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ABSTRACT

The aim of the present paper is to obtain i) a common fixed point theorem for compatible mappings by using the
concept of asymptotic regularity and ii) a common fixed point theorem using the concept of joint reciprocal continuity
in a 2-Menger space.
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1. INTRODUCTION

The study of 2-metric spaces was initiated by Gdbhler [3] and some fixed point theorems in 2-Metric spaces were
proved in HadZi¢ [7], Rhoades [9] and Iseki [8]. The probabilistic 2-metric spaces were first introduced in Golet ([4],
[5]), proved a fixed point theorem in probabilistic metric spaces. Some fixed point theorems in a 2-Menger space are
proved in Golet [6] and HadZi¢ [7]. Badshah and Gopal Meena [1] proved a fixed point theorem for a pair of self-maps
on a 2-metric space.

In this paper we introduce the notion of a 2-Menger space and obtain i) a common fixed point theorem (Th 2.1) for
compatible mappings by using the concept of asymptotic regularity and ii) a common fixed point theorem using the
concept of joint reciprocal continuity in a 2-Menger space. Supporting example is also provided (example 2.3).

1.1 Notations: The set of all real numbers is denoted by R and set of all non-negative real numbers is denoted by R*.

1.2 Definition (Sehgal and Bharucha-Reid [10]): A mapping F: R — [0,1] is said to be a distribution function if it
is non-decreasing, left-continuous with /2% F(t) = 0 and %% F(t) = 1.

The set of all distribution functions is denoted by © and D+ = {F € D|F(0) = 0}.

1.3 Definition (Gdhler [3]): A 2-metric space is an ordered pair (X,d) where X is an abstract set and d: X3 - R*
such that

i)  For distinct points x, y € X there exists a point z € X such that d(x,y,z) # 0

i) d(x,y,z) =0 if at least two of x,y and z are equal

i) d(x,y,z) =d(x,z,y) =d(y,z,x) Vx,y,z € X

iv) d(x,y,z) <d(x,y,u) +d(x,u,z)+du,yz) Vx,y,z,u € X.

The function d is called a 2-metric for the space X and the pair (X, d) denotes a 2-metric space.
The following definitions on the concept of 2-Menger spaces are given by Golet [6].

1.4 Definition (Golet [6]): A probabilistic 2-metric space (P-2-M space) is an ordered pair (X, F) where F: X3 - D* is
such that
i) FE,.()=1vt>0 ifandonlyif atleast two of the three points x, y and z are equal,
FE,,(t)=0vVt<0Vxyz€X
if) For distinct points x, y € X there exists a point z € X such that F,,, ,(¢) # 1 if t >0
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”I) F;cyz(t)=Eczy(t)=F;/zx(t)
iv) If nyw(tl):]-'Ecwz(tZ):landeyz(t3)=1then
Ecyz(tl +t+t3) =1

1.5 Definition (Golet [6]): A mapping *: [0,1] — [0,1] is said to be 2- t- norm if
i) *(a,1,1)=a
ii) =(a,b,c) =+ (a,c,b) =+(c,b,a)
iii) x(a,b,c) <x(d,e,f)ifa<d b<eandc<f
iv) *(x(a,b,c),d,e)=x(ax*(bcd),e)= = (a, b,* (c,d, e)) va,b,c,d, e € [0,1]

1.6 Example: If = is defined as *= min(a, b,c),a, b,c € [0,1] then = isa 2- t-norm.

1.7 Definition (Golet [6]): A 2-Menger space is a triplet (X, F,*) where (X,F) is a P -2 -M space, * is a 2- t-norm
satisfying the following inequality:

nyz (t1+t2+t3) = * (nyw(tl)'Ecwz(tZ)'Fwyz(t3)) Vx'y'Z'W € X.

1.8 Definition (Golet [6]): Let (X,F,x) be a 2-Menger space and = be a continuous 2-t-norm, then (X, F,*) is
Hausdroff in the topology induced by the family of neighborhoods,U, (s, Aag,ay .., an), x,a, €EX,e>0,
i=1,2,..,nand 1 € (0,1) where Ux(s,/l,al,aZ, ...,an) = {y € X|F;yai(s) >1-11<i< n}

=N {y €X|F o) >1-21<i<n}.

1.9 Definition (Golet [6]): Let (X, F,*) be a 2-Menger space and * be a continuous 2- t-norm. A sequence {x,} in X is
said to converge to a point x € X if for every € > 0 and 4 € (0,1), there exists an integer M(g, 1) such that
E, xa(t) >1— 21 wheneverm,n = M(¢, 1) and a € X.

1.10 Definition (Golet [6]): A sequence {x,} in a 2-Menger space (X, F,*) is said to be a Cauchy sequence if for
everye > 0 and A € (0,1), there exists an integer M(g, 1) such that
E. x, a(t) >1—21 whenever m,n = M(g, 1) and a € X.

1.11 Definition (Golet [6]): A 2-Menger space (X, F,*) is said to be complete if each Cauchy sequence in X converges
to a point of X.

1.12 Definition: A sequence {x,} ina2-Menger space (X, F,*) is said to be asymptotically regular with respect to the
pair (S, T) of self-mappings on X if
limn_,oo stn Tx, a (t) =1Va € X.

1.13 Definition (Chang [2]): Two self-mapping S and T on 2-Menger space (X, F,*) is said to be compatible if

A Fry, Tsx, o (1) =1 V& > 0, whenever {x,} is a sequence in X such that

Im"Sx, =z =,/ Tx, for somez € X.

1.14 Example: Let X = R and define d: X3 — R by
d(x,y,2) = {0 , if at le'ast two of the three points x,y, z are equal
2 ,otherwise

Then (X, d) is a 2-metric space. Define F : X3 - D" by

t . A .
E,,@®) = T then (X, F) is a probabilistic 2-metric space.

If x:[0,1] - [0,1] is defined as * = min{r,s,t}, 7,s,t € [0,1], then (X, F,*) is a 2-Menger space.

1.15 Notation: Write
¥ = {y| ¢:[0,1] - [0,1],¢ is continous , (1) = 1 and Y(t) > t vVt € (0,1)}.

1.16 Example: Define v: [0,1] - [0,1] as ¥(t) = % Then € ¥ .
2. MAIN RESULTS

In this section first we prove our first main result using the concept of asymptotic regularity.
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2.1Theorem: Let P,Sand T be self-mappings of a complete 2-Menger space(X, F,*), where = is a continuous

2- t-norm, satisfying the following conditions:

i) Fpx pyo(t) = l/)(min{pr sxa(t), Fpy sy a(t)}), Vx,y,a € X and for somey € ¥
ii) the pairs (P,S) and (P, T) are compatible
iii) there exists a sequence {x,, } which is asymptotically regular with respect to (P, S) and (P, T)
iv) S and T are continuous.
Then P,S and T have unique common fixed pointin X.

Proof: Let{x,} be asequence in X satisfying condition (iii).

By taking x = x,, and y = x,, in (i), we obtain
FPxn Pxm q (t) 2 lp(min{FPanxn a(t)' FmeSxm a(t)})

On letting n — oo, using condition(iii), we obtain
w2l By Py o (0) 2 Yp(min{1,1}) = (1) = 1

This implies
lirl?—mo FPx,, Pxp a(t) =1Va€eX.

Thus {Px, } is a Cauchy sequence in X. Since X is complete we have
Px, -z forsome zeX.

Now Fan z a(t) = * (Fan z Pxy (t)' Fan Pxy a (t)r FP Xpza (t))

On letting n — o, using condition(iii), (2.1.1) and continuity of *, we get

nh—IPwHFSx,l 2a®)2x(111) =1

This implies " Fs, ,,(t) =1 Vt>0.
i.e Sx, — z.

Now
FTxn z a(t) = * (FTxn z Pxp (t)' FTxn Pxy a(t)' FPxn z a(t))

On letting n — o, using condition (iif), (2.1.1) and continuity of x, we get
nlgga FTxnza(t) =% (1:1'1) =1

This implies "™*Fr, ,,(t) =1 Vt>0
ie Tx, - z.

Since
FPSx,, Sz a (t) = * (FPTxn Sz SPxy (t)r FPan SPxy a(t)' FSPx,, Sza (t))

applying condition (iv) in (2.1.1), we get
SPx, = Sz

On letting n — oo in (2.1.4), using condition (ii) and (2.1.5), we get
A Fpsy s,a(t) =1 Ya € Xand t > 0.

This implies
PS x, — Sz

From condition (iv) we have T is continuous, applying this in (2.1.1) we get
TPx, > Tz

Since
Fpry,17a(8) =% (FPTanz Pxn (O Fprxy TPxn a () Frpx, 12 a(f)>
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On letting n — oo, using condition (ii) and (2.1.7), we get
nli')‘rr; FPTanZ a(t) = 1, Ya€eX and t> O

This implies
PTx, - Tz. (2.1.8)

By letting x = Sx,, and y = Tx,, in (i), we get
FPanPTx" a (t) = lp(min{FPSx,,San a(t)' FPTx,,STx" a(t)})

On letting n — oo, using condition(iv), we have
Tx, = z implies TTx,, - Tz and Sx,, = z implies SSx, = Sz

Using this and also using (2.1.7) and (2.1.8), we get
FSZ Tz a(t) = l/)(min{FSz Sza (t)r FTZ Sz a(t)})

This implies Fg, 7, o (£) = Y(Fr, 5, (1))
Thatis Fg,p,,(t) =1

Therefore
Sz=Tz (2.1.9)

Again by taking x = Tx,, and y = z in (i), we have
FPTx,, Pz a (t) P lp(min{FPTxn STxp a (t)r FPZ Sza (t)})
On letting n — oo, using (2.1.8) and applying condition (iv) in (2.1.3) implies STx,, — Sz, applying this in the above
equation, we get
FTZ Pz a(t) = l/)(mm{l, FPz Tz a (t)})

This implies
FTZ Pz a(t) = lp(FPz Tz a(t))

That is
FTsza(t) = 1 Ya € X

Hence
Tz = Pz

Thus
Pz =Tz = Sz. (2.1.10).

Now by taking x =x, andy =z in(i), we get
FPanz a(t) = lp(min{FPanxn a(t)' FPZ Tz a(t)})

On letting n — oo, using (2.1.1), (2.1.2) and (2.1.10), we get
F, Pza(t) 2 ¢(min{1,1}) = l)b(l) =1

This implies F,p,,(t) =1 Vt>0
Thus z = Pz.
Hence z is a common fixed pointof P,S and T.

Let x be a common fixed point of P, S and T, then from(i), we have
FPx Pz a(t) 2 lp(min{FPx Sx a (t)' FPz Sz a(t)})

This implies
FX zZa (t) 2 lp(mln{EC X a(t)! F‘Z zZa (t)})

That isF, , . (t) = Y(min{1,1}) = (1) = 1 and thus F,,,(t) =1 hence x = z.
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Therefore z is the uniqgue common fixed point of P,S and T.
Now, we state our second main result which uses the concept of joint reciprocal continuity.

2.2 Theorem: Let P,S and T be self-mappings of a complete 2-Menger space (X, F,*), where = is a continuous 2 -t-
norm, satisfying the following conditions:-
i) Fpx pyo(t) = l/)(min{pr sxa(t), Fpy sy a(t)}), Vx,y,a € X and for some{ € ¥
i) S and T are continuous.
iii) (S, T) is jointly reciprocally continuous with respect P in X.
Then P,S and T have unique common fixed point in X.

Proof: From condition (iii) there exists a sequence {x, } in X such that
Jim Gy, = im Px, = M Tx, =z for somez € X (2.2.1)

andnlg& FPanSPxn a(t) =1= nlzngPTanPxn a(t) Va € X (222)

Applying condition (ii) in equation (2.2.1) and using this in the equation (2.2.2), we get
PSx, — Sz and PTx, - Tz (2.2.3)

By taking x = Sx,,,y = Tx, in (i) and on letting n — oo, using (ii), (iii),(2.2.2) and (2.2.3),we get Sz = Tz
Similarly by taking x = Tx,, and y = z in (i) and on letting n — o, we get Pz = Tz.

Therefore Sz = Pz = Tz.

By taking x = x, and y = z in (i) and on letting n — oo, we get Pz = z. Therefore z is a fixed point of P.

Hence z is a common fixed point of P,S and T . Suppose x is a common fixed point of P,S and T . Then it can be
easily proved that x = z.

Hence z is the unique common fixed point of P,S and T.

2.3 Example: Let (X, F,*) be a complete 2-Menger space as defined in example (1.14) and ¢ € ¥ be as defined in
example (1.16). Let P, S and T be self-maps on X such that P(x) = xoxg € Xand S =T = 1. Then P,S and T satisfy
all the hypothesis of theorem 2.1 and Theorem 2.2 and x,, is the unique common fixed point of P,S and T in X.
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