=
)(
)(

2

'

q
zf
zf

i
dz
π∫



 (31) 

 
Using the quasi-periodicity of Eq. (??) we also prove that [7, 8]  

 );(12=
)(
)(

2
3/2 iqz

zf
zf

i
dz z +

∂ −∫ π

 (32) 

giving the sum of the zeros nµ  of )(zf . Therefore the analytic functions )(zf  [7, 8] have exactly q  zeros 
subjected to the constraint  

 ).(12= 3/2

1=
iqn

q

n
+−∑µ  (33) 
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The Husimi function and Bargmann function )(zf  are related to each other and it easy to see that there zeros are 
identical (i.e µ  is a zero of )(zf  providing ζ  is a zero of the Husimi function). The Weierstrass-Hadamard 

factorization allows the reconstruction of entire functions from their zeros [2, 18]. We suppose that q  zeros nµ  of 

)(zf  are given, and that they satisfy the constraint of Eq. (33). The Weierstrass-Hadamard reconstructs the Bargmann 
functions )(zf  as following [2]  

);,()((exp=)(
1=

dEzQzzf np

q

n

m µ∏                                                                        (34) 

where  

 ;...exp)(1=),( 2

2


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+++− d

d

n
zzzzdE
µµµµ

µ                                                      (35) 

m  is the multiplicity of the zero, )(zQp  is polynomial of degree p  and d  is a positive number. As an example we 
consider the function  

,
!

=)(
14

0= n
zfzf

n
n

n
∑                                                                                          (36) 

 
The coefficients nf  are given in Table. 1.  
 

i ( )0if  i ( )0if  i ( )0if  
0 0.1-0.2i 5 0.3-0.2i 10 0.1-0.1 
1 0.3+0.3i 6 0.9-0.03i 11 -0.1+0.2 

2 0.3+0.2i 7 0.3+0.01i 12 0.2+0.3i 

3 0.01-0.3i 8 0.1+0.01i 13 -0.01-0.1i 
4 0.1-0.01i 9 0.1-0.2i 14 -0.01+0.1i 

Table - 1: The coefficients nf  of function in Eq.(36) 
 
In Fig.1 we show the distribution of zeros of function )(zf  of Eq.(39) which is polynomial of order 14  and has 14  
zeros. 
 
The q  zeros of the analytic functions )(zf  depends on the distribution of the coefficients .,...,, 10 nfff  This 
coefficients subjected to the constraint  

1,=2

0=
n

q

n
f∑                                                                                                   (37) 

 
which comes from the normalization. 
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7. ZEROS OF BARGMANN ANALYTIC FUNCTIONS OF TWO VARIABLE 
 
We denote as ),( nn νµ  the zeros of ),( 21 zzf , i.e. 0=),( nnf νµ . If ),( nn νµ is a zero of the Bargmann function 

),( 21 zzf  then 〉nn νµ ,|  is orthogonal to .| *〉f  
 
The number state  

.
!!

=),( 21
21 mn

zzzzf
mn

                                                                                         (38) 

has exactly mn +  zeros, and has the zero (0.0)=),( nn νµ  (with multiplicity mn + ). 
 
As an example we consider the function  

.,
!!

=),( 21
1

0=,
21 mn

zzzzf
mn
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∑                                                                                 (39) 

 
where the coefficients mnf ,  are 
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=                                                      (40) 
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