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ABSTRACT 
A.Pushpalatha and K.Anitha introduced properties of g*s-closed sets in topological space. In this paper, we introduced 
g*s-irresolute maps, g*s-hausdorff spaces, g*s-homeomorphism and study their basic properties in topological spaces. 
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1. INTRODUCTION 
 
In 1970, Levine [8] first considered the concept of generalized closed (briefly g-closed) sets were defined and 
investigated. Arya and Nour [1] defined generalized semi open sets (briefly gs-open) using semi open sets. In 1987, 
Bhattacharyya and Lehiri [2] introduced the class of semi-generalized closed sets (briefly sg-closed). A.Pushpalatha 
and K.Anitha [10, 11] introduces properties of g*s-closed sets in topological space. 
 
The notion homeomorphism plays a very important role in topology. In this paper, we introduce a new class of 
irresolute map called g*s-irresolute map and then we study g*s-hausdorff, g*s-homeomorphism and g*sc-
homeomorphism. 
 
2. PRELIMINARIES 
 
Throughout this paper we shall denote by(X, τ) a topological space. For any subset A ⊆ X, int(A) and cl(A) denote the 
interior of A and the closure of A with respect to τ. 
 
We shall require the following known definitions. 
 
Definition: 2.1[9] Let(X, τ) be a topological spaces. A subset A of X is called semi-open if A⊆ cl (int (A)) and semi-
closed if int (cl (A)) ⊆A. The intersection of all semi closed sets containing A is called the semi closure of A, denoted 
by scl (A). The union of all semi open sets contained in A is called the semi interior of A, denoted by sint (A). 
 
Definition: 2.2[10] Let (X, τ) be a topological space. A subset A of X is called gs- closed if scl (A) ⊆U whenever A⊆U 
and U is open in (X, τ). 
 
Result: 2.3[9] The complement of gs-closed set is gs-open. 
 
Definition: 2.4[10] Let (X, τ) be a topological space. A subset A of X is called g*s-closed if scl (A) ⊆U whenever 
A⊆U and U is gs-open in (X, τ). The complement of g*s-closed set is g*s-open. 
 
Result: 2.5[10] Every closed set is g*s-closed. 
 
Definition: 2.6 [10] A map f: X→Y is called g*s-open map if f(U) is g*s-open in y for every open set U in X. Every 
open map is g*s-open map. A map f: X→Y is called g*s-closed map if for each closed set F in X, f(F) is a g*s- closed 
set in Y. 
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Theorem: 2.7 [13] For any bijection f: (X, τ) →(Y, σ) the following are equivalent. 
(i)    f-1: (Y, σ) →(X, τ) is g*s-continuous. 
(ii)   f is a g*s-open map 
(iii)  f  is a g*s-closed map. 
 
Definition: 2.8 [11] A map f: X→Y from a topological space X into a topological space Y is called g*s-continuous if 
the inverse image of every closed set in Y is g*s-closed in X. 
 
Result: 2.9[11] Every continuous map is g*s-continuous and g*s- continuous map is gs-continuous. 
 
Definition: 2.10 [11] A map f: X→Y is said to be strongly g*s-continuous if the inverse image of every g*s- open set 
in Y is open in X. 
 
Definition: 2.11[11] A topological space X is g*s-compact if every g*s-open cover of X has a finite sub cover of X. 
 
Definition: 2.12 [11] A subset B of a topological space X is called g*s-compact relative to X, if for every collection 
{Ai: i ϵI} of g*s-open subsets of X such that B⊆∪i ϵ I Ai, there exist a finite subset Io of I such that B⊆∪i ϵ Io Ai 
 
Definition: 2.13[12] A topological space X is called a g*s-connected if X cannot be written as a disjoint union of two 
non-empty g*s-open sets. 
 
Definition: 2.14 [9] A space X is said to be Hausdorff if whenever x and y are distinct points of X, there exist disjoint 
open sets U and V such that x ϵ U and y ϵ V. 
 
Definition: 2.15[4] A bijection f: (X, τ) →(Y, σ) is called a homeomorphism if f is both continuous and open. 
 
Definition: 2.16[4] A bijection f: (X, τ) →(Y, σ) is called a gs- homeomorphism if f is both gs-continuous and gs-open.  
 
3. g*s-irresolute maps in topological spaces 
 
In this section we introduce the concepts of g*s-irresolute maps in topological spaces. 
 
Definition: 3.1 A map f: (X, τ) → (Y, σ) is called g*s -irresolute if the inverse image of every g*s-closed set in Y is 
g*s-closed in X. 
 
Theorem: 3.2 A map f:  X → Y is g*s-irresolute if and only if for every g*s-open A of Y, f -1(A) is g*s-open in X. 
 
Proof: Necessity: If f: X→Y is g*s-irresolute, then for every g*s-closed B of Y, f -1(B) is g*s-closed in X. If A is any 
g*s-open subset of Y, then Ac is g*s-closed. Thus f-1(Ac) is g*s-closed, but f -1(Ac) = (f -1(A))c so that f -1(A) is g*s-open 
in X. 
 
Sufficiency: If for all g*s-open subsets A of Y, f -1(A) is g*s-open in X and if B is any g*s-closed subset of Y, then Bc 
is g*s-open. Also f -1(Bc) = (f -1(B))c  is g*s-open in X. Thus f -1(B) is g*s-closed in X. Hence f is g*s-irresolute. 
 
Theorem: 3.3 If a map f: X→Y is g*s-irresolute, then it is g*s-continuous.  
 
Proof: Let A be a closed set in Y. Since every closed set is g*s-closed, A is g*s-closed in Y. Since f is g*s-irresolute,  
f -1(A) is g*s-closed in X. Hence f is g*s-continuous. 
 
Remark: 3.4 The converse need not be true as seen from the following example. 
 
Example: 3.5 Let X =Y = {a, b, c}, τ = { 𝜙𝜙, X, {a}, {c}, {a, c}} and σ = { 𝜙𝜙, Y, {a}}.Let f: (X, τ) → (Y, σ) be defined 
by f (a) =f (c) = b and f (b) = c. Then f is g*s-continuous. However, {b} g*s-closed in Y but f -1({b}) = {a, c} is not 
g*s-closed in X. Therefore, f is not g*s-irresolute. 
 
Theorem: 3.6 If f: X → Y and g: Y → Z are both g*s-irresolute, then g ∘ f: X→Z is g*s-irresolute. 
 
Proof: Let A be a g*s-open subset of Z. Since g is g*s-irresolute, g -1(A) is g*s-open in Y. Since f is g*s-irresolute,  
f -1(g -1(A)) is g*s-open in X. Thus (g ∘ f)-1(A) = f -1(g-1(A)) is g*s-open in X. Hence g∘f is g*s-iresolute. 
 
Theorem: 3.7 Let X, Y and Z be any topological spaces. For any g*s-irresolute map f: X→Y and any g*s -continuous 
map g: Y→Z, the composition g∘f: X→ Z is g*s-continuous. 
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Proof: Let F be a closed set in Z. Since g is g*s-continuous, g -1(F) is g*s-closed in Y. Since f is g*s-irresolute,  
f -1(g -1(F)) is g*s-closed in X. Thus (g∘f)-1(F) =f -1(g-1(F)) is g*s-closed in X. Hence g∘f is g*s-continuous. 
 
Theorem: 3.8 If a map f: X→Y is g*s-irresolute and a subset B of X is g*s-compact relative to X, then the image f (B) 
is g*s-compact relative to Y. 
 
Proof: Let {Ai: i 𝜖𝜖 I} be any collection of g*s-open subsets of Y such that f (B) ⊂ ∪{Ai : i 𝜖𝜖I}. Then B ⊂ ∪ {f -1(Ai) : 
i 𝜖𝜖I} holds. By hypothesis there exists a finite subset Io of I such that B ⊂ ∪{f-1(Ai): i 𝜖𝜖Io}. Therefore we have f (B)⊂
∪{Ai : i 𝜖𝜖Io} which shows that f(B) is g*s-compact relative to Y. 
 
Theorem: 3.9 If f: X→Y is g*s-irresolute surjection and X is g*s-connected, then Y is g*s-connected. 
 
Proof: Suppose Y is not g*s-connected. Let Y=A∪B where A and B are disjoint non-empty g*s-open set in Y. Since f 
is g*s-irresolute and onto, X=f -1(A) ∪f -1(B) where f -1(A) and f -1(B) are disjoint non-empty and g*s-open in X. This 
contradicts the fact that X is g*s-connected. Hence Y is g*s-connected. 
 
4. g*s-Hausdorff in topological spaces 
 
In this section we have introduce the concept of g*s-Hausdorff in topological spaces. 
 
Definition: 4.1 A space X is said to be g*s-Hausdorff if whenever x and y are distinct points of X, there exist disjoint 
g*s-open sets U and V such that x ϵ U and y ϵ V. 
 
Theorem: 4.2 Let X be a space and Y be Hausdorff. If f: X→Y is g*s-continuous injective, then X is g*s-Hausdorff. 
 
Proof: Let x and y be any two distinct points of X. Then f(x) and f(y) are distinct points of Y, because f is injective. 
Since Y is Hausdorff, there are disjoint open sets U and V in Y containing f(x) and f(y), respectively. Since f is g*s-
continuous and U∩V=∅, we have f -1(U) and f -1(V) are disjoint g*s-open sets in X such that x ϵ f -1(U) and y ϵ f -1(V). 
Hence X is g*s-Hausdorff. 
 
Theorem: 4.3 Let X be a space and Y be g*s- Hausdorff. If f: X→Y is g*s -irresolute injective, then X is g*s-
Hausdorff. 
 
Proof: Let x and y be any two distinct points of X. Then f(x) and f(y) are distinct points of Y, because f is injective. 
Since Y is g*s-Hausdorff, there are disjoint g*s-open sets U and V in Y containing f(x) and f(y), respectively. Since f is 
g*s-irresolute and U∩V=∅, we have f -1(U) and f -1(V) are disjoint g*s-open sets in X such that x ϵ f -1(U) and y ϵ f -1(V).  
Hence X is g*s-Hausdorff. 
 
Theorem: 4.4 Let X be a space and Y be g*s-Hausdorff. If f: X→Y is strongly g*s-continuous injective, then X is 
Hausdorff. 
 
Proof: Let x and y be any two distinct points of X. Then f(x) and f(y) are distinct points of Y, because f is injective. 
Since Y is g*s-Hausdorff, there are disjoint g*s-open sets U and V in Y containing f(x) and f(y), respectively. Since f is 
strongly g*s-continuous and U∩V=∅, we have f -1(U) and f -1(V) are disjoint open sets in X such that x ϵ f -1(U) and       
y ϵ f-1(V). Hence X is Hausdorff. 
 
5. g*s – Homeomorphism in topological spaces 
 
In this section, we introduce and study two new homeomorphisms namely g*s-homeomorphism, g*sc-homeomorphism 
and prove that the set of all g*s-homeomorphism forms a group under the operation of composition of maps. 
 
Definition: 5.1 A bijection f: (X, τ) → (Y, σ) is called a g*s-homeomorphism if f is both g*s-open and g*s-continuous. 
We denote the family of all g*s-homeomorphisms of a topological space (X, τ) onto itself by g*s-h(X, τ). 
 
Theorem: 5.2 Every homeomorphism is a g*s-homeomorphism. 
 
Proof: Let f (X, τ) → (Y, σ) be a homeomorphism. To prove that f is g*s-homeomorphism. Since f is homeomorphism, 
f is bijection and also f is both open and continuous. Since every open map is g*s-open and every continuous map is 
g*s-continuous, f is bijection, g*s-open and g*s- continuous. Hence f is g*s-homeomorphism. 
 
Remark: 5.3 The converse of the above theorem5.2 need not be true as seen from the following example. 
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Example: 5.4 Consider X = Y = {a, b, c}, τ = { 𝜙𝜙, X, {a, b}}, σ = { 𝜙𝜙, Y, {a}}. Let f: (X, τ) → (Y, σ) be a n identity 
map. Then f is g*s-homeomorphism but not homeomorphism. Since {a, b} is open in (X, τ) but the image is not open 
in (Y, σ). 
 
Theorem: 5.5 Every g*s-homeomorphism is gs-homeomorphism. 
 
Proof: Let f: (X, τ) →  (Y, σ) be a g*s - homeomorphism. To prove that f is gs-homeomorphism. Since f is g*s-
homeomorphism, f is bijection and also f is both g*s-open and g*s-continuous. Since every g*s-open map is gs-open 
and every g*s-continuous map is gs-continuous, we have f is gs-open, gs- continuous and bijection. Hence f is           
gs-homeomorphism. 
 
Remark: 5.6 The converse of the above theorem need not be true as seen from the following example. 
 
Example: 5.7 Consider X = Y = {a, b, c}, τ = { 𝜙𝜙, X, {a}}, σ = { 𝜙𝜙, Y, {a}, {c}, {a, c}}. Let f: (X, τ) → (Y, σ) be an 
identity map. Then f is gs-homeomorphism but not g*s-homeomorphism. Since {a, b} is closed in (Y, σ) but f -1({a, b}) 
= {a, b} is not g*s-closed in (X, τ). 
 
Theorem: 5.8 Let f: (X, τ) → (Y, σ) be a bijective and g*s- continuous map, then the following are equivalent. 
(i)    f is g*s-open map. 
(ii)   f is g*s-homeomorphism. 
(iii)  f is g*s-closed map. 
 
Proof:  
(i) ⟹ (ii): Suppose that f is g*s-open map. To prove that f is g*s-homeomorphism. By hypothesis, f is bijective and 
g*s-continuous map. By definition of g*s-homeomorphism, f is g*s-homeomorphism. 
 
(ii)  ⟹ (𝐢𝐢𝐢𝐢𝐢𝐢):  Suppose that f is g*s- homeomorphism. To prove that f is g*s- closed map. Since f is g*s-
homeomorphism, f is bijective and also f is g*s-open and g*s-continuous. Let F be a closed set of (X, τ). Then Fc is 
open set in (X, τ). Since f is g*s-open map, f (Fc) is g*s- open in (Y, σ). f (Fc) = (f(F))c is g*s-open set in (Y, σ). Thus  
f (F) is g*s-closed set in (Y, σ). Hence f is g*s-closed map. 
 
(iii) ⟹ (i): Suppose that f is g*s- closed map. To prove that f is g*s- open map. Let A be a closed set in (X, τ). Since f 
is g*s-closed map, f (A) is g*s-closed set in (Y, σ). f (A) = (f -1)-1(A) is g*s-closed set in (Y, σ). Which implies f -1 is 
g*s-continuous on (Y, σ).By theorem 2.7, f is g*s-open map. 
 
Remark: 5.9 The composition of two g*s-homeomorphism need not be g*s-homeomorphism in general as seen from 
the following example. Consider X = Y = Z = {a, b, c}, τ = { 𝜙𝜙, X, {a}, {b}, {a, b}}, σ = { 𝜙𝜙, Y,{a, b}} and 𝜂𝜂 = {𝜙𝜙, Z, 
{a}}. Let f: (X, τ) → (Y, σ) and g: (Y, σ) → (Z,𝜂𝜂) be the identity maps. Then both f and g are g*s-homeomorphism but 
their composition g ∘ f: (X, τ) → (Z,𝜂𝜂) is not g*s-homeomorphism. Because for the open set {b} of (X, τ), g ∘ f ({b}) = 
g (f ({b})) = g ({b}) = {b} which is not g*s-open in (Z, 𝜂𝜂). 
 
Definition: 5.10 A bijection f: (X, τ) → (Y, σ) is said to be g*sc - homeomorphism if both f and f -1 are g*s-irresolute. 
We denote the family of all g*sc-homeomorphism of a topological space (X, τ) onto itself by g*sc-h(X, τ). 
 
Theorem: 5.11 Every g*sc-homeomorphism is g*s-homeomorphism. 
 
Proof: Let f: (X, τ) → (Y, σ) be a g*sc- homeomorphism. To prove that f is g*s-homeomorphism. That is, to prove that 
f is bijective and also f is both g*s-open and g*s-continuous. Since f is g*sc-homeomorphism, f and f -1 are g*s-
irresolute and f is bijective. Now, let V be a closed set in (Y, σ).Since f is g*s-irresolute, f -1(V) is g*s-closed in (X, τ). 
Thus f is g*s-continuous. Since f -1 is g*s-irresolute, (f -1) -1 (V) is g*s-closed in (X, τ).Therefore f -1 is g*s-continuous. 
By theorem 2.7, f is g*s-open. Hence f is g*s-homeomorphism. 
 
Remark: 5.12 The converse of the above theorem need not be true as seen from the following example. 
 
Example: 5.13 Let X = Y = {a, b, c}, τ = { 𝜙𝜙, X, {a}}, σ = { 𝜙𝜙, Y, {a, b}}. Let f: (X, τ) → (Y, σ) be an identity map.  
Then f is g*s-homeomorphism but not g*sc-homeomorphism. Since f is not g*s-irresolute, the inverse image of {a, c} 
is not g*s-closed set in (X, τ).  
 
Theorem: 5.14 Let f: (X, τ) → (Y, σ) and g: (Y, σ) → (Z, 𝜂𝜂) are g*sc- homeomorphism. Then their composition g ∘ f: 
(X, τ) → (Z,𝜂𝜂) is also g*sc-homeomorphism. 
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Proof: Let U be a g*s-open set in (Z,𝜂𝜂). Since g is g*s-irresolute, g -1(U) is g*s-open in (Y, σ). Since f is g*s-irresolute, 
f -1(g -1(U)) = (g∘f) -1(U) is g*s-open in (X, τ).Therefore, g∘f is g*s-irresolute. Also for a g*s-open set G in (X, τ). We 
have (g∘f) (G) = g (f(G)) = g(W), where W = f(G). By hypothesis, f (G) is g*s-open in (Y, σ) and so again by 
hypothesis, g (f(G)) is g*s-open set in (Z,𝜂𝜂). (g∘f)(G) is g*s-open set in (Z,𝜂𝜂). (g∘f) -1 is g*s-irresolute and also g∘f is 
bijective. Hence g∘f is g*sc-homeomorphism. 
 
Remark: 5.15 The following diagram shows that the relationships between g*s-homeomorphism and other 
homeomorphism. 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
Note: 5.16 Let Γ be a collection of all topological spaces. We introduce a relation, say “≡ g*sc”, into the family Γ as 
follows: for two elements (X, 𝜏𝜏) and (Y, σ) of  Γ, (X, τ) is g*sc- homeomorphic to (Y, σ) say (X, τ) ≡ g*sc(Y, σ), if there 
exists a g*sc- homeomorphism f: (X, τ) →(Y, σ).Then we have the following theorem on the relation “≡g*sc”. 
 
Theorem: 5.17 The relation ≡g*sc above is an equivalence relation in the collection of all topological spaces Γ. 
 
Proof:  

(i)    For any element (X, τ)∈ Γ, (X, τ) ≡g*sc(X, τ) holds. Indeed the identity function Ix: (X, τ) →(X, τ) is a g*sc-
homeomorphism. 

(ii)    Suppose (X, τ) ≡g*sc(Y, σ), where (X, τ) and (Y, σ) ∈ Γ. Then, there exists a g*sc-homeomorphism f: (X, τ) → 
(Y, σ). By definition it is seen that f-1: (Y, σ) → (X, τ) is a g*sc-homeomorphism and (Y, σ) ≡g*sc(X, τ). 

(iii)   Suppose that (X, τ ) ≡g*sc(Y, σ) and(Y, σ)≡g*sc(Z, 𝜂𝜂),where (X, τ), (Y, σ) and (Z, η) ϵ Γ. By theorem 5.13, it is 
shown that (X, τ) ≡g*sc(Z, η). 

 
Theorem: 5.18 The set g*sc-h(X, τ) is a group under the composition of maps. 
 
Proof: Define a binary operation ∗: g*sc-h(X, τ) × g*sc-h(X, τ) →g*sc-h(X, τ) by f ∗ g = g ∘ f for all f, g ϵ g*sc-h(X, τ) 
and ∘ is the usual operation of composition of maps. Then by theorem 5.13, g ∘ f ϵ g*sc-h(X, τ). We know that the 
composition of maps is associative and the identity map I: (X, τ) →(X, τ) belonging to g*sc -h(X, τ) serves as the 
identity element. If f ϵ g*sc-h(X, τ), then f-1 ϵ g*sc-h(X, τ) such that f ∘ f-1 = f-1∘ f = I and so inverse exists for each 
element of g*sc-h(X, τ). Therefore (g*sc-h(X, τ), ∘) is a group under the operation of composition of maps. 
 
Theorem: 5.19 Let f: (X, τ) →(Y, σ) be a g*sc-homeomorphism. Then f induces an isomorphism from the group g*sc-
h(X, τ) onto the group g*sc-h(Y, σ). 
 
Proof: Let f ϵ g*sc-h(X, τ). Then define a map ψf: g*sc-h(X, τ) → g*sc-h(Y, σ) by ψf (h)=f∘ h∘ f-1  for every h ϵ g*sc-
h(X, τ). By theorem 5.13, ψf is well defined in general, because f∘ h ∘ f-1 is a g*sc-homeomorphism for every g*sc-
homeomorphism h: (X, τ) → (Y, σ). Let h1, h2 ϵ g*sc-h(X, τ).Then ψf (h1 ∘ h2) = f ∘ (h1∘ h2) ∘f-1 = (f ∘h1∘f-1) ∘ (f ∘ h2∘f-1) 
Therefore ψf (h1 ∘ h2) = ψf (h1) ∘ ψf (h2). Since ψf (f-1∘h ∘ f) =h, ψf is onto. Now, ψf (h) =I implies f∘ h∘ f-1 =I. That 
implies h =I. This proves that ψf is one-one. This shows that ψf is an isomorphism induced by f. 
 
Theorem: 5.20 If f: (X, τ) → (Y, σ) is a g*sc-homeomorphism, then g*s-cl(f-1 (B)) = f-1(g*s-cl(B)) for every B⊆Y. 
 
Proof: Let f: (X, τ) →(Y, σ) be a g*sc -homeomorphism. By definition 5.9, both f and f-1 are g*s-irresolute and f is 
bijective. Let B⊆ Y. Since g*s-cl(B) is a g*s-closed set in (Y, σ), using definition of g*s-irresolute, f-1(g*s-cl(B)) is 
g*s-closed in (X, τ). But g*s-cl(f-1(B)) is the smallest g*s-closed set containing f-1(B).Therefore g*s-cl(f-1(B))⊆ f-1(g*s-
cl(B))→(1). Again, g*s-cl(f-1(B)) is g*s-closed in (X, τ). Since f-1 is g*s-irresolute, f (g*s-cl(f-1(B)) is g*s-closed in     
(Y, σ). Now, B= f (f-1 (B)) ⊆ f (g*S-cl (f-1(B)). Since f (g*s-cl(f-1(B)) is g*s-closed and g*s-cl(B) is the smallest g*s-
closed set containing B, g*s-cl(B) ⊆ f(g*s-cl(f-1(B)) that implies f-1(g*s-cl(B)) ⊆g*s-cl(f-1(B)). That is, f-1(g*s-
cl(B))⊆g*s-cl(f-1(B))→(2). From (1) and (2), g*s-cl(f-1(B))=f-1(g*s-cl(B)). 

g*sc-homeomorphism 

g*s-homeomorphism 

Homeomorphism gs-homeomorphism 
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Corollary: 5.21 If f: (X, τ) →(Y, σ) is a g*sc-homeomorphism, then g*s-cl(f(B)) = f(g*s-cl(B)) for every B⊆X. 
 
Proof: Let f: (X, τ) → (Y, σ) be a g*sc -homeomorphism. Since f is g*sc-homeomorphism, f-1 is also a g*sc-
homeomorphism. Therefore by theorem 5.20, it follows that g*s-cl (f (B)) = f(g*s-cl(B)) for every B⊆X. 
 
Corollary: 5.22 If f: (X, τ) →(Y, σ) is a g*sc-homeomorphism, then f (g*s-int (B)) = g*s-int (f(B)) for every B⊆X. 
 
Proof: Let f: (X, τ) →(Y, σ) be a g*sc-homeomorphism. For any set B⊆X, g*s-int(B)=(g*s-cl(Bc))c. This implies that f 
(g*s-int (B)) = f (g*s-cl (Bc))c = (f (g*s-cl (Bc))c. Then using corollary 5.22, we get that f (g*s-int (B) = (g*s-cl (f(Bc))c 

= g*s-int(f(B)). 
 
Corollary: 5.23 If f: (X, τ) →(Y, σ) is a g*sc-homeomorphism, then for every B⊆Y, f-1(g*s-int(B))=g*s-int(f-1(B)). 
 
Proof: Let f: (X, τ) → (Y, σ) be a g*sc -homeomorphism. Since f is g*sc-homeomorphism, f-1 is also a g*sc-
homeomorphism. Therefore by corollary 5.22, it follows that f-1(g*s-int (B)) = g*s-int (f-1(B)) for every B⊆Y. 
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