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ABSTRACT 
Let E  be a reflexive Banach space of analytic functions. It is shown that the inclusion )(][][)( EfffEM ∈⊆  
holds for certain E , whenever )(EM is the set of all multipliers of E and ][ f denotes the closure in E  of the 
polynomial multiplies of f . 
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1. INTRODUCTION 
 
Let G  be a bounded domain in the complex plane C . Suppose that E  is a reflexive Banach space consisting of 
functions that are analytic on G  such that E  contains the polynomials as a dense subset and for each G∈λ , the 
functional  CEe →:)(λ  of evaluation at λ  given by )()(,)()( λλλ feffe =〉〈=  is bounded, and if E∈  then 

Efz ∈ . 
 
Note that the last condition allows us to define  EEM z →:  by .zM f z f=  It is easy to see that zM  is actually a 

bounded operator on E . The operator zM and many of its properties have been studied in [1], [3], [5-8], [10] and [12]. 

We just give an example to illustrate the existence of such spaces. For ∞<<∞− α  let αD  consist of all 

functions f analytic in unit disc D  with Taylor series ∑∞
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For good sources on αD  see [2] and [11]. 
 
A Caratheodory region is an open connected subset of C  whose boundary equals to its outer boundary. It is easy to see 
that G  is a Caratheodory region if and only if G  is the interior of the polynomially convex hull of G . In this case, 
Farrell-Rubel-Shields Theorem holds [4, Theorem 5.1, p. 151]. If )(GHf ∞∈  then there exists a sequence of 

polynomials nnp )(  such that cp Gnn <||||sup  for a constant c  and )()( zfzpn →  for all Gz∈ . 
 
A complex-valued function ϕ  on G  is called a multiplier of E  if EE⊂ϕ . In general each multiplier ϕ  of E  

determines a multiplication operator )( EfffM ∈=ϕϕ . Also, )()()()( GeeM ∈=∗ λλλϕλϕ .  The set of all 

multipliers is denoted by )(EM .  It is well known that )()( GHEEM ∞⊆  , whenever  )(GH ∞  denotes the 
space of bounded   analytic functions in  G ,  with the supermum norm. Also, ][ f   denotes the closure in E  of the 
polynomial multiples of )( Eff ∈ . 
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2. MAIN RESULTS 
 
In general, it is an open question that for which Banach spaces of analytic functions ][][)(, ffEME ⊆  for all 

Ef ∈  (Question 2 of [2] ). Clearly, this is equivalent to )(][)( EfffEM ∈⊆  . Now, we bring the following 
result. 
 
Theorem 1: Suppose that E  is a reflexive Banach space of analytic functions on a Caratheodory region G  such that 

)(EM  is closed in  )(GH ∞  then )()( GHEM ∞=  and  ][][)( ffEM ⊆  for every Ef ∈ . 
 
Proof: Define the mapping ϕϕ M  from )(EM  with the supermum norm into )(EB , the set of all bounded 

operators on E . By the closed graph theorem, this map is continuous. In fact, if 0→nϕ and AM n →ϕ  then 

))(()()( λλλϕ Affn →  for every Ef ∈  and for all λ  in G ; so 0=Af . Therefore, there exists a constant c  

such that Gp pcM |||||||| ≤  for every polynomial p .  Let )(GH ∞∈ϕ . By the Farrell-Rubel-Shields Theorem 

there exists a sequence of polynomials nnp )(  such that ∞<Gnn p ||||sup  and ( ) ( ) ( ).np Gλ φ λ λ→ ∈  It follows 

that ∞<||||sup
npn M . But ball )(EB  is WOT compact; so by passing to a subsequence if necessary we may 

assume that 
npM  converges in WOT to some operator B . Therefore, 

)(),()()()(lim)(,lim)()( GffpefpBf nnnn
∈==〉〈= λλλϕλλλλ  

 
that is, ϕMB = and )(EM∈ϕ . Now, since )()( GHEM ∞⊆  the equality holds. On the other hand, 

∞<≤ EGnEn fpcfp |||||||||||| . Hence ffpn ϕ→  weakly. It follows that ][ ff ∈ϕ  for every Ef ∈  and 
the proof  is complete.                                             
 
Corollary 1: Let  )21()( ≤< pGLp

a  be the Bargman space on a Caratheodory region .G  It is clear that )(GLp
a  

satisfies all hypotheses of Theorem 1. So ][][)( ffGH ⊆∞  for every )(GLf p
a∈ . 

 
The Caratheodory condition on G  is not necessary for EfffEM ∈⊆ ],[][)( . Indeed, the following theorem 
holds. 
 
Theorem 2: Suppose that E   is a reflexive Banach space of analytic functions on KG −Ω=  where Ω  is a 
Caratheodory region and K  is a compact subset of Ω . If )(EM  is closed in )(GH ∞ then EGHEM )()( ∞=  
and ][][)( ffEM ⊆ , for every Ef ∈ . 
 
Proof: By the proof of Theorem 1, there exists a constant c  such that Gp pcM |||||||| ≤  for every polynomial p . 

Also, clearly EGHEM )()( ∞⊆ . Now, let EGH )(∞∈ϕ . So there exists a sequence nnp )(  of polynomials 

converging to ϕ  in E . Thus, nnp )(  converges uniformly on compact subsets of G . Choose the oriented line 

intervals Nγγ ,,1   in G  [9, 13.5 Theorem, p. 254] such that 
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Since nnp )(  converges uniformly on Nγγ ,,1  , it is uniformly Cauchy on K . It follows that  nnp )(  is uniformly 

convergent on compact subsets of Ω . Let ψ  be the limit of nnp )( . In fact,  ψ  is the extension of  ϕ  on Ω . By the 

maximum modulus theorem ∞<=Ω G|||||||| ϕψ , and thanks to the Farrell-Rubel-Shields Theorem there exists a 

sequence of polynomials nnq )(  such that )()( zzqn ϕ→  and ∞<Gnn q ||||sup . Now, as the proof of Theorem 1,  

)(EMf ∈ϕ  and ][ ff ∈ϕ  for all Ef ∈ . 
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