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ABSTRACT 
An operator T  on a Banach space X is paranormal if for all Xx∈ ,  |||||||||||| 22 xxTTx ≤ . In this note, we show 

that any paranormal operatorT is not supercyclic; i.e., the projective orbit }0,:{ ≥∈ nCxT n αα  is not dense in 
X  for all Xx∈ . 
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1. INTRODUCTION 
 
Suppose that T is a bounded linear operator on a separable Banach space X . For Xx∈   the orbit of  x  under T  is 

}.,2,1,0:{),( == nxTxTorb n  
 
We recall that a vector x  in X  is called a hypercyclic vector for T if the set ),( xTorb  is dense in X . Also x is a 
supercyclic vector for T if the set of all scalar multiples of the elements of ),( xTorb  is dense in X . An operator T   
is called hypercyclic (supercyclic) if it has a hypercyclic (supercyclic) vector. 
 
Rolewicz in 1969 has given an example of a hypercyclic operator on a Banach space [8]; but the study of 
hypercyclicity was really begun with Kitai’s thesis in 1982 [6]. Clearly every hypercyclic operator is supercylcic but 
not vice versa. The backward shift on  2

  is an example of a suprecyclic operator which is not hypercyclic. Two good 
sources on hypercyclicity and supercyclicity of operators are [2] and [4]. 
 
Recall that an operator T on a Hilbert space H   is hyponormal if 0≥− ∗∗ TTTT  which is equivalent to the fact that  

|||||||| xTTx ∗≥  for all Hx∈ . Hilden and Wallen in [5] have shown that normal operators are never supercyclic. 
The non-hypercyclicity of hyponormal operators has proved by Kitai [6]; later on, Bourdon showed that hyponormal 
operators are not supercylic [3]. An operator T on a Banach space X  is paranormal if |||||||||||| 22 xxTTx ≤ for 
all Xx∈ . It is known that every hyponormal operator on a Hilbert space is paranormal. The non-hypercyclicty of 
paranormal operators have proved in Theorem 5.30 of [4]. In this paper, we observe that paranormal operators are not 
supercyclic. 
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2. MAIN RESULTS 
 
Theorem 1: No paranormal operator on a Banach space with dimension more that one is supercylcic. 
 
Proof: Suppose that T is a paranormal operator on a Banach space X  with 1dim >X . Observe that Tλ   is also 

paranormal for every scalar λ . Let 0>ε and put 1||||)1( −+= Tελε . Assume that T  is supercyclic. Then Tελ  

is a paranormal, supercyclic operator. Hence there is a supercyclic vector εx   for Tελ  such that |||||||| εεελ xTx > . 

Indeed, otherwise |||||||| xTx ≤ελ   for all supercyclic vectors x . But the set of all supercyclic vectors for Tελ  is 

a dense subset of  X   (Theorem 1.12 of [2]), thus |||||||| xTxx ≤λ   for all .x X∈ Consequently, 

1||||)1( ≤=+ Tελε   which is absurd. 
 
Now, the paranormality of Tελ  implies that 
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By continuing this process we get 

.0,||)(||||)(|| 1 ≥∀>+ nxTxT nn
εεεε λλ  

 
On the other hand, for  Xy∈  there is a sequence of scalars  ii )(α  and a sequence of integers  iin )(  so that 

yxT in
i →εελα )(  

as i →∞ . Since 
||)(||||||)(|||| 1

εεεε λαλα xTxT ii n
i

n
i >+  

for all  i , we obtain 
.||||||)(|| yyT ≥ελ  

When  ε   converges to zero we conclude that 
XyyTTyyT ∈∀≥≥ ||,||||||||||||||||||  

 

which, in turn, implies that the operator 
|||| T

T
is an supercyclic, isometric operator on X . But it is known that an 

isometry on a Banach space with dimension greater than one is not supercyclic [1] or [7].                                                                                          
 
 
Recall that an operator T  on a Hilbert space H  is quasi-hyponormal if 0)( ≥− ∗∗∗ TTTTTT  which is equivalent 

to |||||||| 2 TxTxT ∗≥   for all Hx∈ . Every quasihyponormal operatorT is paranormal; indeed, by the Cauchy-
Scharwz inequality we have 

||||||||||||||||,|||| 22 xxTxTxTTxTxTx ≤≤><= ∗  
for all Xx∈ . Thus, we have the following result. 
 
Corollary 1: No quasi-hyponormal operator is supercyclic. 
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