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ABSTRACT 
In the present paper, we study proximate type and order of entire function with index pair (p, q) p ( ) 11 ≥+≥ q and 
also with the help of means under certain condition for entire Dirichlet series. 
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1. INTRODUCTION   
 
The notation of order and type of entire functions are classical in complex analysis. For the entire function of complex 
variable, G.Valiron [7] refined these growth scales by introducing comparison functions, called proximate order  
 
In this paper our approach consists of using the extension of the classical notions of (p, q)-order (p, q) –type results of 
mean value of f(s) introduced by [1] .The concepts of (p, q)-order and (p, q) -type for entire function of complex 
variable were introduced by Juneja et al. [2,3]. The notion of proximate order was developed by Nandan et al. [8]. 
Later Kamthan [4] also studied the properties of proximate order .We defined the proximate (p, q) type of mean value 
N ( )σδ k, . This mean value was introduced by S.K. Vaish [6]  

   
PRELIMINARIES AND AUXILIARY RESULTS 
 
Consider the Dirichlet series, 
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is called maximum modulus of  f(s). 
 
The concept of (p, q)- order, lower  (p, q) -order, (p, q) -type, lower (p, q)- type of entire function f(s) is introduced  by 
Juneja [2 ,3]. 
 
Thus f(s) is said to be of (p, q) order ρ if  
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Further, b < ρ < ∞ then  f(s) is said to be of (p ,q)- type  τ and lower (p, q)- type υ if 
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where b=1 if p=q+1  ,b=0 if p>q+1 and [ ] =xplog log log [ ]1−p x  An  entire function is said to be of perfectly regular 
(p,q)- growth  iff   0< ∞<=τυ  
 
Mean value of f(s) is introduced by S.K.Vaish [6]  
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For an entire Dirichlet series (p, q) - order ρ  (p, q) - typeτ and lower (p, q) - typeυ  defined by Kamthan [4]. We can 
easily prove that 
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Definition: A real valued positive function ( )στ  defined  on [ )∞,0σ 00 >σ  is said to be proximate type of an entire 
Dirichlet series with index (p,q) -order ρ,  (b <  ρ< ∞ ) and (p, q)-type τ (0<τ< ∞ ), if  for given  constant α  (0<α< ∞ ) 
τ(σ)   satisfies the following  conditions: 
i)    ( )στ  is continuous and piecewise differentiable for 0σσ >       
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2. MAIN RESULTS  
 
We wish to prove the following 
 
Theorem 1: If f(s) be an entire function of (p, q)- order ρ and (p, q)- type τ and lower (p, q)- type υ  Then                                                                                                                                                                                                     
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Lemma 1: If f(s) be an entire function of  (p,q)-order ρ and (p,q)- type τ and lower (p  q)-type υ . Then  

                               ( ) ( )σσ δδ kNI ,log~log .                                                                                                           (2.2) 
The result is proved by A. Nautiyal [5] 
 
Proof of theorem 1: we can easily prove that  
                                [ ] ( ) [ ] ( )σσ δδ k

pp NI ,
11 log~log −−                                                                                              (2.3) 

Dividing (2.3) both sides by [ ]( )ρσ1log −p and taking limit ∞→σ .                      
 
Then using (1.5) we get (2.1)                                                                                                    
 
Theorem 2: If f(s) be an entire function with  (p, q)- order ρ  (b<ρ<∞ ) , (p, q)- type τ and lower (p, q)- type υ  

where ∞<≤< τυ0 . Then 
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Proof:   Let  
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for β  =0 the inequality (2.4) is trivially true. Let β  >0 then for givenε >0 and 0σσ >       
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On integrating both side from  σ   to 0σ         
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Dividing by [ ]( )ρσ1log −q and taking limit both side, we get                                                                                                                
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Again let                                   
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For 𝜆𝜆=0  the  inequality  is  trivially  true, if 𝜆𝜆 > 0  then for given 
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Proceed  in  similar  way we  get  
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Thus from (2.6) & (2.7) we get 
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Theorem 3: If f(s) be an entire function of (p, q) - order ρ and (p, q)- type τ ( )∞<<τ0 . If we define the function     
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Then L(σ)  is proximate type of f(s), where α  is constant  

Proof: For a given constant α. We have defined (2.8). The function L(σ) is continuous for σ>σ0 since Iδ(σ)  is  almost 

differentiable function σ with an increasing derivative .Then  Nδ, k(σ) is also almost differentiable  everywhere.      

 

 
log[p-1 ]Nδ,k (σ)  is differentiable almost everywhere. Consequently L(σ) is piecewise differentiable  we have         
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by theorem (2) and (2.1) we get  
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From definition of   L (σ)   
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It follows that L(σ) satisfies all properties (i) to (iv).Hence L(σ) is a proximate type of  f(s). 
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