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ABSTRACT 
Stochastic volatility models are considerable interest in empirical finance. We investigate the use of a semiparametric 
model for estimating volatility.  ARCH models are commonly used to estimate volatility. But there are situations where 
influence of some exogenous factors on volatility is seen in practice in addition to the ARCH component. In this paper 
a new model for volatility is presented which includes a regressors (exogenous variable) in addition to ARCH 
component. The regression part is estimated using nonparametric Kernel smoothing technique and ARCH component 
is estimated by parametric approach. Further two methods are connected to build a combination forecasting model by 
combining nonparametric estimator of the regression function and parametric estimator of the ARCH effect. The 
practical application of the proposed model for forecasting volatility is examined for a sample of gold price returns. 
The proposed model shows minimum mean square error compared with existing models. 
 
Keywords:  Nonparametric regression, Local linear Kernel smoothing, Volatility, GARCH, ARCH testing. 
 
 
1. INTRODUCTION 
 
Financial econometrics is an active field of research which combines finance, economics, probability and statistics.   
Most financial data is available in time series form. Financial time series data provides the information about the prices 
of financial assets over a period of time. There are two main objectives of investigating financial time series. First it is 
important to understand how prices behave and the second objective is to use our knowledge of price behaviour to 
reduce risk or take better decisions.   
 
Most of the financial studies involve returns instead of prices of assets. Returns from financial market variables 
measured over short time intervals like intra daily, daily, weekly etc. are uncorrelated, but not independent. Although 
the signs of successive price movements seem to be independent, their magnitude as represented by the absolute value 
or square of the price increments is correlated in time. This phenomena is denoted volatility clustering and indicates 
that the volatility of the series is time varying. 
 
Generalised Autoregressive Conditional Heteroscedasticity (GARCH) models (Bollerslev, 1986) and Stochastic 
volatility models (Aquilar and West 2000, Kim et all 1998) are the two main types of techniques which have been 
widely used for analyzing time varying volatility in financial econometrics. The success of the GARCH – models at 
capturing volatility clustering in financial market is extensively documented in the literature. 
 
A time series is said to be heteroscedastic if its variance changes over time. Since Engle (1982) proposed the seminal 
work of Autoregressive Conditional Heteroscedasticity (ARCH) model, many researchers have been working in the 
field of modeling the time varying volatility of economic data. Modeling and forecasting time varying financial market 
volatility are important for investors. 
 
A nonparametric method offer flexible ways of estimating volatility functions. In nonparametric context local linear 
kernel smoothing technique provide estimators which satisfies desirable asymptotic properties. Loader C (1999), 
Silverman,  J.D., Hart (1997), Wand and Jones(1995) and  Fan and Gijbels(1996) give a comprehensive coverage of 
these techniques. 
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Hardle and Tsybakov (1997) proposed a new idea regarding the specific estimation of variance functions. They 
separately estimated ( )xXYE =2  and ( )xXYE =  and then combined them through 

( ) ( ) ( )22var xXYExXYExXY =−=== . Fan and Yao (1998) suggested an approach which is 

asymptotically fully adaptive to the unknown conditional mean. They used the local linear method to estimate 
conditional mean and conditional variance. Flavio A Ziegelmann (2002) used local linear method to estimate 
conditional mean and in a second step, conditional variance is estimated by using local exponential estimator. 
 
In this paper we have developed a model for volatility by introducing a function g(x) which summerises the influences 
of exogenous factors on volatility in addition to the parametric GARCH component. We used local linear regression 
method to estimate the function g(x) and GARCH component is estimated by parametric method. Finally a linear 
combination of  these two estimators  by choosing the weights which minimises the mean square error is taken as new  
estimator for volatility. 
 
In the next section different models for volatility is presented and estimation procedure is highlighted. A new 
estimation procedure for estimation of volatility is presented in Section 3.  Finally in the last section the performance of  
the proposed method is compared with the other existing methods on a sample of gold prices. 
 
2. REGRESSION SETTINGS AND ESTIMATOR 
 
2.1: Let ( ){ }tt XY , be a two dimensional strictly stationary process having the same marginal distributions as (Y, X).   
 
Let  ( )xXYExm ==)(  be the conditional mean function and ( ) ( ) 02 ≠== xXYVarxσ  the conditional 
volatility function.  We can write the regression model as 

( ) ( ) tttt XXmY εσ+=                                     (1) 

where ( ) 0=tt XE ε  and ( ) 1=tt XVar ε  
 
Autoregressive conditional heteroscedasticity(ARCH(p))  model for volatility has the representation 
 

22
110

2 ............................. ptptt yy −− +++= ααασ
                                           (2) 

 
The generalized autoregressive conditional heteroscedasticity(GARCH(p, q)) model for volatility has the 
representation 
 

22
11

22
110

2 .......... qtqtptptt yy −−−− ++++++= σβσβααασ                                                 (3) 
 
Bollerslev (1986) proposed GARCH (1, 1) model, which depends on long run average variance rate LV as well as 1−tσ  

and 1−tε . 
 
The equation for this model is 

2
1

2
1

2
−− ++= ttLt V βσαεγσ  

Where γ  is the weight assigned to LV ,  α  is the weight assigned to 2
1−tε  and β  is the weight assigned to 2

1−tσ . 
 
The proposed model for volatility has the representation 
 

( ) )..........( 22
11

22
11021

2
qtqtptpttt yywxgw −−−− +++++++= σβσβααασ                                        (4) 

where 1w and  2w  are the weights to be chosen optimally under mean squared error criteria satisfying 121 =+ ww   
 
2.2 SEMIPARAMETRIC ESTIMATION OF VOLATILITY 
 
Our main interest in this paper is estimating the conditional volatility function (.)2σ  in (1).  In the proposed new 
method, first m(x) is estimated by local linear regression method and compute the residuals. Using this residual g(x) in 
(4) is estimated by local linear regression and the GARCH component is estimated using the parametric method. 
Finally the estimator of volatility is obtained as a linear combination of these two estimators. 
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2.21Estimation of m(xt) by using Local Linear Method 
 
The regression estimator of m(x) in equation (1 ) is based on the local least square fitting of  Kernel  weighted linear 

regression function. The locally weighted linear regression estimator of m(x) is 
∧

0α . Where 
∧

0α is the solution to the 
problem. 

min ( )[ ] ( )th

n

t
tt xxKxxy −−−−∑

=

2

1
10 αα                                                                                                 (5) 

 
K is the Kernel function and h is the band width. 
 

The problem (5) is the weighted least square problem and solution for 0α  is ).(0 xm
∧∧

=α ,  
 
where   

( ) 1

2
1

1
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t t
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t
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∧
=

=

=
+

∑

∑
                                                                                                                                                     (6) 

 
2.22 Estimation of  g(x)  by smoothing the squared residuals. 
 
In the proposed new model (4) for estimating volatility, g(x) is the additional term introduced to represent the 
exogenous factors influencing volatility .First we obtain preliminary estimate for ( )x2σ   by smoothing the squared 

residuals 2
tr , where 

 ( )

2

2 2 2( )t t t t tr y m x xσ ε
∧

 
 

= − = 
 
 

                                                                                                                               (7) 

 
By taking the conditional expectation of the squared residuals, we get [ ] ( )ttt XXrE 22 / σ= . The local liner 

regression estimator of  α  and β   is the solution to the problem   minimize L(α, β) w.r.t to α and β, where  

( )[ ] ( )th

T

t
tt xxKxxrL −−−−= ∑

=

2

1

2),( βαβα                                                                                                       (8)   

and Kh(.)  is a kernel function and h is a band width. 
 

In the above problem .
∧

α  is taken as preliminary estimate of ( )x.2σ  and 
∧

β  is the estimate of the first derivative of 

( )x.2σ   evaluated at  x. 
 
Taking the partial derivatives of  ( )βα ,L  with respect to both α and β and equating the derivatives to zero gives, 

( ) ( ) ( ) ( )th

T

t
t

T

t
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The Prior system of equation becomes 
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Consequently we have 
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The numerator and denominator of the prior function can be further simplified as 

( ) ( ) ( ) ( ) ( )[ ]∑∑∑
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where ( ) ( )[ ]1,2, TtTtht SxxSxxKw −−−=
 

           
( ) 


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To avoid possible zero in the denominator, we use 

( )
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∑
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This preliminary estimate of  ( )x.2σ  is used to obtain the estimate of g(x). The local linear regression estimate of the   
regression function g(x) in equation (4) is to find a and b that minimize 

( )[ ] ( )th

T

t
tt xxKxxbabaL −−−−= ∑

=

2

1
),( σ

 
where Kh(.) is a kernel function and h is a bandwidth.   
 
The estimate of g(x) is defined as

 ( ) ( )( )[ ]
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To avoid possible zero in the denominator, we use 
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For estimating the GARCH component in model (4), we use the likelihood function.  
 
3. COMBINED ESTIMATOR FOR FORECASTING VOLATILITY 
 
Using the local linear kernel weighted estimator of the regression function g(x) and the parametric estimate of GARCH 
component a combined estimator is proposed for volatility as a weighted average of these two estimates, were  weights 
are proportional to the size of the variance of each estimator.   
 
The combination model of the two prediction method is  

1 1 2 2f w f w f= + ,     with        121 =+ ww  
 

Setting ( ),txf σ=  )(1 txgf
∧

= , 2
11

2
1102 −

∧

−

∧∧

++= ttyf σβαα  ~ GARCH (1 1) We get 

( ) ( ) ( )1 2 1,1t tx w g x w GARCHσ
∧ ∧

= +    ,                                                                                                               (11) 
 

1 2 1W W+ =  
11 12

2 2

1 1 1
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where 
 

2
1 1t te s f= −  

2
2

2 fse tt −=  
 
Here st is the standard deviation calculated from return series. 
 

2,1 ff  are two methods of prediction,  eit is absolute error when the method  ‘i’ is used to predict the sample .  
 
4. NUMERICAL STUDIES 
 
The  computation is carried out in 3 different stages by writing program using software package MATLAB 6.5 
 
In the first stage the GARCH model is fitted using the return series of a gold price data from 10/08/2010 to 
15/April/2013. 
 
In the second stage  tested for the presence of GARCH effect by selecting the hypothesis 
H0: No ARCH effect exists. 
H1: ARCH effect exists. 
 
Since GARCH is Generalize ARCH, existence ARCH implies the existence of GARCH effect. Thus rejection of null 
hypothesis implies that the existence of GARCH effect. 
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Finally  volatility is estimated  by  using the proposed method. This estimator is  compared with the  existing estimators  
and also with the method   proposed by  Fan and Yao (1998). 
 
Using the function GARCHFIT gives the estimates of the coefficients of the GARCH model as follows: 
 

Coefficients values 

0α  3.3756e+011 

1α  0.8129 

1β  0.0396 
 
Mean squared error based on GARCH model is 4.28e+010 and for the model (7) which is proposed by Fan and Yao 
(1998) is 1.004. Mean squared error obtained from the proposed model (4) is 0.0338 which shows the superiority of the 
proposed estimator. 
 

 
Fig1: Gold price data from 10/August/2010 to 15/April/2013 

 

 
Fig 2: Plot of residuals obtained from the existing model 
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Fig 3: comparing the plot of residuals obtained from the proposed model (red) with the model which is proposed by 
Fan and Yao (1998) (blue) 
 

 
Fig 4:  Box plots of the mean absolute deviations 1) existing model 2) Fan and Yao’s (1998) model 3) Proposed model 
 
5. CONCLUSION 
 
A semiparametric approach is proposed to estimate volatility and it is observed that this procedure provides an 
estimator for the return series with minimum mean square error compared with the estimator based on GARCH model. 
Residual plot clearly shows remarkable superiority of the proposed estimator. The residuals are much smaller compare 
to the residuals based on estimators obtained using the existing method. The box plots of the mean absolute deviations 
show superiority of the proposed estimator compared with the existing methods. 
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