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ABSTRACT 
The degree of approximation of f (x), conjugate of a function f ∈ almost lip α, by (N, p, q) (E, q) means of the 
conjugate series is determined. 
 
Keywords: Almost Lipschitz function; Degree of Approximation; (N, p, q) means; (E, q) means; conjugate series. 
 
 
1. INTRODUCTION AND DEFINITIONS 
 
The degree of approximation by Cesaro means and by Nörlund means of the Fourier series of a function f ∈ Lip α have 
been studied by Alexits [1], Sahney and Goel [8], Chandra [3], Qureshi ([4], [5]), and Qureshi and Neha [7], But till        
now no work seems to have been done to obtain the degree of approximation of f(x), conjugate of a function f ∈ La ip 
α, by product of generalized Nörlund mean (N, p, q) and Euler's means of order q, (E, q) in an attempt to make an 
advance study in this direction, the object of this paper is to determine the degree of approximation of conjugates of 
almost Lipschitz functions by (N, p, q) (E, q) means of the conjugate series of the Fourier series. 
 
Let f(x) be a function with period 2π and integrable in the sense of Lebesgue over (-π, π). Let its Fourier series be given 
by 
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is called the conjugate series of Fourier series. 
 
The degree of approximation of a function f: R → R by a trigonometric polynomial tn of order n is defined by Zygmund 
[9] 

 { }Rx:)x(f)x(tsupft nn ∈−=−
∞
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Every Lip α function is trivially La ip α, but the class La ip α greatly extends the class Lip α. For example, let g denote 

the characteristic function of the irrationals, Take { :
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So that Ax being countable has measure zero. For each x and ,Ax/
2

,0t 

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∈  both (x+2t) and (x - 2t) are irrational 

and so |g (x + 2t) - g (x - 2t) | = 0. Hence g is La
 ip α for every α. But obviously g is not Lipschitz of any non-zero 

order. 
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Since Ax has measure zero, it follows at once that f has its conjugate function f, zygmund [9] defined and finite for each 
x∈R by the improper Lebesgue integral 
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as n → ∞ then the infinite series ∑
∞

=0n
nu is said to be 

summable (E, q) to a definite number s. Hardy [4]. 
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generalized Nörlund method (N, p, q) and is denoted by sn → s (N, p, q) Borwein [2]. 
 
The necessary and sufficient conditions for a (N, p, q) method to be regular are 
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pn-k = o (|Rn|) as n → ∞, for every fixed k ≥ 0 for which qk ≠ 0. 

 
The product of the (N, p, q) summability with a (E, q) summability defines the (N, p, q) (E, q). Thus the (N, p, q) (E, q) 
transform of {sn} is given by 
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If the (N, p, q) (E, q) transform of {sn} → s, as n → ∞ then the series n
0n

u∑
∞

=

 or the sequence {sn} is said to be 

summable to the sum s by (N, p, q) (E, q) method and we write the (N, p, q) (E, q) transform of {sn} → s (N, p, q) (E, 
q), as n → ∞ we shall use following notations.  
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2. THEOREM  
 
Let (N, p, q) be a regular generalized Nörlund method generated by non-negative, monotonic non-increasing sequence 
{pn} and {qn} of real constants such that  
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periodic Lebesgel integrable on [−π, π] and is almost Lipschitz function of order α, 0 < α ≤ 1, f∈ La ip α, then the 
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3. LEMMA 
 
For the proof of the theorem we require the following lemma: 
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4. PROOF OF THE THEOREM 
 
rth partial sum, ( ),xS~ r of the conjugate series (1) can be written as 
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5. APPLICATIONS 
 
The following corollaries can be obtained from our theorem 
 

Cor.1: Taking qn = 1 ∀ n ≥ 0, the degree of approximation of ),x(f~  conjugate of a function f ∈ La ip α, 0 < α < 1, by 
(N, pn) (E, 1) means of the conjugate series of Fourier series (1) is given by 
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Cor. 2: Taking pn = qn = 1 ∀ n ≥ 1, the degree of approximation of ),x(f~  conjugate of a function f ∈ La ip α, 0 < α < 
1, by (C, 1) (E, 1) means of the conjugate series of Fourier series (1) is given by 
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