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ABSTRACT 
In this paper, we derive the characteristic function of Wrapped Poisson Distribution and the population characteristics 
are studied and the graph of probability mass function is also drawn for various values of parameters. 
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1. INTRODUCTION 
 
In many diverse scientific fields, the observations are ‘directions’. For instance a biologist may be interested in the 
direction of flight of a bird or the orientation of an animal while a geologist may be measuring the direction of earth’s 
magnetic pole.  Such directions may be in two dimensions or in three dimensions. A set of such observations on 
directions is referred to as ‘DIRECTIONAL DATA’, in particular, directional data of two dimensions is called 
‘CIRCULAR DATA’. 
 
Dattatreya Rao et al (2007) derived a good number of wrapped circular models. A new method of generation of circular 
models by using the Rising Sun function was developed by Girija (2010). Stereographic circular models (Phani (2013)) 
and Offset circular models (Radhika (2014)) provide a rich and very useful class of models for circular as well as l-
axial data. Mardia and Jupp (2000) made a mention of discrete circular models by applying a  method wrapping on 
existing linear discrete model and the probability mass function of the  Wrapped Poisson models was also placed. It is 
identified that population characteristics were not derived so far. Hence an attempt is made to derive the population 
characteristics of the Wrapped Poisson model. 
 
2. CIRCULAR DISTRIBUTIONS 
 
A circular distribution is a probability distribution whose total probability is concentrated on the circumference of a unit 
circle. Since each point on the circumference represents a direction, it is a way of assigning probabilities to different 
directions or defining a directional distribution. The range of a circular random variable θ  measured in radians, may be 
taken to be ( ]0,2π   or [ ], .π π−    
 
Circular distributions are of two types: they may be discrete-assigning probability masses only to a countable number 

of directions, or may be absolutely continuous. In the latter case, the probability density function ( )f θ  exists and has 
the following basic properties. 

1) ( ) 0f θ ≥  

2) ( )
2

0

1f d
π

θ θ =∫  

3) ( ) ( )2f f kθ θ π= + , for any integer k, That is ( )f θ  is periodic with period 2π   
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Wrapped Discrete Circular Random Variables 
 
If X is a discrete random variable on the set of integers, then reduction modulo ( )2 m mπ +∈  wraps the integers on 

to the group of thm   roots of unity which is a sub group of unit circle. 
 
i.e. ( )2 mod 2x mπ πΦ =  
 
More precision Φ   is a mapping from a set of integers (G) which is a group with respect to ‘+’ to the set of thm  roots 

of unity 'G which is a group with respect to ‘.’ is defined as 
2

( )
ix

mx e
π

Φ = where x G∈ , 
2

'
ix

me G
π

∈ then Φ is called 
wrapped discrete circular random variable. 
 
Clearly Φ  is a homomorphism 

i.e. (1) 
2 ( )

( )
i x y
mx y e

π +

Φ + =  

                       m
iy

m
ix

ee
ππ 22

.=  

          = ( ) ( ).x yΦ Φ  
 

 (2) 
2 (0)

(0)
i
me

π

Φ =  
    = e0 = 1 where 0 ∈ G, 1 ∈ 'G  
 

Since Φ  contains a finite number of elements they are denoted by 
2 0,1,2..... 1r r m
m
π Φ = = − 

   
which is lattice 

on the unit circle. 
  
Probability Mass Function 
 
Suppose if θ  is a wrapped discrete circular random variable then probability mass function of θ is denoted by







 =

m
rpr πθ 2

which is defined as  

∑
∞

−∞=

+=





 =

k
kmrp

m
rpr )(2πθ  Where 0,1, 2,3,..., 1r m= −  and m +∈  

 
But to exist the probability mass function it has satisfies the following properties. 

1. 02
≥






 =

m
rpr πθ  

2. ∑
−

=

=





 =

1

0
12m

r m
rpr πθ  

3. ( ) ( )2pr pr kθ θ π= +  for any integer k  i.e. pr  is a periodic function. 
 
Distribution Function 
 
Suppose if θ is a wrapped discrete circular random variable then distribution function of θ  is denoted by ( )wF θ  and 
it is defined as  

0
( ) ( )

k

w
r k

F p r kmθ
∞

= =−∞

 
= + 

 
∑ ∑  
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Wrapped Poisson Distribution 
 
Suppose if θ  is a wrapped discrete circular random variable then the probability mass function of θ is denoted by 







 =

m
rpr πθ 2

 which is defined as  

∑
∞

−∞=

+=





 =

k
kmrp

m
rpr )(2πθ  0,1, 2,3,..., 1r m= −  and m +∈  

Where ( )p x  is a probability of x  
 
Suppose if X  follows Poisson distribution with mean 0λ > then the probability mass function of the wrapped Poisson 
distribution is defined as 

∑
∞

=

+=





 =

0
)(2

k
kmrp

m
rpr πθ   

 
Now the distribution function of the wrapped Poisson distribution is defined as

2

0
( ) ...........

! ( )! ( 2 )!

r r m r mk

w
r

F e
r r m r m

λ λ λ λθ
+ +

−

=

 
= + + + + + 

∑
 
where 0λ > , m  are parameters 

 
Graph of the probability mass function of the Wrapped Poisson distribution  
 

 
Characteristic Function of Wrapped Poisson Distribution 
 
Since X follows Poisson distribution with mean λ then it is well known that the characteristic function of the Poisson 
distribution is defined as 

)1()(
ite

X et −−= λφ   where t  is a real number 
 
But at a integer p  the characteristic function of a unwrapped distribution ( )X pφ  is equal to characteristic function of 

a wrapped distribution pϕ  . More precisely if ( )G θΦ and  ( )XF x are distribution functions of Φ  and X . Then 

( )
2

0
( )ip

p e d G
π

θφ θΦ= ∫  

      = ( )
2 ( 1)

2
( )

k
ip

X
k k

e d F
π

θ

π
θ

+∞

=−∞
∑ ∫  

     
( )( )ipx

Xe d F x
∞

−∞
= ∫  
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( )X pφ=

 
 
 
∴ ( )p X pϕ φ=  

⇒

21 ipe
m

p e
πλ

ϕ
 − − 
 =  

pϕ  is also called thp trigonometric moment of θ . 
 
Clearly   

(e ) piip
p pE e µθϕ ρ= =  

      p piα β= +  

21 ipe
me
πλ − − 

 =  

     

2 ipe
me
πλ λ− +

=
2

.
ipe

me e
πλλ−=  

     

2 2cos sin
.

p pi
m me e
π πλ

λ
 + −  =  

     

2 2cos sin
. .

p pi
m me e e
π πλ λλ−=  

 
21 cos 2 2cos sin sin sin

p
m

p
p pe i

m m

πλ π πϕ λ λ
 − −       = +        

 

 

where 
21 cos 2cos sin

p
m

p
pe

m

πλ πα λ
 − − 
   =  

 
 

              

21 cos 2sin sin
p

m
p

pe
m

πλ πβ λ
 − − 
   =  

 
 

 
Here pα , pβ  are called  thp  trigonometric moments 
 

Clearly 
21 cos

2 2
p

m
p p p e

πλ
ρ α β

 − − 
 = + =  

 

and 1tan p
p

p

β
µ

α
−

 
=   

 
 

 = 













−

m
pπλ 2sintantan 1   

       m
p

p
πλµ 2sin=  

 
Now the circular mean direction is defined as 

m
πλµ 2sin1 =  

If   1µ  is denoted by µ  then 
m
πλµ 2sin=  

 
where λ  is a parameter and 1ρ  represents concentration towards mean direction which is defined as 







 −−

= me
πλ

ρ
2cos1

1  
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If 1ρ  is denoted by ρ  then 
21 cos

, (0 1)me
πλ

ρ ρ
 − − 
 = ≤ ≤  

 
Now the circular variances is denoted by 0V  and it is defined as 

0 1V ρ= −  
21 cos

0V 1 me
πλ − − 

 = −  
 
and standard deviation is denoted by 0σ  and it is defined as 

)v1log(2 00 −−=σ  

      










+−−=







 −−

me
πλ 2cos1

11log2  

      










−=







 −−

me
πλ 2cos1

log2
 

0
22 1 cos
m
πσ λ  = − 

 
 

 
Central Trigonometric Moments 
 
The thp central trigonometric moment of θ  is defined as

 
( )ip

p E e θ µϕ∗ − =    

      
.ip ipE e eθ µ− =    

      
ip ipe E eµ θ− − =    

      

21 cos 2 2cos sin sin
p

ip m p pe e i
m m

πλ
µ π πλ λ

 − − −       = +        
 

      

21 cos
cos sin

p
ip m

p pe e i
πλ

µ µ µ
 − − −    = +   

      

21 cos
. P

p
iip me e e

πλ
µµ

 − − −  =  

      

21 cos ( )p

p
i pme e

πλ µ µ
 − −  − =  

      

21 cos
cos( ) sin( )

p
m

p pe p i p
πλ

µ µ µ µ
 − − 
   = − + −   

 

Where 
21 cos

* cos( )
p

m
p pe p

πλ
α µ µ

 − − 
 = −  

           

21 cos
* sin( )

p
m

p pe p
πλ

β µ µ
 − − 
 = −

 
Which are called  thp  central trigonometric moments.  Now the circular skewness for wrapped Poisson distribution is 

denoted by  1γ  and it is defined as 

41 cos

2 2
1 3 3

22 21 cos0

* sin( 2 )

1

m

m

e

v
e

πλ

πλ

β µ µγ

 − − 
 

 − − 
 

−
= =

 
− 

  

 and circular kurtosis for wrapped  
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Poisson distribution is denoted by 2γ  and it is defined as 

4
2 0

2 2
0

* (1 )v
v

αγ − −
=  

     

4 21 cos 4 1 cos

2
221 cos

cos( 2 )

1

m m

m

e e

e

π πλ λ

πλ

µ µ
   − − − −   
   

 − − 
 

− −
=

 
− 

  
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