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ABSTRACT 
We have studied in our previous papers ([2], [6] and [7]) special semigroups which we call near idempotent 
semigroups, rectangular near- idempotent semigroups, left (right) regular near idempotent semigroups and left (right) 
normal near idempotent semigroups.  In this paper we introduce a near commutative near – idempotent semigroup and 
obtain its decomposition into near – null semigroups. 
 
Key words:  near idempotent semigroup, near commutative near idempotent semigroup, near – null semigroup, left 
(right) regular near- idempotent semigroup, left (right) normal – near idempotent semigroup. 
 
 
1. INTRODUCTION 
 
A semigroup S is called near idempotent semigroup if   xy2z = xyz for all x, y, z ∈ S. [2].  In this paper we deal with 
near commutative property for a near idempotent semigroup. We study its structure through the relations λ, ρ, δ, ξ  we 
introduced in a previous paper.[2]. In a near – commutative near – idempotent semigroup all the above relations 
coincide.  In other words δ = ρ = λ = ξ.  
 
2. DEFINITION 
 
Let   S be a near – idempotent semigroup, we call S a near–commutative near– idempotent semigroup if    
xyzw = xzyw for all  x, y, z, w in S. 
 
Lemma 2.1: In a near – commutative near – idempotent semigroup S, δ = ξ. 
 
Proof: Let S be a near – commutatve near – idempotent semigroup then 
    
xyzw = xzyw for all  x, y, z, w on S. 
 
ξ = ρ ∩ λ 
 
Hence ξ ⊂ ρ ⊂ δ and ξ ⊂ λ ⊂ δ  
 
Hence ξ ⊂ δ 
 
Conversely, let a δ b in S. 
 
Then xabay = xay  and  xbaby = xby,  by near – commutativity, 
, 
xay = xabay = xa2by = xaby                                                                                                                                              (1)  
and 
xby = xbaby = xab2y = xaby                                                                                                                                              (2)   
 
xay = xby  form (1) and (2) 
 
Hence   a ξ b 
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Then   δ ⊂ ξ so that δ = ξ. 
 
Conversely, 
 
Lemma 2.2: In a near – idempotent semigroup S, δ = ξ implies that S is near – commutative. 
 
Proof: Let a, b ∈S 
 
In any near – idempotent semigroup ab δ ba 
 
But δ = ξ 
 
Hence ab ξ ba 
 
Thus  xaby = xbay for all x, y in  S. 
 
Hence S is near – commutative. 
 
Thus we have 
 
Theorem 2.3: A near idempotent semigroup S is near – commutative if and only if δ = ξ on S. 
 
Proof: It follows that every δ – class in S degenerate into a near – null semigroup [6],  
 
Hence we get 
 
Theorem 2.4: A near – commutative near – idempotent semigroup is a semilattice of near – null semigroup. 
 
Theorem 2.5: In a near – commutative near – idempotent semigroup  
δ = ρ = λ = ξ 
ξ ⊂ ρ⊂ δ ⊂ ξ and ξ ⊂ λ ⊂ δ ⊂ ξ 
 
Hence we get δ = ρ = λ = ξ.   
   
Theorem 2.6: A near – idempotent semigroup S is a near – commutative near – idempotent semigroup if and only if it 
is both a left regular and a right regular near – idempotent semigroup. 
 
Proof: Suppose S is a near – commutative near – idempotent semigroup. 
 
Then  xyzw = xzyw for all  x, y, z, w  ∈  S. 
 
xyzyw = x.(yz).y.w 
           = x.y.yz.w 
           = xy2zw 
           = xyzw so that S is a left regular near – idempotent semigroup. 
 
Conversely, 
 
Let S is both left regular near – idempotent semigroup and right regular near – idempotent semigroup 
δ = λ in S by left regularity 
δ = ρ in S by right regularity 
 
Hence δ = λ = ρ = λ ∩ ρ = ξ. 
 
           δ = ξ. 
 
Hence S is a near – commutative near – idempotent semigroup. 
 
Theorem 2.7: A near – idempotent semigroup S is a near – commutative near idempotent semigroup if and only if S is 
both a left – normal near – idempotent semigroup and a right normal – near idempotent semigroup. 
 
Proof: Let S be a near – commutative near – idempotent semigroup. 
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Thus xuvy = xvuy for all x, u, v, y∈ S 
 
Hence x uv wy = x vu wy for all x, u, v, w, y∈ S. 
 
Thus  xuvwy  =  xvuwy 
 
Therefore S is a right normal near – idempotent semigroup. 
 
 
xuvwy = xu. vwy 
            = xu wvy 
 
So that S is a left normal near – idempotent semigroup. 
 
Hence S is both a left normal near – idempotent semigroup and a right normal near – idempotent semigroup. 
 
Conversely,  
 
Suppose that S is both left normal near – idempotent and right normal near – idempotent semigroup. 
 
Left normality in S implies left regularity and right normality in S implies right regularity.  
 
Thus S is both a left regular near – idempotent semigroup and a right regular near – idempotent semigroup. 
 
Hence S is a near commutative near – idempotent semigroup by the theorem 2.6. 
 
3. λ, ρ, δ and ξ   IN COMPARISON WITH GREEN’S RELTIONS  

 
J.A.Green(1951), has defined relations ℒ, ℛ, 𝔇𝔇, H  and  J   on a semigroup to study its structure.  But the relation λ, ρ, 

δ and ξ are respectively different form ℒ, ℛ, 𝔇𝔇 and H. 
 
The following example shows that λ is different from ℒ of Green. 
 

Example 3.1: Consider   1 = 
0 0
0 0
 
 
 

, 2 = 
1 0
0 0
 
 
 

, 3 = 
0 1
0 0
 
 
 

,  4 = 
1 1
0 0
 
 
 

, elements of  M2(Z2)  under matrix 

multiplication modulo  2.  These elements form a semigroup with the following multiplication table 
 

X 1 2 3 4 
1 1 1 1 1 
2 1 2 3 4 
3 1 1 1 1 
4 1 2 3 4 

 
It is easy to see that 1, 2 and 4 are idempotent elements of the semigroup but 3 is not.   
 
For all x, y in S. 
x. 3. y = x. 1 (since 3y = 1 for all y∈ S) 
           = 1     (since x.1= 1 for all x∈ S) 
 
And 
x. 32.y = x.1.y = 1.y = 1 for all x, y∈ S. 
 
Thus, x.3.y = x.32.y for all x, y ∈ S, so that 3  is a near idempotent element of the semigroup  S. 
 
Here in this example,  
 
x.3.1.y = x.1.y = 1.y = 1 
 
x.3.y = x.1 = 1 
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therefore  x.3.1.y  =  x.3.y 
 
x.1.3.y = x.1.y   so 1 λ 3. 
 
S.1 = {1} 
 
S.3 = {1, 3} 
 
1 ∪ S.1 = {3} ∪ S.3 = {3} Therefore  S1.1 ≠ S1.3 so that 1 is not ℒ - related to 3. 
 
4. CONCLUSION  
 
In a near idempotent semigroup S, δ = ξ  if and only if S is near – commutative.  A near commutative near – idempotent 
semigroup is a semilattice of near – null semigroups.  A near – idempotent semigroup S is near – commutative near 
idempotent if and only if S is both left – normal near – idempotent and right normal – near idempotent semigroup. 
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