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ABSTRACT 
In this paper, a mathematical model is proposed and analyzed to study the dynamics of tuberculosis based on MSEIR 
model. It is assumed that the rate at which number of latently infected individuals moves to recovery class R and again 
from recovery class to latent class L is not equal.  The possibility of existence of endemic equilibrium state is discussed 
and examined the basic reproduction number. 
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1. INTRODUCTION 
  
Tuberculosis, or TB, is an infectious bacterial disease caused by Mycobacterium tuberculosis (M. Tuberculosis), which 
most commonly affects the lungs. It is transmitted from person to person via droplets from the throat and lungs of 
people with the active respiratory disease. Tubercle bacilli carried by such droplets live in the air for a short period of 
time (about 2 hours), and therefore it is believed that occasional contact with an infectious case rarely leads to an 
infection. According to the World Health Organization (WHO), infants and young children infected with 
Mycobacterium tuberculosis are also more likely to develop active TB than older people since, their immune system 
are not yet well developed [7]. 
 
The Global burden of tuberculosis (TB) has increased over the past two decades despite widespread implementation of 
control measures including BCG vaccination and the World Health Organization’s DOTS strategy which focuses on 
case finding and short-course chemotherapy [6]. The transmission dynamics of TB has received considerable attention 
for a long time, and different mathematical models have been developed incorporating various factors, such as fast and 
slow progression [2],treatment [3],drug-resistant strain [4], reinfection[11], coinfection with HIV[12], migration[15], 
chemoprophylaxis, relapse[10], exogenous reinfection [13], seasonality[9], and age dependent risk. 
 
The spread of infectious diseases has always being concerns and a threat to public health. Tuberculosis which is deadly 
diseases on the rise and revisiting both developed and developing word. Globally it is the leading cause of death than 
any other infectious diseases like malaria, HIV, schistosomiasis, typhoid fever etc. In the study, compartment M in 
which all newborns have passive immunity, a latent compartment in which all the individuals have been affected but 
have not yet infectious. The next stage is the period of active TB infection when the individual start to exhibit some or 
all the symptoms of TB. 
 
The structure of the paper is organized as; we formulate a simple ODE’s model and prove the endemic equilibrium of 
the transmission dynamics of tuberculosis. 
 

Corresponding author: Nidhi Nirwani* 
School of Studies in Mathematics, Vikram University, Ujjain (M.P.), India. 

E-mail: nd.mathematics2009@gmail.com 
 

 
 
 
 
 

http://www.ijma.info/�


Nidhi Nirwani*, V. H. Badshah, R. Khandelwal and P. Porwal/ 
 A Model for Transmission Dynamics of Tuberculosis with Endemic Equilibrium / IJMA- 5(5), May-2014. 

© 2014, IJMA. All Rights Reserved                                                                                                                                                                         48   

 
2. METHODOLOGY 
 
It is not unknown that mathematical modeling has had an important role in understanding of tuberculosis transmission 
dynamics. In our mathematical model one of the principal attribute of these models is that the force of infection (the 
rate at which susceptible leave the susceptible class and move into the infected category i.e. become infected) is a 
function of the number of infectious hosts in the population at any time t and is thus a non-linear term. Other transitions 
such as the recovery of infectious individuals and death are modeled as linear terms with constant coefficients. 
Therefore, the TB transmission dynamics between the compartments shall be described by a system of differential 
equation which shall be solved to obtain both the disease-free equilibrium state and the endemic equilibrium state. The 
stability analysis of the disease-free equilibrium state shall be carried out using the Routh- Hurwitz criterion while that 
of the endemic equilibrium state shall be done using the reproduction number, 𝑅𝑅0.  
 
2.1 ASSUMPTIONS OF THE MODEL  
 
The model is based on the following assumptions.  

1. That the population is heterogeneous. That is, the individuals that make up the population can be grouped into 
different compartments or groups according to their epidemiological state.  

2. That the population size in a compartment is differentiable with respect to time and that the epidemic process 
is deterministic. In other words, that the changes in population of a compartment can be calculated using only 
history to develop the model.  

3. That a proportion of the population of newborns is immunized against TB infection through vaccination.  
4. That the immunity conferred on individuals by vaccination expires after some time at a given rate.  
5. That the population mixes homogeneously. That is, all susceptible individuals are equally likely to be infected 

by infectious individuals in case of contact.  
6. That the rate at which number of latently infected individuals moves to recovery class and again from recovery 

class to latent class is not equal. 
7. That people in each compartment have equal natural death rate of μ. 
8. That all newborns are previously uninfected by TB and therefore join either the immunized compartment or 

the susceptible compartment depending on whether they are vaccinated or not. 
9. That there are no immigrants and emigrants. The only way of entry into the population is through new – born 

babies and the only way of exit is through death from natural causes or death from TB-related causes. 
 
2.2 Formulation of Model:  
 
We define our variable, parameter as  
  

Table - 2.1: Description of variable of the model 
Variables Interpretation 

M(t) The number of individuals who are immunized against TB through vaccination at time t. 

S(t) The number of susceptible individual at time t. 

L(t) The number of latently infected individual at time t. 

I(t) The number of infective individuals at time t. 

R(t) The number of individuals who have been treated and have recovered from the infection at time t. 

N(t) The total population size. 
 

Table - 2.2: Parameter of the model 
 

Parameters Interpretation 

𝑝𝑝 Population of new births joining the population. 

𝜃𝜃𝜃𝜃 The proportion of new birth that have been immunized through vaccine.   

𝛼𝛼 The rate of expiration of vaccine efficiency. 

𝜇𝜇 The natural death. 

𝛽𝛽 The rate at which susceptible individuals become latently infected by TB. 
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2.3 The Mathematical Model and Diagram: 
 
The transmission dynamics of tuberculosis model can be described as in the compartment model in Fig. (1). 

 
 

Fig. -  (1): A compartmental diagram for transmission dynamics of tuberculosis 
 
Model Equations: 
 
In the view of above assumptions and their inter-relations between the variables and parameters as described in the 
compartmentalized model in Fig.(1), we have the following system of differential equations:  
                                     
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜃𝜃𝜃𝜃 − (𝛼𝛼 + 𝜇𝜇)𝑀𝑀                                                                                                                                                                      (2.1) 
 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= (1 − 𝜃𝜃)𝑝𝑝 + 𝛼𝛼𝛼𝛼 − 𝛽𝛽𝛽𝛽𝛽𝛽 − 𝜇𝜇𝜇𝜇                                                                                                                                                 (2.2) 
 
𝑑𝑑𝐿𝐿
𝑑𝑑𝑡𝑡

= 𝛽𝛽𝛽𝛽𝛽𝛽 − (𝛼𝛼 + 𝜏𝜏 + 𝜇𝜇)𝐿𝐿 + 𝜋𝜋𝜋𝜋                                                                                                                                                    (2.3) 
 
𝑑𝑑𝐼𝐼
𝑑𝑑𝑡𝑡

= 𝜏𝜏𝜏𝜏 − (𝛾𝛾 + 𝜇𝜇 + 𝑑𝑑)𝐼𝐼                                                                                                                                                                   (2.4) 
 
𝑑𝑑𝑅𝑅
𝑑𝑑𝑡𝑡

= 𝜎𝜎𝜎𝜎 + 𝛾𝛾𝛾𝛾 − (𝜇𝜇 + 𝜋𝜋)𝑅𝑅                                                                                                                                                              (2.5) 
 
∴ 𝑁𝑁(𝑡𝑡) = 𝑀𝑀(𝑡𝑡) + 𝑆𝑆(𝑡𝑡) + 𝐿𝐿(𝑡𝑡) + 𝐼𝐼(𝑡𝑡) + 𝑅𝑅(𝑡𝑡)                                                                                                                             (2.6) 
 
2.4 Equilibrium of the Model: 
 
The governing system of equations of the model (2.1-2.6), we have E(𝑀𝑀, 𝑆𝑆, 𝐿𝐿, 𝐼𝐼, 𝑅𝑅) be the equilibrium point. At the 
equilibrium state, we have  
 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 0                                                                                     
 
That is, 
 
𝜃𝜃𝜃𝜃 − (𝛼𝛼 + 𝜇𝜇)𝑀𝑀 = 0                                                                                                                                                                          (2.7) 
 

𝜎𝜎 The rate at which latently infected recover from TB through treatment. 
𝜏𝜏 The rate at which latently infected become actively infected. 
𝛾𝛾 The rate at which actively infected recover from TB infection. 
𝜋𝜋 The rate at which recovered individuals become latently infected individuals. 
𝑑𝑑 The tuberculosis death rate. 
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(1 − 𝜃𝜃)𝑝𝑝 + 𝛼𝛼𝛼𝛼 − 𝛽𝛽𝛽𝛽𝛽𝛽 − 𝜇𝜇𝜇𝜇 = 0                                                                                                                                                    (2.8) 
 
𝛽𝛽𝛽𝛽𝛽𝛽 − (𝛼𝛼 + 𝜏𝜏 + 𝜇𝜇)𝐿𝐿 + 𝜋𝜋𝜋𝜋 = 0                                                                                                                                                      (2.9) 
 
𝜏𝜏𝜏𝜏 − (𝛾𝛾 + 𝜇𝜇 + 𝑑𝑑)𝐼𝐼 = 0                                                                                                                                                                   (2.10) 
 
𝜎𝜎𝜎𝜎 + 𝛾𝛾𝛾𝛾 − (𝜇𝜇 + 𝜋𝜋)𝑅𝑅 = 0                                                                                                                                                               (2.11) 
 
2.5 The Endemic Equilibrium state: 
 
The endemic equilibrium state is the state where the diseases cannot be totally eradicated but remains in the population. 
For the disease to persist in the population, immunized class, the infectious class and the recovered class must not be 
zero at equilibrium state. In other words, if  𝐸𝐸∗(𝑀𝑀∗, 𝑆𝑆∗, 𝐿𝐿∗, 𝐼𝐼∗, 𝑅𝑅∗) is the endemic equilibrium state, then  
 𝐸𝐸∗(𝑀𝑀∗, 𝑆𝑆∗, 𝐿𝐿∗, 𝐼𝐼∗, 𝑅𝑅∗) ≠ (0,0,0,0,0) .In order to obtain the endemic equilibrium state, we solve equations [(2.7)-(2.11)] 
simultaneously taking into considering the fact    𝐸𝐸∗(𝑀𝑀∗, 𝑆𝑆∗, 𝐿𝐿∗, 𝐼𝐼∗, 𝑅𝑅∗) ≠ (0,0,0,0,0). 
 
From equation (2.7) 
 
 𝜃𝜃𝜃𝜃 − (𝛼𝛼 + 𝜇𝜇)𝑀𝑀 = 0 
 

 𝑀𝑀∗ =
𝜃𝜃𝜃𝜃

𝛼𝛼 + 𝜇𝜇
                                                                                                                                                                                     (2.12) 

 
From Equation (2.10) 
𝜏𝜏𝜏𝜏 − (𝛾𝛾 + 𝜇𝜇 + 𝑑𝑑)𝐼𝐼 = 0                                                                                                               
 

⟹ 𝐿𝐿 =
(𝛾𝛾 + 𝜇𝜇 + 𝑑𝑑)𝐼𝐼

𝜏𝜏
                                                                                                                                                                     (2.13) 

 
Substituting equation (2.13) into (2.9), we get 

   𝛽𝛽𝛽𝛽𝛽𝛽 −
(𝜎𝜎 + 𝜏𝜏 + 𝜇𝜇)(𝛾𝛾 + 𝜇𝜇 + 𝑑𝑑)𝐼𝐼

𝜏𝜏
+ 𝜋𝜋𝜋𝜋 = 0                                                                                      

 

⟹ 𝑅𝑅 =
(𝜎𝜎 + 𝜏𝜏 + 𝜇𝜇)(𝛾𝛾 + 𝜇𝜇 + 𝑑𝑑)𝐼𝐼 − 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽

𝜏𝜏𝜏𝜏
                                                                                                                                (2.14) 

 
Substituting equation (2.13) for L and equation (2.14) for R in equation (2.11), we get 
 
𝜎𝜎(𝛾𝛾+𝜇𝜇+𝑑𝑑)𝐼𝐼

𝜏𝜏
+ 𝛾𝛾𝛾𝛾 − (𝜇𝜇+𝜋𝜋)𝐼𝐼

𝜋𝜋
�(𝜎𝜎+𝜏𝜏+𝜇𝜇)(𝛾𝛾+𝜇𝜇+𝑑𝑑)

𝜏𝜏
− 𝛽𝛽𝛽𝛽� = 0  (Since 𝐼𝐼 ≠ 0) 

 
So, 
𝜎𝜎(𝛾𝛾 + 𝜇𝜇 + 𝑑𝑑)

𝜏𝜏
+ 𝛾𝛾 −

(𝜇𝜇 + 𝜋𝜋)
𝜋𝜋

�
(𝜎𝜎 + 𝜏𝜏 + 𝜇𝜇)(𝛾𝛾 + 𝜇𝜇 + 𝑑𝑑)

𝜏𝜏
− 𝛽𝛽𝛽𝛽� = 0                                                                             

 

 ⟹ 𝑆𝑆∗ =
𝜇𝜇(𝜎𝜎 + 𝜏𝜏 + 𝜇𝜇)(𝛾𝛾 + 𝜇𝜇 + 𝑑𝑑) + 𝜋𝜋𝜋𝜋(𝜇𝜇 + 𝑑𝑑) + 𝜇𝜇𝜇𝜇(𝛾𝛾 + 𝜇𝜇 + 𝑑𝑑)

𝛽𝛽𝛽𝛽(𝜇𝜇 + 𝜋𝜋)                                                                                  (2.15) 

 
Substitute equation (2.12) from M and equation (2.15) for S in equation (2.8) gives 

(1 − 𝜃𝜃)𝑝𝑝 +
𝛼𝛼𝛼𝛼𝛼𝛼

(𝛼𝛼 + 𝜇𝜇)
− (𝛽𝛽𝛽𝛽 + 𝜇𝜇)𝑆𝑆∗   = 0                                                                                                             

 

⟹ 𝐼𝐼 =
𝑝𝑝(𝛼𝛼 + 𝜇𝜇 − 𝜃𝜃𝜃𝜃)

(𝛼𝛼 + 𝜇𝜇)𝑆𝑆∗𝛽𝛽
−
𝜇𝜇
𝛽𝛽

                                                                                                                           

 

⟹ 𝐼𝐼∗ =
𝛽𝛽𝛽𝛽𝛽𝛽(𝛼𝛼 + 𝜇𝜇 − 𝜃𝜃𝜃𝜃)(𝜇𝜇 + 𝜋𝜋) − 𝜇𝜇(𝛼𝛼 + 𝜇𝜇)[𝜇𝜇(𝛾𝛾 + 𝜇𝜇 + 𝑑𝑑)(𝜋𝜋 + 𝜎𝜎 + 𝜏𝜏 + 𝜇𝜇) + 𝜋𝜋𝜋𝜋(𝜇𝜇 + 𝑑𝑑)]

𝛽𝛽(𝛼𝛼 + 𝜇𝜇)[𝜇𝜇(𝛾𝛾 + 𝜇𝜇 + 𝑑𝑑)(𝜋𝜋 + 𝜎𝜎 + 𝜏𝜏 + 𝜇𝜇) + 𝜋𝜋𝜋𝜋(𝜇𝜇 + 𝑑𝑑)]                                    (2.16) 

 
Substitute equation (2.16) for 𝐼𝐼 in equation (2.13) 

𝐿𝐿 =
(𝛾𝛾 + 𝜇𝜇 + 𝑑𝑑)𝐼𝐼∗

𝜏𝜏
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⟹ 𝐿𝐿∗ =
𝛽𝛽𝛽𝛽𝛽𝛽(𝛼𝛼 + 𝜇𝜇 − 𝜃𝜃𝜃𝜃)(𝜇𝜇 + 𝜋𝜋)(𝛾𝛾 + 𝜇𝜇 + 𝑑𝑑) − 𝜇𝜇(𝛼𝛼 + 𝜇𝜇)(𝛾𝛾 + 𝜇𝜇 + 𝑑𝑑)[𝜇𝜇(𝛾𝛾 + 𝜇𝜇 + 𝑑𝑑)(𝜋𝜋 + 𝜎𝜎 + 𝜏𝜏 + 𝜇𝜇) + 𝜋𝜋𝜋𝜋(𝜇𝜇 + 𝑑𝑑)]

𝜏𝜏𝜏𝜏(𝛼𝛼 + 𝜇𝜇)[𝜇𝜇(𝛾𝛾 + 𝜇𝜇 + 𝑑𝑑)(𝜋𝜋 + 𝜎𝜎 + 𝜏𝜏 + 𝜇𝜇) + 𝜋𝜋𝜋𝜋(𝜇𝜇 + 𝑑𝑑)]  

                                                                                                                                                                                    (2.17) 
By equation (2.11) 
𝜎𝜎𝜎𝜎 + 𝛾𝛾𝛾𝛾 − (𝜇𝜇 + 𝜋𝜋)𝑅𝑅 = 0 

 

 ⟹ 𝑅𝑅 = �
𝜎𝜎(𝛾𝛾 + 𝜇𝜇 + 𝑑𝑑) + 𝛾𝛾𝛾𝛾

𝜏𝜏(𝜇𝜇 + 𝜋𝜋)
� 𝐼𝐼∗                                                                                                                      

 

⟹ 𝑅𝑅∗ =
[𝜎𝜎(𝛾𝛾 + 𝜇𝜇 + 𝑑𝑑) + 𝛾𝛾𝛾𝛾]�𝛽𝛽𝛽𝛽𝛽𝛽(𝛼𝛼 + 𝜇𝜇 − 𝜃𝜃𝜃𝜃)(𝜇𝜇 + 𝜋𝜋) − 𝜇𝜇(𝛼𝛼 + 𝜇𝜇)[𝜇𝜇(𝛾𝛾 + 𝜇𝜇 + 𝑑𝑑)(𝜋𝜋 + 𝜎𝜎 + 𝜏𝜏 + 𝜇𝜇) + 𝜋𝜋𝜋𝜋(𝜇𝜇 + 𝑑𝑑)]�

𝜏𝜏(𝜇𝜇 + 𝜋𝜋)𝛽𝛽(𝛼𝛼 + 𝜇𝜇)[𝜇𝜇(𝛾𝛾 + 𝜇𝜇 + 𝑑𝑑)(𝜋𝜋 + 𝜎𝜎 + 𝜏𝜏 + 𝜇𝜇) + 𝜋𝜋𝜋𝜋(𝜇𝜇 + 𝑑𝑑)]    

                                                                                                                                                                                                                (2.18) 
Therefore the endemic equilibrium state is 𝐸𝐸∗(𝑀𝑀∗, 𝑆𝑆∗, 𝐿𝐿∗, 𝐼𝐼∗, 𝑅𝑅∗)   . 
 
3. STABILITY ANALYSIS OF THE ENDEMIC EQUILIBRIUM STATE 
 
The Jacobian Matrix of this model is 

𝐽𝐽 =

⎣
⎢
⎢
⎢
⎡
−(𝛼𝛼 + 𝜇𝜇) 0 0 0 0

𝛼𝛼 −(𝛽𝛽𝛽𝛽 + 𝜇𝜇) 0 −𝑆𝑆𝑆𝑆 0
0 𝛽𝛽𝛽𝛽 −(𝜎𝜎 + 𝜏𝜏 + 𝜇𝜇) 𝛽𝛽𝛽𝛽 𝜋𝜋
0 0 𝜏𝜏 −(𝛾𝛾 + 𝜇𝜇 + 𝑑𝑑) 0
0 0 𝜎𝜎 𝛾𝛾 −(𝜇𝜇 + 𝜋𝜋)⎦

⎥
⎥
⎥
⎤

        

 
At the endemic equilibrium state,𝐸𝐸∗ the Jacobian Matrix becomes 

𝐽𝐽∗ =

⎣
⎢
⎢
⎢
⎡
−(𝛼𝛼 + 𝜇𝜇) 0 0 0 0

𝛼𝛼 −(𝛽𝛽𝐼𝐼∗ + 𝜇𝜇) 0 −𝑆𝑆∗𝛽𝛽 0
0 𝛽𝛽𝐼𝐼∗ −(𝜎𝜎 + 𝜏𝜏 + 𝜇𝜇) 𝛽𝛽𝑆𝑆∗ 𝜋𝜋
0 0 𝜏𝜏 −(𝛾𝛾 + 𝜇𝜇 + 𝑑𝑑) 0
0 0 𝜎𝜎 𝛾𝛾 −(𝜇𝜇 + 𝜋𝜋)⎦

⎥
⎥
⎥
⎤

 

 
The characteristics equation is |𝐽𝐽∗ − 𝐼𝐼𝐼𝐼| = 0 
 
It is very difficult to find eigen values from the characteristics equation. We use basic reproduction number 𝑅𝑅0 in 
analyzing the stability of the endemic equilibrium states. According to their work, when 𝑅𝑅0 > 1, the system has a 
unique endemic equilibrium that is globally asymptotically stable. The same technique shall be adopted in this work to 
analysis the stability of the endemic equilibrium state 
 
3.1 THE BASIC REPRODUCTION NUMBER, 𝑹𝑹𝟎𝟎   
 
The basic reproduction number, 𝑅𝑅0, as the average number of secondary infections caused by an infectious individual 
during his / her entire life as an infectious person.[5] Tuberculosis infection and re-infection are always existent in a 
community due to respiratory contact between the susceptible individuals, treated individuals, and the infectious 
individuals. Whether the disease becomes persistent or dies out depends on the magnitude of the basic reproductive 
number, 𝑅𝑅0. Stability of equilibrium points can be analyzed using 𝑅𝑅0. The disease-free equilibrium is locally 
asymptotically stable if 0< 𝑅𝑅0 < 1 and unstable if 𝑅𝑅0 >1. In other words, when 0< 𝑅𝑅0 < 1, every infectious individual 
will cause less than one secondary infection and hence the disease will die out and when 𝑅𝑅0 > 1, every infectious 
individual will cause more than one secondary infection and hence an epidemic will occur. All public health control 
measures are usually based on methods that, if effective, would lower 𝑅𝑅0 to below unity.[14] .On the other hand, the 
endemic equilibrium is locally stable when 𝑅𝑅0 > 1 and unstable when 0< 𝑅𝑅0 < 1.In order to control the spread of TB in 
any society effort must be made to ensure that the endemic equilibrium is unstable i.e. For the case of a single infected 
compartment, 𝑅𝑅0 is simply the product of the infection rate and the mean duration of the infection. However, for more 
complicated models with several infected compartments, this simple definition of 𝑅𝑅0 is insufficient. For a more general 
situation we can estimate this parameter by investigating the stability of the infection-free equilibrium [7] The 
expression for 𝑅𝑅0 for Tuberculosis, which Blower [3], calculated from their simple model is given by: 
 
𝑅𝑅0 = 𝑅𝑅0

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 + 𝑅𝑅0
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆                                                                                                                                                                                 

 
Where, 

𝑅𝑅0
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = �

𝛽𝛽𝛽𝛽
𝜇𝜇
� �

1
𝜇𝜇 + 𝜇𝜇𝑡𝑡

� 𝜌𝜌 
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𝑅𝑅0
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = �

𝛽𝛽𝛽𝛽
𝜇𝜇
� �

1
𝜇𝜇 + 𝜇𝜇𝑡𝑡

� �
(1 − 𝜌𝜌)𝑣𝑣
𝑣𝑣 + 𝜇𝜇

� 

 
In this model, it is assumed that the infected individuals can develop active TB by either direct progression (the disease 
develops immediately after infection) or endogenous reactivation (the disease develops after the infection). Because of 
these different ways of developing the disease, two types of TB must be modeled. These would be denoted as primary 
progressive TB (which is referred to as FAST Tuberculosis) and reactivation tuberculosis (which is referred to Slow 
tuberculosis)[1]. The expression for 𝑅𝑅0 for TB, which Blower[3], calculated from their more detailed model is given as: 
 
𝑅𝑅0 = 𝑅𝑅0

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 + 𝑅𝑅0
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝑅𝑅0

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  
 
Where 

𝑅𝑅0
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = �

𝛽𝛽𝛽𝛽
𝜇𝜇
� �

1
𝜇𝜇 + 𝜇𝜇0 + 𝑐𝑐

� 𝜌𝜌𝜌𝜌 

 

𝑅𝑅0
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = �

𝛽𝛽𝛽𝛽
𝜇𝜇
� �

1
𝜇𝜇 + 𝜇𝜇𝑡𝑡 + 𝑐𝑐

� �
𝑞𝑞(1 − 𝜌𝜌)𝑣𝑣
𝑣𝑣 + 𝜇𝜇

� 

 𝑅𝑅0
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �

𝛽𝛽𝛽𝛽
𝜇𝜇
�

⎣
⎢
⎢
⎢
⎢
⎡

1

(𝜇𝜇 + 𝜇𝜇𝑡𝑡 + 𝑐𝑐) �(𝜇𝜇 + 𝜇𝜇𝑡𝑡 + 𝑐𝑐) − �� 2𝑤𝑤𝑤𝑤
2𝑤𝑤 + 𝜇𝜇���⎦

⎥
⎥
⎥
⎥
⎤

��𝑝𝑝 +
(1 − 𝜌𝜌)𝑣𝑣
𝑣𝑣 − 𝜇𝜇

��
𝑤𝑤𝑤𝑤

2𝑤𝑤 + 𝜇𝜇
�� 

 
These equations show that a Tuberculosis epidemic can be seen as a series of linked sub-epidemic [3]. The value of 𝑅𝑅0 
in each of the sub-epidemics is determined by the product of three components:  

1. The average number of infections that one infectious case causes per unit time.  
2. The average time that an individual remains infectious (which is the same for Fast and Slow TB but different 

for Relapse, and  
3. The probability that a latent case will develop into an infectious case (which is different for Fast, Slow or 

Relapse TB) [1]. 
 
Ssematimba et al. [14] defined the reproduction number of tuberculosis in a density-dependent model as 

𝑅𝑅0 = �
Λ
𝜇𝜇
𝐴𝐴
� �(𝛽𝛽1+𝛽𝛽2)𝑐𝑐

𝜇𝜇+𝑑𝑑+𝑟𝑟2
� � 𝑘𝑘

𝜇𝜇+𝑘𝑘+𝑟𝑟1
�                                                                                                                                          

Where, 

             �
Λ
𝜇𝜇
𝐴𝐴
� is the density of the susceptible population. 

            β1c and β2c are the effective transmission rates. 
             � 1

𝜇𝜇+𝑑𝑑+𝑟𝑟2
� is the effective infectious period. 

             �(𝛽𝛽1+𝛽𝛽2)𝑐𝑐
𝜇𝜇+𝑑𝑑+𝑟𝑟2

�   is the number of latent infections produced by a typical infectious individual during the mean      
            infectious period. 
             � 𝑘𝑘

𝜇𝜇+𝑘𝑘+𝑟𝑟1
� is the probability of progression from latent stage into the infectious stage. 

 
Taking this concept for our model, we have that 𝑅𝑅0 is given by 
𝑅𝑅0 = �(1−𝜃𝜃)𝑝𝑝+𝛼𝛼

𝜇𝜇+𝛽𝛽
� � 𝛽𝛽+𝜋𝜋

𝜎𝜎+𝜇𝜇+𝜏𝜏
� � 𝜏𝜏

𝜇𝜇+𝑑𝑑+𝛾𝛾
�                                                    

                                       
Where �(1−𝜃𝜃)𝑝𝑝+𝛼𝛼

𝜇𝜇+𝛽𝛽
� is the average number of individuals in the susceptible class. 

 
� 𝛽𝛽+𝜋𝜋
𝜎𝜎+𝜇𝜇+𝜏𝜏

� is the number of latent infectious produced by a typical infectious individual during the mean infectious 
period. 
 � 𝜏𝜏
𝜇𝜇+𝑑𝑑+𝛾𝛾

� is the probability of progressing from latent class into infectious class. 
 
We must have 𝑅𝑅0 > 1. That is  

�
(1 − 𝜃𝜃)𝑝𝑝 + 𝛼𝛼

𝜇𝜇 + 𝛽𝛽
��

𝛽𝛽 + 𝜋𝜋
𝜎𝜎 + 𝜇𝜇 + 𝜏𝜏

� �
𝜏𝜏

𝜇𝜇 + 𝑑𝑑 + 𝛾𝛾
� > 1                                                                                             
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=>
[(1 − 𝜃𝜃)𝑝𝑝 + 𝛼𝛼](𝛽𝛽 + 𝜋𝜋)𝜏𝜏

(𝜇𝜇 + 𝛽𝛽)(𝜇𝜇 + 𝜏𝜏 + 𝜎𝜎)(𝜇𝜇 + 𝑑𝑑 + 𝛾𝛾)
> 1                                                                                           

 
=>  [(1 − 𝜃𝜃)𝑝𝑝 + 𝛼𝛼](𝛽𝛽 + 𝜋𝜋)𝜏𝜏 > (𝜇𝜇 + 𝛽𝛽)(𝜇𝜇 + 𝜏𝜏 + 𝜎𝜎)(𝜇𝜇 + 𝑑𝑑 + 𝛾𝛾)                                                    
 

=>   
[(1 − 𝜃𝜃)𝑝𝑝 + 𝛼𝛼](𝛽𝛽 + 𝜋𝜋)𝜏𝜏

(𝜇𝜇 + 𝛽𝛽) > (𝜇𝜇 + 𝜏𝜏 + 𝜎𝜎)(𝜇𝜇 + 𝑑𝑑 + 𝛾𝛾)                                                                 

 
The above inequality gives the necessary and sufficient condition for the endemic equilibrium state of the model to be 
globally asymptotically stable. The interpretation is that, for the endemic equilibrium state to be globally asymptotically 
stable, the product of total contraction and total breakdown of the Susceptible class given by  [(1−𝜃𝜃)𝑝𝑝+𝛼𝛼](𝛽𝛽+𝜋𝜋)𝜏𝜏

(𝜇𝜇+𝛽𝛽)
 must be 

greater than the total removal rate from both the Latent and the Infectious classes given by (𝜇𝜇 + 𝜏𝜏 + 𝜎𝜎)(𝜇𝜇 + 𝑑𝑑 + 𝛾𝛾)   In 
order to control TB, we must ensure that 𝑅𝑅0 < 1 (that is, the Endemic equilibrium state is never stable.)[8] 
 
4. CONCLUSION  
 
In this paper, the effect of vaccination and treatment on the transmission dynamics of Tuberculosis (TB) was analyzed. 
The Endemic equilibrium state of the model, using Basic reproduction number Ro shows  that TB can effectively be 
controlled or even be eradicated if the total removal rate from both the latent and the infectious classes is always less 
than the product of total contraction and total breakdown of the susceptible class. 
 
5. RECOMMENDATIONS: 
 
The incidence of tuberculosis can greatly be minimized or possibly be eradicated in any population if effort is made to 
ensure that the endemic equilibrium of this model is never stable. This can be achieved if the following 
recommendations are considered. 

1. There should be more enlightenment campaign on the dangers of TB and on its symptoms. 
2. More effort should be made to encourage people to voluntarily go for TB tests by discouraging stigmatization 

of people infected by the disease.  
3. TB tests and treatment should continue to be free-of-charge to enable poor people assess them.  
4. People should be educated on the mode of transmission of the disease and on home-care strategies for people 

infected by the disease.  
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