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ABSTRACT 
In this paper, we made an attempt to study thermo-diffusion effect on non-darcy convective heat and mass transfer flow 
of a viscous fluid through a porous medium in a vertical channel with radiation and heat generating sources. The 
governing equations of flow, heat and mass transfer are solved by using regular perturbation method with δ, the 
porosity parameter as a perturbation parameter. The velocity, temperature, concentration, shear stress and rate of 
Heat and Mass transfer are evaluated numerically for different variations of parameters. 
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1. INTRODUCTION 
 
The phenomenon of heat and mass transfer has been the object of extensive research due to its applications in Science 
and Technology.  Such phenomena are observed in buoyancy induced motions in the atmosphere, in bodies of water, 
quasi solid bodies such as earth and so on. 
 
Non–Darcy effects on natural convection in porous media have received a great deal of attention in recent years 
because of the experiments conducted with several combinations of solids and fluids covering wide ranges of 
governing parameters which indicate that the experimental data for systems other than glass water at low Rayleigh 
numbers, do not agree with theoretical predictions based on the Darcy flow model.  This divergence in the heat transfer 
results has been reviewed in detail in Cheng (5) and Prasad et al. (16) among others. Extensive effects are thus being 
made to include the inertia and viscous diffusion terms in the flow equations and to examine their effects in order to 
develop a reasonable accurate mathematical model for convective transport in porous media. 
 
The Brinkman – Extended – Darcy modal was considered in Tong and Subramanian (20), and Lauriat and Prasad (23) 
to examine the boundary effects on free convection in a vertical cavity. A numerical study based on the Forchheimer-
Brinkman-Extended Darcy equation of motion has also been reported recently by Beckerman et al (3). 
 
Also in all the above studies the thermal diffusion effect (known as Soret effect) has been neglected. This assumption is 
true when the concentration level is very low. The thermal diffusion effects for instance has been utilized for isotropic 
separation and in mixtures between gases with very light molecular weight (H2, He) and the medium molecular weight 
(N2, air) the diffusion – thermo effects was found to be of a magnitude just it can not be neglected (6). In view of the 
importance of this diffusion – thermo effect, recently Jha and Singh (7) studied the free convection and mass transfer 
flow in an infinite vertical plate moving impulsively in its own plane taking into account the Soret effect.  Kafousias (8) 
studied the MHD free convection and mass transfer flow taking into account Soret effect.  The analytical studies of Jha 
and singh (7) and Kafousias (8) were based on Laplace transform technique. Abdul Sattar and Alam(1) have considered 
an unsteady convection and mass transfer flow of viscous incompressible and electrically conducting fluid past a 
moving infinite vertical porous plate taking into the thermal diffusion effects. Similarity equations of the momentum 
energy and concentration equations are derived by introducing a time dependent length scale. Malsetty et al (12) have 
studied the effect of both the soret coefficient and Dufour coefficient on the double diffusive convective with 
compensating horizontal thermal and solutal gradients. 
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2. FORMULATION OF THE PROBLEM 
 
We consider a fully developed laminar convective heat and mass transfer flow of a viscous fluid through a porous 

medium confined in a vertical channel bounded by flat walls. We choose a 
Cartesian co-ordinate system O(x, y, z) with x- axis in the vertical direction 
and y-axis normal to the walls. The walls are taken at y= ± 1.The walls are 
maintained at constant temperature and concentration. The temperature 
gradient in the flow field is sufficient to cause natural convection in the flow 
field. A constant axial pressure gradient is also imposed so that this resultant 
flow is a mixed convection flow. The porous medium is assumed to be 
isotropic and homogeneous with constant porosity and effective thermal 
diffusivity. The thermo physical properties of porous matrix are also 
assumed to be constant and Boussinesq approximation is invoked by 
confining the density variation to the buoyancy term. In the absence of any 
extraneous force the flow is unidirectional along the x-axis which is assumed 
to be infinite.  
 
The Brinkman-Forchheimer-extended Darcy equation which account for 

boundary inertia effects in the momentum equation is used to obtain the velocity field. Based on the above assumptions 
the governing equations in the vector form are  
 

. 0 ( )q Equation of continuity∇ =                                                                          (2.1) 
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where q = (u,0,0) is the velocity, T is the temperature and C is the Concentration, p is the pressure, ρ is the density of 
the fluid, Cp is the specific heat at constant pressure, µ is the coefficient of viscosity, k is the permeability of  the 
porous medium, δ is the porosity of the medium, β is the coefficient of thermal expansion, λ is the coefficient of 
thermal conductivity, F is a function that depends on the Reynolds number and the microstructure of porous medium, 

•β  is the volumetric coefficient of expansion with mass fraction concentration, k11 is  the cross diffusivity and D1 is 
the chemical molecular diffusivity and Q is the strength of the heat generating source. Here, the thermophysical 
properties of the solid and fluid have been assumed to be constant except for the density variation in the body force 
term (Boussinesq approximation) and the solid particles and the fluid are considered to be in the thermal equilibrium. 
 
Since the flow is unidirectional, the continuity of equation (2.1) reduces to  
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x
u

, where u is the axial velocity implies u = u(y) 

 
The momentum, energy and diffusion equations in the scalar form reduces to  
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The boundary conditions are  

1 1

2 2

0,
0,

u T T C C on y L
u T T C C on y L
= = = = −
= = = = +

                                                                    (2.9) 

 

The axial temperature and concentration gradients 
x
T
∂
∂

&
x
C
∂
∂

 are assumed to be constants say A &B respectively. 

 
Invoking Rosseland approximation for radiation flux we get 

y
Tq

R
r ∂

′∂
−=

• )(4 4

β
σ

                                                                         (2.10) 

and linearising 4T ′ about Te by using Taylor’s expansion and neglecting higher order terms we get 
434 34 ee TTTT −≅′                                                                          (2.11) 

 
Where σ* is the Stefan-Boltzman constant and βR is the mean absorption coefficient. 
 
We define the following non-dimensional variables as  
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Introducing these non-dimensional variables the governing equations in the dimensionless form reduce to (on dropping 
the dashes) 
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where 2/1−=Α FD    (Inertia or Fochhemeir parameter) 
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3. SOLUTION OF THE PROBLEM 
 
The governing equations of flow, heat and mass transfer are coupled non-linear differential equations. Assuming the 
porosity δ to be small we write 

.............2
2
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2
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2
0 1 2 ..........C C C Cδ δ= + + +                                                                          (3.1) 
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Substituting the above expansions in the equations (2.13)-(2.15) and equating like powers of δ, we obtain equations to 
the zeroth order as 
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The equations to the first order are 
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The equations to the second order are 
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The corresponding conditions are   

0 0 0 0 0 0(1) ( 1) 0, ( 1) , ( 1) 1, ( 1) , ( 1) 1u u m C n Cθ θ= − = + = − = + = − =                                                         (3.11)  
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2 2 2 2 2 2(1) ( 1) 0, ( 1) 0, ( 1) 0, ( 1) 0, ( 1) 0u u C Cθ θ= − = + = − = + = − =                                                 (3.13) 
 
Solving the equations (3.2)-(3.10) subject to the boundary conditions (3.11)-(3.13) we get 
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SHEAR STRESS, NUSSELT NUMBER AND SHERWOOD NUMBER 
 
The shear stress on the boundaries 1y = ±  is given by 
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The rate of heat transfer (Nusselt Number) is given by 
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5.  DISCUSSION OF THE NUMERICAL RESULTS 
 
The primary aim of this analysis is to investigate the effect of Thermo-diffusion, radiation and dissipation on the Non-
Darcy convective heat and mass transfer in a vertical channel in the presence of heat generating sources. The velocity 
and temperature are discussed for different values of N, α, S0, N1, Ec. 
 
Fig. (1) represents when the molecular buoyancy force dominates over the thermal buoyancy force |u| depreciates when 
the buoyancy forces act in the same direction and for the forces acting in opposite directions |u| enhances everywhere in 
the region. 
 
The effect of thermo-diffusion on u is shown in fig. 2. It is found that |u| enhances with increase in S0 > 0 and reduces 
with |S0|. 
 
An increase in the strength of the heat source results in a depreciation in |u| in the entire flow region (fig. 3). With 
reference to radiation parameter N1 it is found that the magnitude of u reduces with increase in N1 ≤ 2.5 and enhances 
with higher N1 ≥ 5 (fig. 4). 
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Fig.  - 1: Variation of u with N    Fig. -  2: Variation of u with S0 
     α = 2, Sc = 1.30, S0 = 0.50, N1 = 1.50 Ec = 0.01  α = 2, Sc = 1.30, N = 1.00, N1 = 1.50 Ec = 0.01 
 I II III IV    I II III IV  
N 1 2 -0.50 -0.80   S0 0.50 1.00 -0.50 -1.00   

 
 
 
 
 
 
 

 
  
 
 
 
 
 

Fig.  - 3: Variation of u with α                                                    Fig.  - 4: Variation of u with N1 
Sc = 1.30, S0 = 0.50, N = 1.00, N1 = 1.50 Ec = 0.01    α = 2, Sc = 1.30, S0 = 0.50, N = 1.00, Ec = 0.01 
 I II III IV     I  II III IV V 
α 2 4 6 10              N1         1.50       2.50      5.00     10.00   100.00  
  
           
 
 

  
 
 
 
 
 
 
 
 

                                                                     Fig. - 5: Variation of u with Ec 
                                                      α = 2, Sc = 1.30, S0 = 0.50, N = 1.00, N1 = 1.50  
                                                               I II III IV 
                                                      Ec 0.01 0.03 0.05 0.07 
 
The stress at y = ±1 is shown in tables 1-3 for different values of G, D-1, Sc, S0, N, N1 and Sc. It is found that the stress 
at y = ±1 enhances with increase in |G| and D-1 and depreciates with Sc. Thus lesser the permeability of the porous 
medium larger the stress, also lesser the molecular diffusivity smaller the stress at y = ±1. Also the stress depreciates 
with increase in S0 > 0 and enhances with |S0| at y = ±1 (table.1). 
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Table - 1: Shear stress (τ) at y = +1 

 
G I II III IV V VI VII VIII IX 

103 2.8099 3.7069 4.2791 4.2582 3.7663 1.8398 1.0337 6.3623 8.1764 
3x103 10.4297 13.1209 14.8373 14.7745 13.2989 7.5195 5.1011 21.0868 26.4154 
-103 -4.8099 -5.7069 -6.2791 -6.2582 -5.7663 -3.8398 -3.0337 -8.3623 -10.1385 

-3x103 -12.4297 -15.1209 -16.8373 -16.7745 -15.2989 -9.5195 -7.1011 -23.0868 -28.4154 
D-1 102 3x102 5x102 102 102 102 102 102 102 
Sc 1.3 1.3 1.3 0.24 0.6 2.01 1.3 1.3 1.3 
S0 0.5 0.5 0.5 0.5 0.5 0.5 1 -0.5 -1 

 
The variation of τ with buoyancy ratio N shows that when the molecular buoyancy force dominates over the thermal 
buoyancy force the stress depreciates when the buoyancy forces act in the same direction and for the forces acting in 
opposite directions, it enhances at both the walls. With reference to radiation parameter we find an increasing tendency 
with increase in N1 (table. 2). The variation of τ with Ec shows that higher the dissipative effects smaller |τ| at y = ±1 
(table. 3).     

Table - 2: Shear stress (τ) at y = +1 
 

G I II III IV V VI VII 
103 2.8099 2.2509 3.6484 3.8161 2.8814 4.0145 6.7684 

3x103 10.4297 8.7527 12.9452 13.4483 10.6442 14.0435 22.3053 
-103 -4.8099 -4.2509 -5.6484 -5.8161 -4.8814 -6.0145 -8.7684 

-3x103 -12.4297 -10.7527 -14.9452 -15.4483 -12.6442 -16.0435 -24.3054 
N 1 2 -0.5 -0.8 1 1 1 
N1 1.5 1.5 1.5 1.5 2.5 5 10 

 
Table - 3: Shear stress (τ) at y = +1 

 
G I II III IV 

103 2.8099 2.7422 2.3359 1.9974 
3x103 10.4297 10.2266 9.0078 7.9922 
-103 -4.8099 -4.7422 -4.3359 -3.9974 

-3x103 -12.4297 -12.2266 -11.0078 -9.9922 
Ec 0.005 0.01 0.03 0.05 

 
Table - 4: Shear stress (τ) at y = -1 

 
G I II III IV V VI VII VIII IX 

103 -2.2148 -3.3221 -4.1842 -2.5033 -2.4054 -2.0216 -1.8609 -2.9225 -3.2764 
3x103 -8.6448 -11.9663 -14.5526 -9.5101 -9.2161 -8.0647 -7.5829 -10.7675 -21.8291 
-103 4.2148 5.3221 6.1842 4.5033 4.4054 4.0215 3.8609 4.9225 5.2763 

-3x103 10.6445 13.9663 16.5526 11.5101 11.2161 10.0647 9.5829 12.7675 13.8291 
D-1 102 3x102 5x102 102 102 102 102 102 102 
Sc 1.3 1.3 1.3 0.24 0.6 2.01 1.3 1.3 1.3 
S0 0.5 0.5 0.5 0.5 0.5 0.5 1 -0.5 -1 

 
Table - 5: Shear stress (τ) at y = -1 

 
G I X XI XII XIII XIV XV 

103 -2.2148 -1.6558 -3.0533 -3.2211 -2.1607 -2.9728 -5.0984 
3x103 -8.6448 -6.9675 -11.1599 -11.6631 -8.4821 -10.9183 -17.2954 
-103 4.2148 3.6558 5.0533 5.2211 4.1607 4.9728 7.0984 

-3x103 10.6445 8.9675 13.1599 13.6631 10.4821 12.9183 19.2954 
N 1 2 -0.5 -0.8 1 1 1 
N1 1.5 1.5 1.5 1.5 2.5 5 10 
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The Nusselt number (Nu) at y = ±1 is shown in tables 4-6 for different parametric values. It is found that the rate of 
heat transfer depreciates at y = +1 and enhances at y = -1 with G>0 and a reversed effect is noticed with increase in 
|G|. The variation of Nu with Darcy parameter D-1 shows that lesser the permeability of the porous medium smaller 
Nu in the heating case and enhances in the cooling case at y = ±1. With reference to Sc we find that lesser the 
molecular diffusivity larger |Nu| at y = +1 and reduces at y = -1. The variation of Nu with Soret parameter S0 shows 
that higher the thermo-diffusion effects smaller |Nu| at both the walls (table. 4). When the molecular buoyancy force 
dominates over the thermal buoyancy force the rate of heat transfer enhances for G>0 and reduces for G<0 when the 
buoyancy forces act in the same direction and for the forces acting in opposite directions |Nu| depreciates in the 
heating case and enhances in the cooling case at both the walls. An increase in N1 shows that higher the radiative heat 
flux larger the rate of heat transfer at y = ±1 (table 5).  
 
From table 6 we find that higher the dissipative effects smaller the Nusselt number at both the walls. 

 
Table - 6: Shear stress (τ) at y = -1 

 
G I II III IV 

103 -2.2148 -2.1576 -1.8642 -1.5279 
3x103 -8.6448 -8.4727 -7.4425 -6.5839 
-103 4.2148 4.1576 3.8142 3.5279 

-3x103 10.6445 10.4728 9.4425 .5839 
Ec 0.005 0.01 0.03 0.05 

 
The Sherwood number (Sh) which measures the rate of mass transfer at y = ±1 is shown in tables 7-9 for different 
parametric values. It is found that the rate of mass transfer enhances with increase in |G| and D-1 at both the walls. Also 
an in increase in S0 results in a depreciation in |Sh| at y = ±1. The effect of thermo- diffusion an Sh is shown in table. 7. 
It is found that an increase in S0 > 0 reduces |Sh| at y = +1 and enhances at y = -1 while it enhances with |S0| at y = ±1. 
The variation of Nu with buoyancy ratio N shows that the rate of mass transfer reduces at y = +1 and enhances the mass 
transfer at y = -1when the buoyancy forces act in the same direction and for the forces acting in opposite directions, it 
enhances at  y = +1 and reduces at y = -1 for all G.  

 
Table - 7: Nusselt number (Nu) at y = +1 

 
G I II III IV V VI VII VIII IX 

103 0.2379 0.2344 0.2275 0.2361 0.2367 0.2391 0.2401 0.2335 0.2314 
3x103 0.2328 0.2239 0.2062 0.2275 0.2293 0.23637 0.2393 0.2197 0.2131 
-103 0.2430 0.2449 0.2487 0.2448 0.2442 0.2418 0.2408 0.2474 0.2496 

-3x103 0.2481 0.2554 0.2701 0.2535 0.2517 0.2445 0.2416 0.2612 0.2678 
D-1 102 3x102 5x102 102 102 102 102 102 102 
Sc 1.3 1.3 1.3 0.24 0.6 2.01 1.3 1.3 1.3 
S0 0.5 0.5 0.5 0.5 0.5 0.5 1 -0.5 -1 

 
Table - 8: Nusselt number (Nu) at y = +1 

 
G I II III IV V VI VII 

103 0.2379 0.2386 0.2367 0.2365 0.7601 1.9417 4.1972 
3x103 0.2328 0.2351 0.2294 0.2287 0.7556 1.9368 4.1904 
-103 0.2430 0.2423 0.2442 0.2443 0.7645 1.9466 4.2039 

-3x103 0.2481 0.2458 0.2515 0.2522 0.7689 1.9515 4.2108 
N 1 2 -0.5 -0.8 1 1 1 
N1 1.5 1.5 1.5 1.5 2.5 5 10 

 
Table - 9: Nusselt number (Nu) at y = +1 

 
G I II III IV 

103 0.2379 0.2243 0.1946 0.1709 
3x103 0.2328 0.1999 0.1306 0.0794 
-103 0.2430 0.2487 0.2586 0.2625 

-3x103 0.2481 0.2730 0.3225 0.3541 
Ec 0.005 0.01 0.03 0.05 
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