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ABSTRACT 
We introduce a new class of sets namely **gα-closed sets in topological spaces and derive the properties of **gα -
closed sets. Also we find the relationship between **gα-closed sets and  other existing sets. Moreover with the help of 
these sets, we introduce four new spaces namely, αT1/2

*** spaces, Tc
*** spaces, αTc

*** spaces,*αT1/2
** spaces and derived 

its properties. 
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1. INTRODUCTION 

 
Levine [15] introduced g-closed sets and studied their most fundamental properties.  P.Bhattacharya and B.K.Lahiri [6], 
S.P.Arya and T.Nour [4], H.Maki et al [17, 18] introduced semi generalized-closed sets, generalized semi-closed,        
α-generalized closed sets and generalized α-closed sets respectively. R. Devi, et al.  [10] introduced semi generalized-
homeomorphism and generalized semi-homeomorphism in topological spaces. R. Devi, et al [9] introduced semi 
generalized-closed maps and generalized semi-closed maps. M.K.R.S Veera Kumar [23] introduced g*-closed sets and 
M.Vigneshwaran, et al [24] introduced *gα-closed sets in topological spaces and Gnanambal [14] introduced             
gsp- closed sets and gpr closed sets respectively. 
 
In this paper, we introduce a new class of sets namely **gα-closed sets in topological spaces and derive the properties. 
Also we find the relationship between** gα-closed sets and the other existing sets. Moreover with the help of these sets, 
we introduce four new spaces, αT1/2

*** spaces, Tc
*** spaces, αTc

*** spaces, ***
αT1/2 spaces and derive its properties.  

 
2. PRELIMINARIES 
 
Throughout this paper (X, τ), represent topological space on we no sepration axioms are assumed unless otherwise to 
be mentioned. For a subsets A of(X,τ),cl(A) and int(A) denote the closure and the interior of A in (X, τ)   respectively. 
The power set of X is denoted by P(X). 
 
Let us recall the following definitions, which are useful in the sequel. 
 
Definition 2.1: A subset A of a topological space (X,τ ) is called 
(1) a pre-open set [20] if A ⊆int(cl(A)) and a pre-closed set if cl(int(A)) ⊆ A. 
(2) a semi-openset [16] if A ⊆ cl(int(A)) and a semi-closedset if  int(cl(A))⊆A. 
(3) an α-openset [22] if A ⊆int(cl(int(A))) and an α-closedset [22] if cl(int(cl(A)))⊆A. 
(4) a semi pre-openset [2] (= β-open[1]) if A ⊆ cl(int(cl(A))) and a semipre-closedset [2] (=β-closed[1])  
      if int(cl(int(A))) ⊆ A. 
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Definition 2.2: A subset A of a topological space (X, τ) is called 
(1) a generalized closed set (briefly g-closed) [15] if cl(A) ⊆ U whenever A ⊆ U and U is open in (X, τ). 
(2) a semi-generalized closed set (briefly sg-closed) [6] if scl(A) ⊆ U whenever A ⊆ U and U is semi-open in (X, τ). 
(3) a generalized semi-closed set (briefly gs-closed) [4] if scl(A) ⊆ U whenever A ⊆ U and U is open in (X, τ). 
(4) a generalized α-closed set (briefly gα-closed) [18] if αcl(A) ⊆ U whenever A ⊆ U and U is   α-open in (X, τ). 
(5) an α-generalized closed set (briefly αg-closed) [17] if αcl(A) ⊆ U whenever  A ⊆ U and U is open in (X, τ). 
(6) a generalized semi pre-closed set (briefly gsp-closed[12] if spcl(A) ⊆ U whenever A ⊆ U and U is open in (X, τ). 
(7) a generalized  pre-closed set (briefly gp-closed[19] if pcl(A) ⊆ U whenever A ⊆ U and U is open in (X, τ). 
(8) a g*-closed set [23] if cl(A) ⊆ U whenever A ⊆ U and U is open in (X, τ). 
(9) a *gα-closed set [24] if cl(A) ⊆ U whenever A ⊆ U and U is gα-open in (X, τ). 
 
The class of all g-closed sets (gsp-closed sets) of a space (X, τ) is denoted by GC(X, τ)(GSPC(X,τ )). 
 
Definition 2.3:  A topological space (X, τ) is said to be 
(1) a Tb space [9] if every gs-closed set  is closed. 
(2) an αTb space [8] if every αg-closed set is closed. 
(3) a T1/2

*  space [23] if every g*-closed set is closed. 
(4) a Tcspace [23] if every gs-closed set is g*-closed. 
(5) an αTcspace [23] if every αg-closed set is g*-closed. 
(6) an αT1/2

**  space [24] if every *gα-closed set is closed. 
(7) a Tc

** space [24] if every gs-closed set is *gα-closed. 
(8) an αTc

** space [24] if every αg-closed set is *gα-closed. 
  
Notation 2.5: For a space (X, τ),C(X, τ)(resp.SC(X, τ), α C(X, τ),G α C(X, τ),GC(X, τ),GSC(X, τ),αGC(X, τ)) denote 
the class of all closed (resp.semi-closed, α-closed, gα-closed, g-closed, gs-closed, αg-closed)subsets of (X, τ). 
   
3. BASIC PROPERTIES OF **gα-CLOSED SETS 
 
We introduce the following definition. 
 
Definition 3.1: A subset A of (X, τ) is called a **gα-closed set if cl(A)⊆U whenever A⊆U and U is *gα-open in (X, τ). 
The class of **gα-closed subset of (X, τ) is denoted by **GαC(X, τ). 
 
Theorem 3.2: Every closed set is a **gα-closed set. 
 
Proof: Let A⊆U and U is *gα-open set in X. Since A is closed, cl(A) = A. Then cl(A) = A⊆U  implies cl(A)⊆U. Hence 
A is **gα-closed set. 
  
The converse of the above theorem need not be true. It can be seen from the following example. 
 
Example 3.3: Let X = {a, b, c} with τ = {X,  φ, {a, b}}; τc = {X, φ, {c}}, **gα-closed sets ={X, φ,  {c}, {b, c},           
{a, c}}.Here {a, c} is a **gα-closed set but not a closed set of (X, τ). 
 
Theorem 3.4 Every g*-closed set is a **gα-closed set. 
 
Proof: Let A⊆U and U is *gα-open. Since every *gα-open set is g-open. Hence U is g-open. Since A is g*-closed, 
cl(A)⊆U. Hence A is **gα-closed set. 
 
The converse of the above theorem need not be true. It can be seen from the following example. 
 
Example 3.5: Let X = {a, b, c} with τ = {X, φ,{c}}; τc = {X, φ ,{a, b}},g*-closed sets ={ X, φ, {a, b}},**gα-closed sets 
={ X, φ, {a}, {b},{a, b}, {b, c}, {a, c}}. 
Here {b, c} is a **gα-closed set but not a g*-closed set of (X, τ).  
 
Theorem 3.6: Every *gα-closed set is a **gα-closed set. 
 
Proof: Let A⊆U and U is a *gα -open set in X. Since every *gα -open set is gα-open then U is gα-open set. Since A is 
*gα-closed, cl(A) ⊆ U. Hence A is a **gα-closed set. 
  
The converse of the above theorem need not be true. It can be seen from the following example. 
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Example 3.7: Let X = {a, b, c} with τ = {X, φ , {c}}; τc = {X, φ,{a, b}},*gα-closed set={ X, φ, {a, b}}, **gα-closed 
set={ X, φ , {a, b}, {b, c},{a, c}}. 
Here {b, c} is a **gα-closed set but not a *gα-closed set of (X, τ). 
 
Theorem 3.8: Every **gα-closed set is g-closed set. 
 
Proof: Let A⊆U and U is open set in X. Since every open set is *gα-open, U is *gα-open. Since A is a **gα-closed, 
cl(A) ⊆ U. Hence A is g-closed. 
 
The converse of the above theorem need not be true. It can be seen from the following example. 
. 
Example 3.9: Let X = {a, b, c}, with τ={X, φ, {a}, {b, c}}; τc = {X, φ, {a}, {b, c}},g-closed set={X, φ, {a},{b},{c},  
{a, b},{b, c}, {a, c}},**gα-closed set={ X, φ , {a}, {b, c}}. 
 
Here {a, b} is a g-closed set but not a **gα-closed set of (X, τ). 
 
Theorem 3.10:  Every **gα-closed set is a αg-closed set. 
 
Proof: Let A⊆U and U is open set. Since every open set is *gα-open, U is *gα-open. Since A is a**gα-closed,          
cl(A) ⊆ U. we know that αcl(A) ⊆ cl(A) ⊆U implies αcl(A) ⊆ U. Hence A is a αg-closed set. 
 
The converse of the above theorem need not be true. It can be seen from the following example. 
 
Example 3.11: Let X = {a, b, c} with τ = {X, φ,{a}, {b, c}}; τc = {X, φ, {a}, {b, c}},αg-closed set={X, φ, 
{a},{b},{c},{a, b},{b, c}, {a, c}},**gα-closed set={ X, φ, {a},{b, c}} . 
 
Here {a, b} is a αg-closed set but not a **gα-closed set of (X, τ). 
 
Theorem 3.12: Every **gα-closed set is a gs-closed set. 
 
Proof: Let A⊆U and U is an open set in X. Since every open set is *gα-open. Then U is *gα-open. Since A is          
**gα-closed set, cl(A) ⊆ U. We know that Scl(A) ⊆cl(A) ⊆U implies  Scl(A) ⊆ U. Hence A is a gs-closed set. 
 
The converse of the above theorem need not be true. It can be seen from the following example. 
 
Example 3.13: Let X = {a, b, c}, with τ = {X, φ, {a}, {b, c}}; τc = {X, φ, {a}, {b, c}},gs-closed set={X, φ, 
{a},{b},{c},{a, b},{b, c}, {a, c}},**gα-closed set={ X, φ, {a}, {b, c}}. 
 
Here {a, c} is a gs-closed set but not a **gα-closed set of (X, τ). 
 
Theorem 3.14: Every **gα-closed set is a gsp-closed set. 
 
Proof: Let A⊆U and U is an open set in X. Since every open set is *gα-open, U is *gα-open. Since A is **gα-closed, 
cl(A) ⊆U. We know that spcl(A) ⊆ cl(A) ⊆ U implies spcl(A) ⊆ U. Hence A is a gsp-closed set. 
  
The converse of the above theorem need not be true. It can be seen from the following example. 
 
Example 3.15: Let X = {a, b, c} with τ = {X, φ, {a}, {c}, {a, c}}; τc = {X, φ, {b}, {a, b}, {b, c}},  gsp-closed     
set={X, φ, {a},{b},{c},{a, b},{b, c}, {a, c}},**gα-closed set={ X , φ, {b}, {a, b}, {b, c}}. 
 
Here {a} is a gsp-closed set but not a **gα-closed set of (X, τ). 
 
Theorem 3.16: Every **gα-closed set is a gpr-closed set. 
 
Proof: Let A⊆U and U is an open set in X. Since every regular open set is *gα-open, U is *gα-open. Since A is        
**gα-closed, cl(A) ⊆ U. We know that Pcl(A) ⊆ cl(A) ⊆ U implies Pcl(A) ⊆ U. Hence A is a gpr-closed set. 
 
The converse of the above theorem need not be true. It can be seen from the following example. 
 
Example 3.17: Let X = {a, b, c} with τ = {X, φ , {a}}; τc = {X, φ , {b, c}}, gpr-closed set={X, φ, {a},{b},{c},{a, 
b},{b, c}, {a, c}},**gα-closed set={ X, φ, {b},{c},{a, b},{b, c}, {a, c}} 
Here {a} is a gpr-closed set but not a **gα-closed set of (X, τ). 
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Theorem 3.18: Every **gα-closed set is a gp-closed set. 
 
Proof: Let A⊆U and U is an open set in X. Since every open set is *gα -open, U is *gα-open set. Since A is **gα-closed, 
cl(A) ⊆ U. We know that Pcl(A) ⊆ cl(A) ⊆ U implies Pcl(A) ⊆ U. Hence A is a gp-closed set. 
 
The converse of the above theorem need not be true. It can be seen from the following example. 
 
Example 3.19: Let X = {a, b, c}with τ = {X, φ, {a, b}}; τc = {X, φ, {c}},gp-closed set={X, φ, {a},{b},{c},{b, c},       
{a, c}},**gα-closed set={ X, φ , {c},{b, c}, {a, c}}. 
 
Here {a} is a gp-closed set but not a **gα-closed set of (X, τ). 
 
Remark 3.20: **gα- closedness is independent of α-closedness and semi-closedness, it can be seen from the following 
examples            
   
Examples 3.21: Let X = {a, b, c} with τ = {X, φ, {b}, {a, b}};τc = {X, φ, {a, c}, {c}}, **gα-closed set={X, φ , {c},    
{b, c}, {a, c}},α-closed set={ X, φ , {a}, {c}, {a, c}},semi-closed set={ X, φ , {a}, {c}, {a, c}}. 
 
Let A = {b, c} is a **gα-closed sets, but not a α-closed set and semi-closed set in (X, τ). 
 
Examples 3.22: Let X = {a, b, c} with τ = {X, φ, {b}, {a, b}};τc = {X, φ, { c}, {a, c}}, **gα-closed set={X, φ, {c},    
{b, c}, {a, c}},α-closed set={ X, φ , {a}, {c}, {a, c}}, semi-closed set={ X, φ, {a}, {c}, {a, c}}. 
 
Here {a} is a  α-closed set and semi-closed set, but not a **gα-closed set in (X, τ). 
 
Remark 3.23: **gα- closedness is independent of pre-closedness and semi-pre closedness, it can be seen from the 
following examples  
 
Examples 3.24: Let X = {a, b, c} with τ = {X, φ, {b}, {a, b}};τc = {X, φ, {c}, {a, c}} ,**gα-closed set={X, φ, {c},      
{b, c}, {a, c}},Pre–closed set = {X, φ , {a}, {c}, {a, c}},Semi-pre closed set ={X, φ, {a}, {c}, {a, c}} 
 
Here {b, c} is a **gα-closed sets, but not a pre-closed set and semi-pre closed set in (X, τ). 
 
Examples 3.25: Let X = {a, b, c} with τ = {X, φ, {b}, {a, b}};τc = {X, φ, {c}, {a, c}},**gα-closed set={X, φ, {c},      
{b, c}, {a, c}},pre-closed set={ X , φ, {a}, {c}, {a, c}},semi-pre closed set={ X , φ, {a}, {c}, {a, c}} 
 
Let B = {a} is a pre-closed set and semi-pre closed set, but not a  **gα-closed set in (X, τ). 
 
Remark 3.26: **gα- closedness is independent of sg-closedness and gα- closedness, it can be seen from the following 
examples 
 
Example 3.27: Let X = {a, b, c} with τ = {X, φ, {b}, {a, b}};τc = {X, φ, {c}, {a, c}},**gα-closed set={ X, φ , {c},       
{b, c}, {a, c}}, sg-closed set={ X, φ, {a}, {c}, {a, c}},gα-closed set={ X, φ, {a}, {c}, {a, c}} 
 
Let A = {b, c} is a **gα-closed set, but not a sg-closed set and gα- closed set in (X, τ). 
 
Examples 3.28: Let X = {a, b, c} with τ = {X, φ, {b}, {a, b}}; τc = {X, φ, {c}, {a, c}},**gα-closed set={ X, φ, {c},     
{b, c}, {a, c}},sg-closed set={ X, φ , {a}, {c}, {a, c}}, gα-closed set={ X, φ, {a}, {c}, {a, c}} 
 
Here {a} is a sg-closed set and gα- closed set, but not a  **gα-closed set in (X, τ). 
 
Theorem 3.29: If A and B are **gα-closed sets. Then AU B is also a **gα-closed set. 
 
Proof: Let A  and B are **gα-closed sets.  Let AU B⊆U, U is *gα-open. Since A and B are  **gα-closed sets, cl(A)⊆  U 
and cl(B) ⊆ U. This implies that cl(AU B) = cl(A) U cl(B)⊆U implies   cl(AU B) ⊆ U. Therefore AUB is **gα-closed 
set. 
 
Remark 3.30: The intersection of two **gα-closed set is again **gα-closed set. 
 
Theorem 3.31: Let X be a topological space. A subset A of (X, τ) is **gα-open if and only if U⊆(Int(A)), Whenever U 
is *gα-closed set and U ⊆ A. 
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Proof: Let A be a **gα-open set and U is *gα- closed set such that U⊆ A implies X-A ⊆ X-U and X-A is a **gα-closed 
set. So cl(X-A) ⊆ X-U implies (X-(X-U)) ⊆ (X- cl(X-A)) = U. But (X- cl(X-A)) = Int(A). Thus U ⊆Int(A). 
Conversely, suppose A is subset such that U ⊆Int(A). Whenever U  is *gα- closed and U ⊆ A. We show that X-A is 
**gα- closed set. Let X-A⊆U, Where U is *gα-open. Since X-A ⊆ U implies X-U ⊆ A. By assumption that we must 
have X-U ⊆Int(A) or X-Int(A)⊆  U. Now X-Int(A) = cl(X-A) which implies that cl (X-A)⊆  U and X-A is **gα-closed 
set. 
 
Remark 3.32: The following diagram shows that relationships between **gα-closed sets and some other sets in theorem 
3.2, 3.4, 3.6, 3.8, 3.10, 3.12, 3.14, 3.16,3.18 and remark 3.20, 3.23,3.26  and reference  [23], [24]. 
 
A         B (A         B) represents A implies B but not conversely (A and B are independent each other). 
 

 
    
4. APPLICATIONS OF **gα-CLOSED SETS 
 
We introduce the following definition. 
 
Definition 4.1: A space (X, τ) is called a αT1/2

*** space if every **gα-closed set is closed. 
 
Theorem 4.2: Every T1/2 space is an αT1/2

*** space. 
 
Proof: Let A be a **gα-closed set of (X, τ).  Since every **gα-closed set is g-closed, A is a g-closed. Since (X, τ) is a 
T1/2 space, A is closed. Therefore (X, τ) is an αT1/2

*** space. 
   
The converse of the above theorem need not be true. It can be seen from the following example. 
   
Example4.3:Let X={a, b, c} with τ ={X , φ,{a},{b ,c}};τc={X, φ,{a}, {b, c}},g-closed set={X, φ, {a},{b},{c},          
{a, b},{b, c}, {a, c}},**gα-closed set={  X, φ , {a}, {b ,c}}. 
 
Here (X, τ) is an αT1/2

*** space but not a T1/2 space. Since {a, b} is a g-closed set, but not a closed set of (X, τ). 
 
Theorem 4.4: Every Tb space is an αT1/2

*** space. 
 
Proof:  Let A be a **gα-closed set of (X, τ). Since every **gα-closed set is gs-closed, A is a gs-closed. Since (X, τ) is a 
Tb space, A is closed. Therefore (X, τ) is an αT1/2

*** space. 
 
The space in the following example is an αT1/2

*** space, but not a Tb space. 
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Example 4.5: Let X = {a, b, c} with τ ={X, φ, {a}, {b, c}};τc={X, φ ,{a}, {b ,c}},gs-closed set={ X, φ , {a},{b},{c}, 
{a, b},{b, c}, {a, c}},**gα-closed set={ X, φ,{a}, {b, c}} 
 
Here (X, τ) is an αT1/2

*** space but not a Tb space. Since {a, b} is a gs-closed set but not a closed set. 
 
Theorem 4.6: Every αTb space is αT1/2

*** space. 
 
Proof: Let A be a **gα-closed set of (X, τ). Since every **gα-closed set is αg-closed, A is a αg-closed. Since (X, τ) is a 
αTb space, A is closed. Therefore (X, τ) is an αT1/2

*** space. 
 
The space in the following example is an αT1/2

*** space, but not an αTb space. 
 
Example 4.7: Let X={a, b, c} with τ ={X, φ ,{a},{b, c}};τc={X, φ , {a}, {b, c}},αg-closed set={X , φ, {a},{b},{c},    
{a, b},{b, c}, {a, c}},**gα–closed set={ X, φ, {a}, {b, c}} 
 
Here (X, τ) is an αT1/2

*** space but not an αTb space. Since {a, b} is an αg-closed set but not a closed set. 
 
The following theorem gives a characterization of αT1/2

*** space.  
 
Theorem 4.8: If (X, τ) is an αT1/2

***space, then every singleton of X is either *gα-closed or open. 
 
Proof: Let x ϵX and suppose that {x} is not a *gα–closed set of (X, τ). Then X/{x} is not a*gα-open. This implies that 
X is the only *gα-open set containing X/{x}. So X/{x} is a **gα-closed set of (X, τ). Since (X, τ) is an αT1/2

*** space. 
X/{x} is closed (or) equivalently {x} is open in (X, τ). 
 
Theorem 4.9: Every αT1/2

*** space is αT1/2
** space. 

 
Proof: Let A be *gα-closed set of (X, τ). Since every *gα-closed set is **gα-closed set. Since (X, τ) is an αT1/2

***space, A 
is closed. Therefore (X, τ) is an αT1/2

** space. 
 
The converse of the above theorem is not true. It can be seen by the following example. 
 
Exampl 4.10: Let X= {a, b, c} with τ ={X,  φ, {c}};τc={X , φ, {a, b}} 
*gα-closed set={X, φ , {a, b}},**gα–closed set={ X, φ,  {a},{b},{a, b},{b, c}, {a, c}] 
 
Here (X, τ) is an αT1/2

** space. Let A = {a, c} be a**gα–closed set but not closed set. Therefore (X, τ) is not an αT1/2
*** 

space. 
 
Theorem 4.11: Every αT1/2

*** space is a T1/2
* space. 

 
Proof: Let A-be g*-closed set of (X, τ). Since every g*-closed set is **gα–closed set. Since (X, τ) is an αT1/2

***space, A 
is closed. Therefore (X, τ) is a T1/2

* space. 
 
The converse of the above theorem is not true. It can be seen by the following example. 
 
Example 4.12: Let X={a, b, c} with τ ={X, φ,{c}};τc={X, φ, {a, b}},g*-closed set={ X, φ, {a, b}},  **gα–closed 
set={X, φ, {a},{b},{a, b},{b, c}, {a, c}}. 
 
Here (X, τ) is a T1/2

* space. Let A = {a, c} be a**gα–closed set, but not closed set. Therefore (X, τ) is not an αT1/2
*** 

space. 
 
Definition 4.13: A space of (X, τ) is called a Tc

***space if every gs-closed set is  **gα-closed. 
 
The following Theorem gives a characterization of Tc

***spaces. 
 
Theorem 4.14: If (X, τ) is a Tc

***space, then every singleton of X is either closed or**gα-open. 
 
Proof: Let xϵ X and suppose that {x} is not a closed set of (X, τ). Then X/{x} is not an open. This implies x is the only 
open set containing X/{x}. So, X/{x} is gs-closed set of (X, τ). Since (X, τ) is Tc

*** space. X/{x} is a **gα-closed set or 
equivalently {x} is **gα-open in (X, τ). 
 
The converse of the above theorem is not true. It can be seen by the following example. 
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Example 4.15: Let X = {a, b, c} with τ = {φ, X,{a},{c}, {a, c}};τc={X, φ, {b, c}, {a, b}, {b}}**gα-open                  
set={ X, φ, {a},{c}, {a, c}}, gs-closed set={X, φ , {a},{b},{c},{a, c}, {a, b}}, **gα-closed set={X , φ,{a,}, {a, b},      
{a, c}}. Here {a} and {c} are**gα-open sets and {b} is a closed set but (X, τ) is not a Tc

*** space. Since {a} is a          
gs-closed but not a **gα-closed set of (X, τ). 
 
Theorem 4.16: Every Tb space is a Tc

***space. 
 
Proof: Let A be a gs- closed set of (X, τ). Since (X, τ) is a Tb space, A is closed. Since every closed set is **gα-closed, 
A is **gα-closed set. Therefore (X, τ) is a Tc

*** space. 
 
The converse of the above theorem is not true. It can be seen by the following example. 
 
Example4.17: Let X = {a, b, c} with τ ={X, φ , {a, b}};τc={X, φ , {c}},**gα-closed set={ X, φ , {c},{b, c}, {a, c}} 
 
Here {b, c} is a **gα-closed set of (X, τ), but it is not a closed set of (X, τ). 
 
Theorem 4.18: Every Tc

***space is a Td space. 
 
Proof: Let A be gs-closed set of (X, τ). Since (X, τ) is a Tc

*** space. A is **gα-closed set. Since every **gα-closed set is 
g-closed, A is g-closed set. Therefore (X, τ) is a Td-space. 
 
The converse of the above theorem is not true. It can be seen by the following example. 
 
Example 4.19: Let X = {a, b, c} with τ ={X, φ, {a}, {b, c}};τc={X, φ ,{a}{b,c}},gs-closed set={X, φ, {a},{b},{c},     
{a, b},{b, c}, {a, c}},**gα-closed set={ X, φ , {a}, {b ,c}} 
 
Here {b} is a gs-closed set, but not **gα-closed set. 
 
Theorem 4.20:  Every Tc

*** space is a αTd space. 
 
Proof: Let A be an αg-closed set of (X, τ). Since every αg-closed set is gs-closed, A is gs-closed. Since (X, τ) is a 
Tc

***space, A is **gα-closed. Since every **gα-closed set g-closed, A is g-closed set. Therefore (X, τ) is an αTd space. 
 
The converse of the above theorem is not true. It can be seen by the following example. 
 
Example 4.21: Let X = {a, b, c} with τ ={X, φ, {a}, {b, c}}; τc={X, φ ,{a},{b, c}},αg-closed set={X, φ, 
{a},{b},{c},{a, b},{b, c}, {a, c}},gs-closed set={X, φ , {a},{b},{c},{a, b},{b, c}, {a, c}},**gα-closed set={X, φ, {a}, 
{b, c}}.Here {a, b} is an αg-closed set, but not a **gα-closed set. 
 

Theorem 4.22: The space (X, τ) is a Tb space if and only if it is a Tc
*** space and  αT1/2

***. 
 
Proof: Necessity part: Let A be a gs- closed set of (X, τ). Since (X, τ) is a Tb space, A is closed. Since every closed set 
is **gα-closed. A is **gα-closed set. Therefore (X, τ) is a Tc

*** space Let A be a**gα-closed set of (X, τ). Since every 
**gα-closed set is gs-closed, A is a gs-closed. Since (X, τ) is a Tb space, A is closed. Therefore (X, τ) is an            
αT1/2

*** space.            
 
Sufficient part: Let A-be a gs-closed set of (X, τ). Since (X, τ) is a Tc

*** space, A is **gα-closed set. Since (X, τ) is an 
αT1/2

*** space, A is closed. Therefore (X, τ) is a Tb space. 
 
Theorem 4.23: Every Tc-space is a Tc

***space. 
 
Proof: Let A be a gs-closed set. Since (X, τ) is a Tc space, A is a g*-closed set. Since every g*-closed set is **gα-closed 
set, A is **gα-closed. Therefore (X, τ) is a Tc

***space. 
 
The converse of the above theorem is not true. It can be seen by the following example. 
 
Example 4.24: Let X = {a, b, c} with τ ={X, φ, {c}}; τc={X, φ, {a, b}},g*-closed set={X, φ, {a, b}}, gs-closed        
set={ X, φ , {a},{b},{a, b},{b, c}, {a, c}},**gα-closed set={ X, φ, {a}, {b}, {a, b},{b, c}, {a, c}}. 
 
Here (X, τ) is a Tc

*** space. Let A = {a, c} be a gs-closed set but not a g*-closed set. Therefore (X, τ) is not a Tc space. 
 
Theorem 4.25: Every Tc

** space is a Tc
***space. 
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Proof: Let A be a gs-closed set of (X, τ). Since (X, τ) is a Tc

***space, A is *gα-closed. Since every *gα-closed set is 
**gα-closed. Therefore (X, τ) is a Tc

*** space. 
 
The converse of the above theorem is not true. It can be seen by the following example. 
 
Example 4.26: Let X = {a, b, c} with τ ={X, φ , {c}} ;τc={X, φ, {a, b}},*gα-closed set={X, φ , {a, b}}, gs-closed    
set={ X, φ , {a},{b},{a, b},{b, c}, {a, c}},**gα-closed set={ X, φ , {a}, {b}, {a, b},{b, c}, {a, c}} 
 
Here (X, τ) is a Tc

*** space. Let A = {a, c} be a gs-closed set but not a *gα-closed set. Therefore (X, τ) is not a Tc
** 

space.  
 
Remark 4.27: Tc

*** space and αT1/2
*** space are independent of each other. It can be seen by the following examples. 

 
Example 4.28: Let X = {a, b, c} with τ ={X, φ, {a}, {b, c}}; τc={X, φ,{b, c}, {a}},αg-closed set={X, φ,  
{a},{b},{c},{a, b},{b, c}, {a, c},**gα-closed set={X, φ, {a},{b},{c},{a, b},{b, c}, {a, c}} ,gs-closed set={X, φ, 
{a},{b},{c},{a, b}, {a, c} }.  
 
Here (X, τ) is an αT1/2

*** space but not Tc
*** space. Since {b} is a gs-closed set but not closed set. 

 
Example 4.29: Let X= {a, b, c} with τ ={X, φ, {a, b}}; τc= {X, φ, {c}}, **gα-closed set={ X, φ, {c},{b, c}, {a, c}} 
 
Here (X, τ) is a Tc

*** space but not an αT1/2
*** space. Since {b, c} is a **gα-closed set but not closed set. 

 
Definition 4.30: A space (X, τ) is called an  αTc

*** space if every αg-closed set is **gα-closed. 
 
Theorem 4.31: Every αTc

*** space is a αTd space. 
 
Proof: Let A be a αg-closed set of (X, τ).since (X, τ) is an   αTc

*** space, A is **gα-closed. Since every **gα-closed set is 
g-closed, A is g-closed set. Therefore (X, τ) is an αTd space. 
 
The converse of the above theorem is not true. It can be seen by the following example. 
 
Example 4.32: Let X ={a, b, c} with τ ={X, φ, {a}, {b, c}}; τc={X, φ, {a}{b, c}},αg-closed set={X, φ, {a},{b},{c},   
{a, b},{b, c}, {a, c}},**gα-closed set={X , φ,{a},{b, c}},g- closed set={ X , φ, {a},{b},{c},{a, b},{b, c}, {a, c}}. 
 
Here (X, τ) is a αTd space but not an αTc

*** space. Since {c} is an αg -closed set but not **gα -closed set. 
 
Theorem 4.33: Every Tc

*** space is an αTc
***space. 

 
Proof: Let A be a αg-closed set of (X, τ). Since every αg-closed set is gs-closed, A is gs-closed. Since (X, τ) is a Tc

*** 
space, A is **gα-closed set. Therefore (X, τ) is an αTc

*** space. 
 
The converse of the above theorem is not true. It can be seen by the following example. 
 
Example 4.34: Let X = {a, b, c} with τ ={X, φ, {a}, {b},{a, b}}; τc={X, φ ,  { c}, {a, c}, {b, c}},αg-closed set={ X, φ, 
{c},{b, c}, {a, c}},gs-closed set={ X, φ, {a},{b},{c},{a, b},{b, c}, {a, c}},**gα- closed set={ X, φ,  { c}, {a, c},          
{b, c}}.Here (X, τ) is a αTc

*** space but not a Tc
*** space. Since {a, b} is a gs-closed set but not **gα-closed set. 

 
Theorem 4.35: Every Tb space is an αTc

***space. 
 
Proof: Let A be a αg-closed set of (X, τ). Since every αg-closed set is gs-closed, A is gs-closed. Since (X, τ) is a Tb 
space, A is closed set. Since every closed set is **gα-closed, A is a **gα-closed set. Therefore (X, τ) is an  αTc

*** space. 
 
The converse of the above theorem is not true. It can be seen by the following example. 
 
Example 4.36: Let X ={a, b, c}with τ ={X, φ, {a, b}}; τc={X, φ, {c}},αg-closed set={ X, φ, {c}, {a, c}, {b, c}},         
gs-closed set={ X, φ, {c}, {a, c}, {b ,c}},**gα- closed set={X, φ , {c},{b, c}, {a, c}} 
 
Here (X, τ) is an αTc

*** space but not a Tb space. Since {a, c} is a gs-closed set but not closed set. 
 
Theorem 4.37: Every αTb space is an αTc

***space. 
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Proof: Let A be a αg-closed set of (X, τ) since (X, τ) is an αTb space, A is closed. Since every closed set is **gα-closed, 
A is **gα-closed set. Therefore (X, τ) is an αTc

***space. 
 
The converse of the above theorem is not true. It can be seen by the following example. 
 
Example 4.38: Let X = {a, b, c} with τ = {X, φ, {a, b}}; τc= {X, φ, {c}},αg-closed set={ X, φ, {b, c}, {a, c}, 
{c}},**gα-closed set={ X, φ, { c},{a, c}, {b, c}} 
 
Here (X, τ) is an αTc

*** space but not an αTb space. Since {b, c} is an αg-closed set but not closed set. 
 
Theorem 4.39: Every αTc space is an αTc

***space. 
 
Proof: Let A be a αg-closed set. Since (X, τ) is a αTc space, A is a g*-closed set. Since every g*-closed set is **gα-closed 
set, A is **gα-closed. Therefore (X, τ) is a Tc

***space. 
 
The converse of the above theorem is not true. It can be seen by the following example. 
 
Example 4.40: Let X = {a, b, c} with τ ={X,  φ, {c}}; τc={X, φ , {a, b}},  g*-closed set={ X, φ, {a, b}} 
αg-closed set={ X, φ , {a},{b},{a, b},{b, c}, {a, c}},**gα- closed set={ X, φ, {a},{b}, {a, b},{b, c}, {a, c}} 
 
Here (X, τ) is a αTc

*** space but not a αTc space. Let A = {a, c} is an αg-closed set but not a g*-closed set. Therefore (X, 
τ) is not a αTc space. 
 
Theorem 4.41: Every αTc

** space is an αTc
***space. 

 
Proof: Let A be a αg-closed set. Since (X, τ) is an  αTc

**space, A is a *gα-closed set. Since every *gα-closed set is     
**gα-closed set, A is **gα-closed. Therefore (X, τ) is a Tc

***space. 
 
The converse of the above theorem is not true. It can be seen by the following example. 
 
Example 4.42: Let X = {a, b, c} with τ ={X, φ , {c}};τc={X, φ , {a, b},*gα-closed set={X, φ, {a, b}},                         
αg-closed set={ X, φ ,{a},{b},{a, b},{b, c}, {a, c},**gα- closed set={ X, φ , {a},{b}, {a, b},{b, c}, {a, c}} 
Here (X, τ) is a αTc

*** space. Let A = {a, c} is an αg-closed set but not a *gα-closed set. Therefore (X, τ) is not a αTc** 
space. 
 
Theorem 4.43: A space(X, τ) is an αTb space iff it is an αTc

***and an αT1/2
*** 

 
Proof: Necessity part: Let A be a αg-closed set of (X, τ) since (X, τ) is an αTb space, A is closed. Since every closed 
set is **gα-closed, A is **gα-closed set. Therefore (X, τ) is an αTc

***space. Let A be a **gα-closed set of (X, τ). Since 
every **gα-closed set is     αg-closed, A is a αg-closed. Since (X, τ) is an αTb space, A is closed. Therefore (X, τ) is an 
αT1/2

*** space. 
         
Sufficient part:  Let A be a αg-closed set of (X, τ). Since (X, τ) is an αTc

*** space, A is**gα-closed. Since (X, τ) is an 
αT1/2***space, A is closed set. Therefore (X, τ) is an αTb space. 
 
Remark 4.44: αTc

*** space and T1/2
*** space are independent of each other. It can be seen from the following example. 

 
Example 4.45: Let X = {a, b, c} with τ = {X, φ, {a, b}};τc={X, φ, {c}},**gα-closed set={ X , φ, { c}, {a, c}, {b, c}} 
 
Here (X, τ) is an αTc

*** space but not an αT1/2
*** space. Since {a, c} is a **gα-closed set but not closed set. 

 
Example 4.46: Let X ={a, b, c}with τ ={X, φ, {a}, {b, c}};τc={X, φ, {a}, {b, c}},αg-closed set={ X, φ, {a},{b},{c},{a, 
b}, {b, c}, {a, c}}**gα-closed={ X, φ, {a},{b, c}} 
 
Here (X, τ) is a αT1/2

*** space, but not an αTc
*** space. Since {b} is an αg-closed set but not **gα-closed set. 

 
Definition 4.47: A space (X, τ) is called a ***

αT1/2 space if every g-closed set is **gα-closed. 
 
Theorem 4.48: Every T1/2 space is an ***

αT1/2 space. 
 
Proof: Let A be a g-closed set of (X, τ) since (X, τ) is an T1/2 space, A is closed. Since every closed set is **gα-closed, 
A is **gα-closed set. Therefore (X, τ) is an ***

αT1/2 space. 
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The converse of the above theorem is not true. It can be seen by the following example. 
 
Example 4.49: Let X= {a, b, c} with τ ={X, φ, {a, b}};τc={X, φ , {c}},**gα-closed set={ X, φ, {c},{b, c}, {a, c}},    g-
closed set={ X , φ, {c},{b, c}, {a, c}} 
 
Here (X, τ) is a ***

αT1/2 space but not T1/2 space. Since {b, c} is a g-closed set but not closed set. 
 
Theorem 4.50: Every Tb space is a ***

αT1/2 space. 
 
Proof: Let A be a g-closed set of (X, τ). Since every g-closed set is gs-closed, A is gs-closed. Since (X, τ) is a Tb space, 
A is closed set. Since every closed set is **gα-closed, A is **gα-closed set. Therefore (X, τ) is an αTc

*** space. 
 
The converse of the above theorem is not true. It can be seen by the following example. 
 
Example 4.51: Let X = {a, b, c} with τ ={X, φ, {b, c}};τc={X, φ, {a}},**gα-closed set={ X, φ , {a},{a, b}, {a, c}} 
g-closed set={X, φ, {a},{a, b}, {a, c}},gs- closed set={ X, φ, {a},{a, b}, {a, c}} 
 
Here (X, τ) is a ***

αT1/2 space but not a Tb space. Since {a, b} is a gs-closed set but not closed set. 
 
Theorem 4.52: Every αTb   space is a ***

αT1/2 space. 
 
Proof: Let A be a g-closed set of (X, τ). Since every g-closed set is αg-closed, A is αg-closed. Since (X, τ) is an αTb 
space, A is closed set. Since every closed set is **gα-closed, A is **gα-closed set. Therefore (X, τ) is an ***

αT1/2 space. 
 
The converse of the above theorem is not true. It can be seen by the following example. 
 
Example 4.53: Let X = {a, b, c}with τ ={X, φ ,{a, c}};τc={X, φ,{b}},g-closed set={ X, φ, {b},{a, b}, {b, c}} 
gs-closed set= {X, φ , {b},{a, b}, {b, c}},**gα- closed set={ X, φ,{b},{a, b}, {b, c}},αg-closed set={ X, φ , {b},{a, b}, 
{b, c}} 
 
Here (X, τ) is a ***

αT1/2 space but not an αTb space. Since {b, c} is an αg-closed set but not closed set. 
 
Theorem 4.54: Every Tc

*** space is a ***
αT1/2 space. 

 
Proof: Let A be a g-closed set of (X, τ). Since every g-closed set is gs-closed, A is gs-closed set. Since (X, τ) is a 
Tc

***space, A is **gα-closed set. Therefore (X, τ) is an ***
αT1/2 space. 

 
The converse of the above theorem is not true. It can be seen by the following example. 
 
Example 4.55: Let X = {a, b, c} with τ ={X,φ, {b}, {c}, {b, c}};τc={X, φ, {a}, {a, b}, {a, c}} 
g-closed set={ X, φ ,{a}, {a, b}, {a, c}},gs-closed set={ X, φ , {a}, {b}, {c}, {a, c}, {a, b}} 
**gα- closed set={X, φ ,{a},{a, b}, {a, c}}  
 
Here (X, τ) is a ***

αT1/2 space but not an Tc
***space. Since {b} is a gs-closed set but not **gα-closed set. 

 
Theorem 4.56: The space (X, τ) is a T1/2 space if and only if it is a ***

αT1/2 space and an αT1/2
*** space. 

 
Proof: Necessity part: Let A be a g-closed set of (X, τ) since (X, τ) is an T1/2 space, A is closed. Since every closed set 
is **gα-closed, A is **gα-closed set. Therefore (X, τ) is an ***

αT1/2 space. Let A be a **gα-closed set of (X, τ).  Since 
every **gα-closed set is g-closed, A is a g-closed. Since (X, τ) is a T1/2 space, A is closed. Therefore (X, τ) is an αT1/2

*** 
space.  
 
Sufficient part: Let A be a g-closed set of (X, τ). Since (X, τ) is an ***

αT1/2 space, A is **gα-closed. Since (X, τ)is an 
αT1/2

***space, A is closed set. Therefore (X, τ) is a T1/2 space. 
 
Remark 4.57: ***

αT1/2 space and αT1/2
*** space are independent of each other. It can be seen from the following example 

 
Example 4.58: Let X= {a, b, c} with τ ={X, φ, {a},{b, c}};τc={X, φ , {a}, {b, c}} 
g-closed set ={ X, φ ,{a},{b},{c},{a, b},{b, c}, {a, c}},**gα-closed set ={ X, φ ,{a}, {b, c}} 
Here (X, τ) is an αT1/2

*** space but not an***
αT1/2 space. Since {c} is a g-closed set but not **gα-closed set. 

 
Example 4.59: Let X = {a, b, c} with τ ={X, φ, {a, c}};τc={X, φ , {b}},**gα-closed set={ X, φ ,{b},{a, b}, {b, c}} 
Here (X, τ) is a ***

αT1/2 space but not an αT1/2
***space. Since {a, b} is a **gα-closed set but not closed set. 
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Remark 4.60: The following diagram shows them relationship among the separation axioms considered in this paper 
and reference [23], [24]. A →B (A↔B) represents A implies B but B need not imply A always. (A and B are 
independent of each other).  
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