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ABSTRACT 
The aim of the present paper is to obtain  i) a common fixed point theorem for compatible mappings by using the 
concept of asymptotic regularity and ii) a common fixed point theorem using the concept of joint reciprocal continuity 
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1. INTRODUCTION  
 
The study of 2-metric spaces was initiated by G�̈�𝑎hler [3] and some fixed point theorems in 2-Metric spaces were 
proved in Had�̌�𝑧i�́�𝑐 [7], Rhoades [9] and Iseki [8]. The probabilistic 2-metric spaces were first introduced in Golet ([4], 
[5]), proved a fixed point theorem in probabilistic metric spaces. Some fixed point theorems in a 2-Menger space are 
proved in Golet [6] and Had�̌�𝑧i�́�𝑐 [7]. Badshah and Gopal Meena [1] proved a fixed point theorem for a pair of self-maps 
on a 2-metric space.  
 
In this paper  we introduce the notion of a 2-Menger space and obtain  i) a common fixed point theorem  (Th 2.1) for 
compatible mappings by using the concept of asymptotic regularity and ii) a common fixed point theorem using the 
concept of joint reciprocal continuity in  a 2-Menger space. Supporting example is also provided (example 2.3). 
 
1.1 Notations: The set of all real numbers is denoted by 𝑅𝑅 and set of all non-negative real numbers is denoted by 𝑅𝑅+. 

 
1.2 Definition (Sehgal and Bharucha-Reid [10]):  A mapping 𝐹𝐹:𝑅𝑅 → [0,1] is said to be a distribution function if it 

is non-decreasing, left-continuous with  𝐹𝐹(𝑡𝑡)𝑡𝑡∈𝑅𝑅
𝑖𝑖𝑖𝑖𝑖𝑖 = 0 and    𝐹𝐹(𝑡𝑡)𝑡𝑡∈𝑅𝑅

𝑠𝑠𝑠𝑠𝑠𝑠 = 1. 
 
The set of all distribution functions is denoted by 𝔇𝔇 and   𝔇𝔇+ =  {𝐹𝐹 ∈ 𝔇𝔇|𝐹𝐹(0) = 0}.     
 
1.3 Definition (G�̈�𝒂hler [3]): A 2-metric space is an ordered pair (𝑋𝑋,𝑑𝑑) where 𝑋𝑋 is an abstract set and  𝑑𝑑:𝑋𝑋3 → 𝑅𝑅+ 
such that   

i) For distinct points 𝑥𝑥,𝑦𝑦 ∈ 𝑋𝑋 there exists a point 𝑧𝑧 ∈ 𝑋𝑋 such that 𝑑𝑑(𝑥𝑥,𝑦𝑦, 𝑧𝑧) ≠ 0 
ii) 𝑑𝑑(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 0 if at least two of  𝑥𝑥,𝑦𝑦 𝑎𝑎𝑖𝑖𝑑𝑑 𝑧𝑧 are equal 
iii) 𝑑𝑑(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝑑𝑑(𝑥𝑥, 𝑧𝑧,𝑦𝑦) = 𝑑𝑑(𝑦𝑦, 𝑧𝑧, 𝑥𝑥) ∀𝑥𝑥,𝑦𝑦, 𝑧𝑧 ∈ 𝑋𝑋 
iv) 𝑑𝑑(𝑥𝑥,𝑦𝑦, 𝑧𝑧) ≤ 𝑑𝑑(𝑥𝑥,𝑦𝑦,𝑠𝑠) + 𝑑𝑑(𝑥𝑥,𝑠𝑠, 𝑧𝑧) + 𝑑𝑑(𝑠𝑠,𝑦𝑦, 𝑧𝑧) ∀𝑥𝑥,𝑦𝑦, 𝑧𝑧,𝑠𝑠 ∈ 𝑋𝑋. 

 
The function 𝑑𝑑 is called a 2-metric for the space 𝑋𝑋 and the pair (𝑋𝑋,𝑑𝑑)  denotes a 2-metric space.  
 
The following definitions on the concept of 2-Menger spaces are given by Golet [6]. 
 
1.4 Definition (Golet [6]): A probabilistic 2-metric space (P-2-M space) is an ordered pair (𝑋𝑋,𝐹𝐹) where 𝐹𝐹:𝑋𝑋3 → 𝔇𝔇+  is 
such that  

i) 𝐹𝐹𝑥𝑥  𝑦𝑦  𝑧𝑧(𝑡𝑡) = 1 ∀ 𝑡𝑡 > 0  if and only if  at least two of the three points 𝑥𝑥,𝑦𝑦 𝑎𝑎𝑖𝑖𝑑𝑑 𝑧𝑧 are equal, 
𝐹𝐹𝑥𝑥  𝑦𝑦  𝑧𝑧(𝑡𝑡) = 0 ∀𝑡𝑡 ≤ 0  ∀𝑥𝑥,𝑦𝑦, 𝑧𝑧 ∈ 𝑋𝑋 

ii) For distinct points 𝑥𝑥,𝑦𝑦 ∈ 𝑋𝑋 there exists a point 𝑧𝑧 ∈ 𝑋𝑋 such that 𝐹𝐹𝑥𝑥  𝑦𝑦  𝑧𝑧(𝑡𝑡) ≠ 1  𝑖𝑖𝑖𝑖 𝑡𝑡 > 0 
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iii) 𝐹𝐹𝑥𝑥  𝑦𝑦  𝑧𝑧(𝑡𝑡) = 𝐹𝐹𝑥𝑥  𝑧𝑧  𝑦𝑦(𝑡𝑡) = 𝐹𝐹𝑦𝑦  𝑧𝑧  𝑥𝑥(𝑡𝑡) 
iv)   𝐼𝐼𝑖𝑖   𝐹𝐹𝑥𝑥  𝑦𝑦  𝑤𝑤(𝑡𝑡1) = 1,𝐹𝐹𝑥𝑥  𝑤𝑤  𝑧𝑧(𝑡𝑡2) = 1 𝑎𝑎𝑖𝑖𝑑𝑑 𝐹𝐹𝑤𝑤  𝑦𝑦  𝑧𝑧(𝑡𝑡3) = 1 𝑡𝑡ℎ𝑒𝑒𝑖𝑖  

𝐹𝐹𝑥𝑥  𝑦𝑦  𝑧𝑧  (𝑡𝑡1 + 𝑡𝑡2 + 𝑡𝑡3) = 1 
 

1.5 Definition (Golet [6]): A mapping  ∗∶ [0,1]3 → [0,1] is said to be 2- t- norm if 
i) ∗ (𝑎𝑎, 1,1) = 𝑎𝑎 
ii) ∗ (𝑎𝑎, 𝑏𝑏, 𝑐𝑐) =∗ (𝑎𝑎, 𝑐𝑐, 𝑏𝑏) =∗ (𝑐𝑐, 𝑏𝑏, 𝑎𝑎) 
iii) ∗ (𝑎𝑎, 𝑏𝑏, 𝑐𝑐)  ≤ ∗ (𝑑𝑑, 𝑒𝑒, 𝑖𝑖) if 𝑎𝑎 ≤ 𝑑𝑑, 𝑏𝑏 ≤ 𝑒𝑒 𝑎𝑎𝑖𝑖𝑑𝑑 𝑐𝑐 ≤ 𝑖𝑖 
iv) ∗ (∗ (𝑎𝑎, 𝑏𝑏, 𝑐𝑐),𝑑𝑑, 𝑒𝑒) = ∗ (𝑎𝑎,∗ (𝑏𝑏, 𝑐𝑐,𝑑𝑑), 𝑒𝑒) =   ∗ �𝑎𝑎, 𝑏𝑏,∗ (𝑐𝑐,𝑑𝑑, 𝑒𝑒)� ∀𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑, 𝑒𝑒 ∈ [0,1] 

 
1.6 Example: If ∗ is defined as  ∗= min(𝑎𝑎, 𝑏𝑏, 𝑐𝑐) , 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 ∈ [0,1]  then ∗  is a 2- t-norm. 
 
1.7 Definition (Golet [6]): A 2-Menger space is a triplet (𝑋𝑋,𝐹𝐹,∗) where (𝑋𝑋,𝐹𝐹) is a P -2 -M space, ∗ is a 2- t-norm 
satisfying the following inequality: 

𝐹𝐹𝑥𝑥  𝑦𝑦  𝑧𝑧  (𝑡𝑡1+𝑡𝑡2+𝑡𝑡3) ≥ ∗ �𝐹𝐹𝑥𝑥  𝑦𝑦  𝑤𝑤(𝑡𝑡1),𝐹𝐹𝑥𝑥  𝑤𝑤  𝑧𝑧(𝑡𝑡2),𝐹𝐹𝑤𝑤  𝑦𝑦  𝑧𝑧(𝑡𝑡3)�  ∀𝑥𝑥,𝑦𝑦, 𝑧𝑧,𝑤𝑤 ∈ 𝑋𝑋. 
 
1.8 Definition (Golet [6]): Let (𝑋𝑋,𝐹𝐹,∗) be a 2-Menger space and  ∗ be a continuous 2-t-norm, then (𝑋𝑋,𝐹𝐹,∗) is 
Hausdroff in the topology induced by the family of neighborhoods,U𝑥𝑥�𝜀𝜀, 𝜆𝜆, 𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝑖𝑖�, 𝑥𝑥, 𝑎𝑎𝑖𝑖 ∈ 𝑋𝑋, 𝜀𝜀 > 0,                   
𝑖𝑖 = 1,2, … ,𝑖𝑖 and 𝜆𝜆 ∈ (0,1) where   U𝑥𝑥�𝜀𝜀, 𝜆𝜆, 𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝑖𝑖� = �𝑦𝑦 ∈ 𝑋𝑋�𝐹𝐹𝑥𝑥  𝑦𝑦  𝑎𝑎𝑖𝑖(𝜀𝜀) > 1 − 𝜆𝜆, 1 ≤ 𝑖𝑖 ≤ 𝑖𝑖� 
                                                                                              = ⋂ �𝑦𝑦 ∈ 𝑋𝑋�𝐹𝐹𝑥𝑥  𝑦𝑦  𝑎𝑎𝑖𝑖(𝜀𝜀) > 1 − 𝜆𝜆, 1 ≤ 𝑖𝑖 ≤ 𝑖𝑖�𝑖𝑖

𝑖𝑖=1  . 
                                                         
1.9 Definition (Golet [6]): Let (𝑋𝑋,𝐹𝐹,∗) be a 2-Menger space and ∗ be a continuous 2- t-norm. A sequence {𝑥𝑥𝑖𝑖} in 𝑋𝑋 is 
said to converge to a point 𝑥𝑥 ∈ 𝑋𝑋 if for every 𝜀𝜀 > 0 𝑎𝑎𝑖𝑖𝑑𝑑 𝜆𝜆 ∈ (0,1), there exists an integer M(𝜀𝜀, 𝜆𝜆)  such that  

                     𝐹𝐹𝑥𝑥𝑖𝑖  𝑥𝑥  𝑎𝑎(𝑡𝑡) > 1 − 𝜆𝜆  𝑤𝑤ℎ𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒r m, 𝑖𝑖 ≥ M(𝜀𝜀, 𝜆𝜆)  𝑎𝑎𝑖𝑖𝑑𝑑 𝑎𝑎 ∈ 𝑋𝑋. 
 
1.10 Definition (Golet [6]): A sequence {𝑥𝑥𝑖𝑖 } in a 2-Menger space (𝑋𝑋,𝐹𝐹,∗) is said to be a Cauchy sequence if for 
every𝜀𝜀 > 0 𝑎𝑎𝑖𝑖𝑑𝑑 𝜆𝜆 ∈ (0,1), there exists an integer M(𝜀𝜀, 𝜆𝜆)  such that  

𝐹𝐹𝑥𝑥𝑖𝑖  𝑥𝑥𝑚𝑚  𝑎𝑎(𝑡𝑡) > 1 − 𝜆𝜆  𝑤𝑤ℎ𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒r   𝑚𝑚,𝑖𝑖 ≥ M(𝜀𝜀, 𝜆𝜆) 𝑎𝑎𝑖𝑖𝑑𝑑 𝑎𝑎 ∈ 𝑋𝑋. 
 
1.11 Definition (Golet [6]): A 2-Menger space (𝑋𝑋,𝐹𝐹,∗)  is said to be complete if each Cauchy sequence in 𝑋𝑋 converges 
to a point of 𝑋𝑋. 
 
1.12 Definition: A sequence  {𝑥𝑥𝑖𝑖 }  in a 2-Menger space (𝑋𝑋,𝐹𝐹,∗)  is said to be asymptotically regular with respect to the 
pair  (𝑆𝑆,𝑇𝑇) of self-mappings on 𝑋𝑋 if  

lim𝑖𝑖→∞  𝐹𝐹𝑆𝑆𝑥𝑥𝑖𝑖  𝑇𝑇𝑥𝑥𝑖𝑖  𝑎𝑎  (𝑡𝑡) = 1 ∀𝑎𝑎 ∈ 𝑋𝑋. 
 
1.13 Definition (Chang [2]): Two self-mapping  𝑆𝑆 𝑎𝑎𝑖𝑖𝑑𝑑 𝑇𝑇 on 2-Menger space  (𝑋𝑋,𝐹𝐹,∗)  is said to be compatible if  

 𝐹𝐹𝑆𝑆𝑇𝑇𝑥𝑥𝑖𝑖  𝑇𝑇𝑆𝑆𝑥𝑥𝑖𝑖  𝑎𝑎  (𝑡𝑡) = 1  ∀𝑡𝑡 > 0𝑖𝑖→∞
lim , whenever {𝑥𝑥𝑖𝑖 }  is a sequence in  𝑋𝑋 such that 

 𝑆𝑆𝑥𝑥𝑖𝑖 = 𝑧𝑧 =   𝑇𝑇𝑥𝑥𝑖𝑖𝑖𝑖→∞
𝑙𝑙𝑖𝑖𝑚𝑚   𝑖𝑖𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑚𝑚𝑒𝑒 𝑧𝑧 ∈ 𝑋𝑋𝑖𝑖→∞

lim . 
 
1.14 Example: Let 𝑋𝑋 = 𝑅𝑅 and define 𝑑𝑑: 𝑋𝑋3  → 𝑅𝑅 by 

𝑑𝑑(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = �0 ,   𝑖𝑖𝑖𝑖 𝑎𝑎𝑡𝑡 𝑙𝑙𝑒𝑒𝑎𝑎𝑠𝑠𝑡𝑡 𝑡𝑡𝑤𝑤𝑓𝑓 𝑓𝑓𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑡𝑡ℎ𝑓𝑓𝑒𝑒𝑒𝑒 𝑠𝑠𝑓𝑓𝑖𝑖𝑖𝑖𝑡𝑡𝑠𝑠 𝑥𝑥,𝑦𝑦, 𝑧𝑧 𝑎𝑎𝑓𝑓𝑒𝑒 𝑒𝑒𝑒𝑒𝑠𝑠𝑎𝑎𝑙𝑙
2 , 𝑓𝑓𝑡𝑡ℎ𝑒𝑒𝑓𝑓𝑤𝑤𝑖𝑖𝑠𝑠𝑒𝑒     .                                                                             

� 

 
Then  (𝑋𝑋,𝑑𝑑) is a 2-metric space.  Define 𝐹𝐹 ∶ 𝑋𝑋3  → 𝔇𝔇+ by 

𝐹𝐹𝑥𝑥  𝑦𝑦  𝑧𝑧  (𝑡𝑡) =  𝑡𝑡
𝑡𝑡+𝑑𝑑(𝑥𝑥 ,𝑦𝑦 ,𝑧𝑧)

 , then (𝑋𝑋,𝐹𝐹) is a probabilistic 2-metric space. 
 
If ∗ ∶ [0,1]3 → [0,1] is defined as ∗ =  min{𝑓𝑓, 𝑠𝑠, 𝑡𝑡} , 𝑓𝑓, 𝑠𝑠, 𝑡𝑡 ∈ [0,1] , then (𝑋𝑋,𝐹𝐹,∗) is a 2-Menger space. 
 
1.15 Notation:  Write  
Ψ = {𝜓𝜓| 𝜓𝜓: [0,1] → [0,1],𝜓𝜓 𝑖𝑖𝑠𝑠 𝑐𝑐𝑓𝑓𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝑓𝑓𝑠𝑠𝑠𝑠 ,𝜓𝜓(1) = 1 𝑎𝑎𝑖𝑖𝑑𝑑 𝜓𝜓(𝑡𝑡) > 𝑡𝑡 ∀𝑡𝑡 ∈ (0,1)}. 
 
 
1.16 Example: Define  𝜓𝜓: [0,1] → [0,1]  𝑎𝑎𝑠𝑠  𝜓𝜓(𝑡𝑡) = 𝑡𝑡+1

2
.  𝑇𝑇ℎ𝑒𝑒𝑖𝑖 𝜓𝜓 ∈ Ψ  . 

 
2. MAIN RESULTS 
 
In this section first we prove our first main result using the concept of asymptotic regularity. 
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2.1Theorem:   Let 𝑃𝑃, 𝑆𝑆 𝑎𝑎𝑖𝑖𝑑𝑑 𝑇𝑇 be self-mappings of a complete 2-Menger space(𝑋𝑋,𝐹𝐹,∗), where ∗ is a continuous          
2- t-norm, satisfying the following conditions: 

i) 𝐹𝐹𝑃𝑃𝑥𝑥   𝑃𝑃𝑦𝑦  𝑎𝑎(𝑡𝑡) ≥ 𝜓𝜓�𝑚𝑚𝑖𝑖𝑖𝑖�𝐹𝐹𝑃𝑃𝑥𝑥  𝑆𝑆𝑥𝑥  𝑎𝑎(𝑡𝑡),𝐹𝐹𝑃𝑃𝑦𝑦  𝑆𝑆𝑦𝑦  𝑎𝑎(𝑡𝑡)�� , ∀𝑥𝑥,𝑦𝑦, 𝑎𝑎 ∈ 𝑋𝑋 𝑎𝑎𝑖𝑖𝑑𝑑 𝑖𝑖𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑚𝑚𝑒𝑒 𝜓𝜓 ∈ Ψ 
ii) the pairs (𝑃𝑃, 𝑆𝑆) 𝑎𝑎𝑖𝑖𝑑𝑑 (𝑃𝑃,𝑇𝑇) are compatible 
iii) there exists a sequence {𝑥𝑥𝑖𝑖 } which is asymptotically regular with respect to (𝑃𝑃, 𝑆𝑆) and (𝑃𝑃,𝑇𝑇) 
iv) 𝑆𝑆 𝑎𝑎𝑖𝑖𝑑𝑑 𝑇𝑇 are continuous.  

              Then  𝑃𝑃, 𝑆𝑆 𝑎𝑎𝑖𝑖𝑑𝑑 𝑇𝑇 have unique common fixed point in 𝑋𝑋. 
 
Proof:  Let {𝑥𝑥𝑖𝑖}  be  a sequence in 𝑋𝑋 satisfying condition (𝑖𝑖𝑖𝑖𝑖𝑖). 
 
By taking 𝑥𝑥 = 𝑥𝑥𝑖𝑖  𝑎𝑎𝑖𝑖𝑑𝑑 𝑦𝑦 = 𝑥𝑥𝑚𝑚  in (𝑖𝑖), we obtain 

𝐹𝐹𝑃𝑃𝑥𝑥𝑖𝑖  𝑃𝑃𝑥𝑥𝑚𝑚  𝑎𝑎 (𝑡𝑡) ≥ 𝜓𝜓�𝑚𝑚𝑖𝑖𝑖𝑖�𝐹𝐹𝑃𝑃𝑥𝑥𝑖𝑖𝑆𝑆𝑥𝑥𝑖𝑖  𝑎𝑎(𝑡𝑡),𝐹𝐹𝑃𝑃𝑥𝑥𝑚𝑚 𝑆𝑆𝑥𝑥𝑚𝑚  𝑎𝑎(𝑡𝑡)�� 
 
On letting   𝑖𝑖 → ∞ , using condition(𝑖𝑖𝑖𝑖𝑖𝑖), we obtain 

 𝐹𝐹𝑃𝑃𝑥𝑥𝑖𝑖  𝑃𝑃𝑥𝑥𝑚𝑚  𝑎𝑎 (𝑡𝑡) ≥ 𝜓𝜓(𝑚𝑚𝑖𝑖𝑖𝑖{1,1}) = 𝜓𝜓(1) = 1𝑖𝑖→∞
𝑙𝑙𝑖𝑖𝑚𝑚  

 
This implies 

 𝐹𝐹𝑃𝑃𝑥𝑥𝑖𝑖  𝑃𝑃𝑥𝑥𝑚𝑚  𝑎𝑎 (𝑡𝑡) = 1 𝑖𝑖→∞
lim ∀𝑎𝑎 ∈ 𝑋𝑋. 

 
Thus {𝑃𝑃𝑥𝑥𝑖𝑖 } is a Cauchy sequence in  𝑋𝑋. Since 𝑋𝑋 is complete we have 
𝑃𝑃𝑥𝑥𝑖𝑖 → 𝑧𝑧    for some   𝑧𝑧 ∈ 𝑋𝑋 .                                                                                                                                      (2.1.1) 
 
Now 𝐹𝐹𝑆𝑆𝑥𝑥𝑖𝑖  𝑧𝑧  𝑎𝑎(𝑡𝑡) ≥ ∗  �𝐹𝐹𝑆𝑆𝑥𝑥𝑖𝑖  𝑧𝑧  𝑃𝑃𝑥𝑥𝑖𝑖 (𝑡𝑡),𝐹𝐹𝑆𝑆𝑥𝑥𝑖𝑖  𝑃𝑃𝑥𝑥𝑖𝑖  𝑎𝑎(𝑡𝑡),𝐹𝐹𝑃𝑃 𝑥𝑥𝑖𝑖  𝑧𝑧  𝑎𝑎(𝑡𝑡)�   
 
On letting  𝑖𝑖 → ∞ , using condition(𝑖𝑖𝑖𝑖𝑖𝑖), (2.1.1) and continuity of ∗, we  get 

𝐹𝐹𝑆𝑆𝑥𝑥𝑖𝑖  𝑧𝑧  𝑎𝑎(𝑡𝑡)𝑖𝑖→∞
lim ≥ ∗ (1,1,1) = 1 

 
This implies  𝐹𝐹𝑆𝑆 𝑥𝑥𝑖𝑖  𝑧𝑧  𝑎𝑎(𝑡𝑡)𝑖𝑖→∞

lim = 1  ∀𝑡𝑡 > 0 . 
𝑖𝑖. 𝑒𝑒              𝑆𝑆𝑥𝑥𝑖𝑖 → 𝑧𝑧.                                                                                                                                                     (2.1.2) 
 
Now 
𝐹𝐹𝑇𝑇𝑥𝑥𝑖𝑖  𝑧𝑧  𝑎𝑎(𝑡𝑡) ≥ ∗ �𝐹𝐹𝑇𝑇𝑥𝑥𝑖𝑖  𝑧𝑧  𝑃𝑃𝑥𝑥𝑖𝑖 (𝑡𝑡),𝐹𝐹𝑇𝑇𝑥𝑥𝑖𝑖  𝑃𝑃𝑥𝑥𝑖𝑖  𝑎𝑎(𝑡𝑡),𝐹𝐹𝑃𝑃𝑥𝑥𝑖𝑖  𝑧𝑧  𝑎𝑎(𝑡𝑡)� 
 
On letting    𝑖𝑖 → ∞ , using condition (𝑖𝑖𝑖𝑖𝑖𝑖), (2.1.1) and continuity of ∗, we  get 

  𝐹𝐹𝑇𝑇𝑥𝑥𝑖𝑖  𝑧𝑧  𝑎𝑎(𝑡𝑡)𝑖𝑖→∞
𝑙𝑙𝑖𝑖𝑚𝑚 ≥ ∗ (1,1,1) = 1 

 
This implies    𝐹𝐹𝑇𝑇𝑥𝑥𝑖𝑖  𝑧𝑧  𝑎𝑎(𝑡𝑡)𝑖𝑖→∞

lim = 1   ∀𝑡𝑡 > 0 
 i.e   𝑇𝑇𝑥𝑥𝑖𝑖 → 𝑧𝑧.                                                                                                                                                              (2.1.3)    
 
Since  
𝐹𝐹𝑃𝑃𝑆𝑆𝑥𝑥𝑖𝑖  𝑆𝑆𝑧𝑧   𝑎𝑎(𝑡𝑡) ≥ ∗ �𝐹𝐹𝑃𝑃𝑇𝑇𝑥𝑥𝑖𝑖  𝑆𝑆𝑧𝑧   𝑆𝑆𝑃𝑃𝑥𝑥𝑖𝑖 (𝑡𝑡),𝐹𝐹𝑃𝑃𝑆𝑆𝑥𝑥𝑖𝑖  𝑆𝑆𝑃𝑃𝑥𝑥𝑖𝑖  𝑎𝑎(𝑡𝑡),𝐹𝐹𝑆𝑆𝑃𝑃𝑥𝑥𝑖𝑖  𝑆𝑆𝑧𝑧  𝑎𝑎(𝑡𝑡)�                                                                           (2.1.4) 
 
applying condition  (𝑖𝑖𝑒𝑒) in (2.1.1), we get  
𝑆𝑆𝑃𝑃𝑥𝑥𝑖𝑖 → 𝑆𝑆𝑧𝑧                                                                                                                                                                  (2.1.5) 
 
On letting 𝑖𝑖 → ∞ in (2.1.4), using condition (𝑖𝑖𝑖𝑖) and (2.1.5), we get 
   𝐹𝐹𝑃𝑃𝑆𝑆𝑥𝑥𝑖𝑖 𝑆𝑆𝑧𝑧  𝑎𝑎(𝑡𝑡)𝑖𝑖→∞
𝑙𝑙𝑖𝑖𝑚𝑚 = 1   ∀𝑎𝑎 ∈ 𝑋𝑋 𝑎𝑎𝑖𝑖𝑑𝑑 𝑡𝑡 > 0. 

 
This implies 
𝑃𝑃𝑆𝑆 𝑥𝑥𝑖𝑖 → 𝑆𝑆𝑧𝑧                                                                                                                                                                  (2.1.6) 
 
From condition (𝑖𝑖𝑒𝑒) 𝑤𝑤𝑒𝑒 ℎ𝑎𝑎𝑒𝑒𝑒𝑒 𝑇𝑇 is continuous, applying this in (2.1.1) we get  
𝑇𝑇𝑃𝑃𝑥𝑥𝑖𝑖 → 𝑇𝑇𝑧𝑧                                                                                                                                                                  (2.1.7) 
 
Since  
𝐹𝐹𝑃𝑃𝑇𝑇𝑥𝑥𝑖𝑖𝑇𝑇𝑧𝑧  𝑎𝑎(𝑡𝑡) ≥ ∗ �𝐹𝐹𝑃𝑃𝑇𝑇𝑥𝑥𝑖𝑖𝑇𝑇𝑧𝑧  𝑇𝑇𝑃𝑃𝑥𝑥𝑖𝑖 (𝑡𝑡),𝐹𝐹𝑃𝑃𝑇𝑇𝑥𝑥𝑖𝑖  𝑇𝑇𝑃𝑃𝑥𝑥𝑖𝑖  𝑎𝑎(𝑡𝑡),𝐹𝐹𝑇𝑇𝑃𝑃𝑥𝑥𝑖𝑖𝑇𝑇𝑧𝑧  𝑎𝑎(𝑡𝑡)� 
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On letting   𝑖𝑖 → ∞, using condition (𝑖𝑖𝑖𝑖) and (2.1.7), we get 

 𝐹𝐹𝑃𝑃𝑇𝑇𝑥𝑥𝑖𝑖 𝑇𝑇𝑧𝑧  𝑎𝑎(𝑡𝑡) = 1,    ∀𝑎𝑎 ∈ 𝑋𝑋  𝑎𝑎𝑖𝑖𝑑𝑑 𝑡𝑡 > 0𝑖𝑖→∞
𝑙𝑙𝑖𝑖𝑚𝑚 . 

 
This implies 
𝑃𝑃𝑇𝑇𝑥𝑥𝑖𝑖 → 𝑇𝑇𝑧𝑧 .                                                                                                                                                                (2.1.8) 
 
By letting 𝑥𝑥 = 𝑆𝑆𝑥𝑥𝑖𝑖  and 𝑦𝑦 = 𝑇𝑇𝑥𝑥𝑖𝑖  in (i), we get 

𝐹𝐹𝑃𝑃𝑆𝑆𝑥𝑥𝑖𝑖𝑃𝑃𝑇𝑇𝑥𝑥𝑖𝑖  𝑎𝑎(𝑡𝑡) ≥  𝜓𝜓�𝑚𝑚𝑖𝑖𝑖𝑖�𝐹𝐹𝑃𝑃𝑆𝑆𝑥𝑥𝑖𝑖 𝑆𝑆𝑆𝑆𝑥𝑥𝑖𝑖  𝑎𝑎(𝑡𝑡),𝐹𝐹𝑃𝑃𝑇𝑇𝑥𝑥𝑖𝑖𝑆𝑆𝑇𝑇𝑥𝑥𝑖𝑖  𝑎𝑎(𝑡𝑡)�� 
 
On letting 𝑖𝑖 → ∞ , using condition(𝑖𝑖𝑒𝑒), we have 

𝑇𝑇𝑥𝑥𝑖𝑖 → 𝑧𝑧 𝑖𝑖𝑚𝑚𝑠𝑠𝑙𝑙𝑖𝑖𝑒𝑒𝑠𝑠 𝑇𝑇𝑇𝑇𝑥𝑥𝑖𝑖 → 𝑇𝑇𝑧𝑧 𝑎𝑎𝑖𝑖𝑑𝑑 𝑆𝑆𝑥𝑥𝑖𝑖 → 𝑧𝑧 𝑖𝑖𝑚𝑚𝑠𝑠𝑙𝑙𝑖𝑖𝑒𝑒𝑠𝑠 𝑆𝑆𝑆𝑆𝑥𝑥𝑖𝑖 → 𝑆𝑆𝑧𝑧  
 
Using this and also using (2.1.7) and (2.1.8), we get 

𝐹𝐹𝑆𝑆𝑧𝑧  𝑇𝑇𝑧𝑧  𝑎𝑎(𝑡𝑡) ≥ 𝜓𝜓(𝑚𝑚𝑖𝑖𝑖𝑖{𝐹𝐹𝑆𝑆𝑧𝑧  𝑆𝑆𝑧𝑧  𝑎𝑎(𝑡𝑡),𝐹𝐹𝑇𝑇𝑧𝑧  𝑆𝑆𝑧𝑧  𝑎𝑎(𝑡𝑡)}) 
 
This implies  𝐹𝐹𝑆𝑆𝑧𝑧  𝑇𝑇𝑧𝑧  𝑎𝑎(𝑡𝑡) ≥ 𝜓𝜓(𝐹𝐹𝑇𝑇𝑧𝑧  𝑆𝑆𝑧𝑧  𝑎𝑎(𝑡𝑡)) 
 
That is    𝐹𝐹𝑆𝑆𝑧𝑧  𝑇𝑇𝑧𝑧  𝑎𝑎(𝑡𝑡) = 1 
 
Therefore  
𝑆𝑆𝑧𝑧 = 𝑇𝑇𝑧𝑧                                                                                                                                                                       (2.1.9) 
 
Again by taking 𝑥𝑥 = 𝑇𝑇𝑥𝑥𝑖𝑖  𝑎𝑎𝑖𝑖𝑑𝑑 𝑦𝑦 = 𝑧𝑧 in  (𝑖𝑖), we have 

𝐹𝐹𝑃𝑃𝑇𝑇𝑥𝑥𝑖𝑖  𝑃𝑃𝑧𝑧  𝑎𝑎(𝑡𝑡) ≥  𝜓𝜓�𝑚𝑚𝑖𝑖𝑖𝑖�𝐹𝐹𝑃𝑃𝑇𝑇𝑥𝑥𝑖𝑖   𝑆𝑆𝑇𝑇𝑥𝑥𝑖𝑖  𝑎𝑎(𝑡𝑡),𝐹𝐹𝑃𝑃𝑧𝑧  𝑆𝑆𝑧𝑧  𝑎𝑎(𝑡𝑡)��  
 
On letting  𝑖𝑖 → ∞, using (2.1.8)  and applying condition (𝑖𝑖𝑒𝑒) in (2.1.3) implies 𝑆𝑆𝑇𝑇𝑥𝑥𝑖𝑖 → 𝑆𝑆𝑧𝑧, applying this  in the above  
equation, we get 

𝐹𝐹𝑇𝑇𝑧𝑧  𝑃𝑃𝑧𝑧  𝑎𝑎(𝑡𝑡)  ≥ 𝜓𝜓(𝑚𝑚𝑖𝑖𝑖𝑖{1,𝐹𝐹𝑃𝑃𝑧𝑧  𝑇𝑇𝑧𝑧  𝑎𝑎(𝑡𝑡)}) 
 
This implies 

𝐹𝐹𝑇𝑇𝑧𝑧  𝑃𝑃𝑧𝑧  𝑎𝑎(𝑡𝑡)  ≥ 𝜓𝜓�𝐹𝐹𝑃𝑃𝑧𝑧  𝑇𝑇𝑧𝑧  𝑎𝑎(𝑡𝑡)� 
 
That is  
𝐹𝐹𝑇𝑇𝑧𝑧  𝑃𝑃𝑧𝑧  𝑎𝑎(𝑡𝑡) = 1   ∀𝑎𝑎 ∈ 𝑋𝑋 
 
Hence 
𝑇𝑇𝑧𝑧 = 𝑃𝑃𝑧𝑧      
 
Thus                                                                                         
𝑃𝑃𝑧𝑧 = 𝑇𝑇𝑧𝑧 = 𝑆𝑆𝑧𝑧.                                                                                                                                                          (2.1.10). 
 
Now by taking   𝑥𝑥 = 𝑥𝑥𝑖𝑖   and 𝑦𝑦 = 𝑧𝑧   in(𝑖𝑖), we get 

𝐹𝐹𝑃𝑃𝑥𝑥𝑖𝑖𝑃𝑃𝑧𝑧  𝑎𝑎(𝑡𝑡) ≥ 𝜓𝜓�𝑚𝑚𝑖𝑖𝑖𝑖�𝐹𝐹𝑃𝑃𝑥𝑥𝑖𝑖𝑆𝑆𝑥𝑥𝑖𝑖  𝑎𝑎(𝑡𝑡),𝐹𝐹𝑃𝑃𝑧𝑧  𝑇𝑇𝑧𝑧  𝑎𝑎(𝑡𝑡)�� 
 
On letting    𝑖𝑖 → ∞, using (2.1.1), (2.1.2) and (2.1.10), we get 

𝐹𝐹𝑧𝑧  𝑃𝑃𝑧𝑧  𝑎𝑎(𝑡𝑡) ≥ 𝜓𝜓(𝑚𝑚𝑖𝑖𝑖𝑖{1,1}) = 𝜓𝜓(1) = 1 
 
This implies  𝐹𝐹𝑧𝑧 𝑃𝑃𝑧𝑧  𝑎𝑎(𝑡𝑡) = 1   ∀𝑡𝑡 > 0 
 
Thus 𝑧𝑧 = 𝑃𝑃𝑧𝑧. 
 
Hence 𝑧𝑧 is a common fixed point of  𝑃𝑃, 𝑆𝑆 𝑎𝑎𝑖𝑖𝑑𝑑 𝑇𝑇. 
 
Let 𝑥𝑥 be a common fixed point of  𝑃𝑃, 𝑆𝑆 𝑎𝑎𝑖𝑖𝑑𝑑 𝑇𝑇, then from(𝑖𝑖), we have 

𝐹𝐹𝑃𝑃𝑥𝑥  𝑃𝑃𝑧𝑧  𝑎𝑎(𝑡𝑡) ≥ 𝜓𝜓(𝑚𝑚𝑖𝑖𝑖𝑖{𝐹𝐹𝑃𝑃𝑥𝑥  𝑆𝑆𝑥𝑥  𝑎𝑎(𝑡𝑡),𝐹𝐹𝑃𝑃𝑧𝑧  𝑆𝑆𝑧𝑧  𝑎𝑎(𝑡𝑡)}) 
 
This implies 

𝐹𝐹𝑥𝑥  𝑧𝑧  𝑎𝑎(𝑡𝑡) ≥ 𝜓𝜓(𝑚𝑚𝑖𝑖𝑖𝑖{𝐹𝐹𝑥𝑥  𝑥𝑥  𝑎𝑎(𝑡𝑡),𝐹𝐹𝑧𝑧  𝑧𝑧  𝑎𝑎(𝑡𝑡)}) 
 
That is𝐹𝐹𝑥𝑥  𝑧𝑧  𝑎𝑎(𝑡𝑡) ≥ 𝜓𝜓(𝑚𝑚𝑖𝑖𝑖𝑖{1,1}) = 𝜓𝜓(1) = 1 and thus   𝐹𝐹𝑥𝑥  𝑧𝑧  𝑎𝑎(𝑡𝑡) = 1  hence 𝑥𝑥 = 𝑧𝑧. 
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Therefore  𝑧𝑧 is the unique common fixed point of  𝑃𝑃, 𝑆𝑆 𝑎𝑎𝑖𝑖𝑑𝑑 𝑇𝑇. 
 
Now, we state our second main result which uses the concept of joint reciprocal continuity. 
 
2.2 Theorem: Let 𝑃𝑃, 𝑆𝑆 𝑎𝑎𝑖𝑖𝑑𝑑 𝑇𝑇 be self-mappings of a complete 2-Menger space (𝑋𝑋,𝐹𝐹,∗), where ∗ is a continuous 2 -t-
norm, satisfying the following conditions:- 

i) 𝐹𝐹𝑃𝑃𝑥𝑥   𝑃𝑃𝑦𝑦  𝑎𝑎(𝑡𝑡) ≥ 𝜓𝜓�𝑚𝑚𝑖𝑖𝑖𝑖�𝐹𝐹𝑃𝑃𝑥𝑥  𝑆𝑆𝑥𝑥  𝑎𝑎(𝑡𝑡),𝐹𝐹𝑃𝑃𝑦𝑦  𝑆𝑆𝑦𝑦  𝑎𝑎(𝑡𝑡)��,   ∀𝑥𝑥,𝑦𝑦, 𝑎𝑎 ∈ 𝑋𝑋 𝑎𝑎𝑖𝑖𝑑𝑑 𝑖𝑖𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑚𝑚𝑒𝑒 𝜓𝜓 ∈ Ψ 
ii) 𝑆𝑆 𝑎𝑎𝑖𝑖𝑑𝑑 𝑇𝑇 are continuous. 
iii) (𝑆𝑆,𝑇𝑇)  is jointly reciprocally continuous with respect   𝑃𝑃 𝑖𝑖𝑖𝑖 𝑋𝑋. 

Then  𝑃𝑃, 𝑆𝑆 𝑎𝑎𝑖𝑖𝑑𝑑 𝑇𝑇 have unique common fixed point in 𝑋𝑋. 
 
Proof: From condition (𝑖𝑖𝑖𝑖𝑖𝑖) there exists a sequence {𝑥𝑥𝑖𝑖 } in 𝑋𝑋 such that 

 𝑆𝑆𝑥𝑥𝑖𝑖 =𝑖𝑖→∞
𝑙𝑙𝑖𝑖𝑚𝑚  𝑃𝑃𝑥𝑥𝑖𝑖 =𝑖𝑖→∞

𝑙𝑙𝑖𝑖𝑚𝑚  𝑇𝑇𝑥𝑥𝑖𝑖 = 𝑧𝑧    𝑖𝑖𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑚𝑚𝑒𝑒 𝑧𝑧 ∈ 𝑋𝑋𝑖𝑖→∞
𝑙𝑙𝑖𝑖𝑚𝑚                                                                                             (2.2.1) 

 
and  𝐹𝐹𝑃𝑃𝑆𝑆𝑥𝑥𝑖𝑖 𝑆𝑆𝑃𝑃𝑥𝑥𝑖𝑖  𝑎𝑎(𝑡𝑡) = 1𝑖𝑖→∞

𝑙𝑙𝑖𝑖𝑚𝑚 = 𝐹𝐹𝑃𝑃𝑇𝑇𝑥𝑥𝑖𝑖 𝑇𝑇𝑃𝑃𝑥𝑥𝑖𝑖  𝑎𝑎(𝑡𝑡)𝑖𝑖→∞
𝑙𝑙𝑖𝑖𝑚𝑚   ∀𝑎𝑎 ∈ 𝑋𝑋                                                                                        (2.2.2) 

 
Applying condition (𝑖𝑖𝑖𝑖) in equation (2.2.1) and using this in the equation (2.2.2), we get 
𝑃𝑃𝑆𝑆𝑥𝑥𝑖𝑖  → 𝑆𝑆𝑧𝑧  and   𝑃𝑃𝑇𝑇𝑥𝑥𝑖𝑖 → 𝑇𝑇𝑧𝑧                                                                                                                                    (2.2.3) 
 
By taking  𝑥𝑥 = 𝑆𝑆𝑥𝑥𝑖𝑖 ,𝑦𝑦 = 𝑇𝑇𝑥𝑥𝑖𝑖  in (𝑖𝑖) and on letting  𝑖𝑖 → ∞, using (𝑖𝑖𝑖𝑖), (𝑖𝑖𝑖𝑖𝑖𝑖),(2.2.2) and (2.2.3),we get 𝑆𝑆𝑧𝑧 = 𝑇𝑇𝑧𝑧   
 
Similarly by taking 𝑥𝑥 = 𝑇𝑇𝑥𝑥𝑖𝑖  𝑎𝑎𝑖𝑖𝑑𝑑 𝑦𝑦 = 𝑧𝑧 in (𝑖𝑖) and on letting 𝑖𝑖 → ∞, we get 𝑃𝑃𝑧𝑧 = 𝑇𝑇𝑧𝑧. 
 
Therefore 𝑆𝑆𝑧𝑧 = 𝑃𝑃𝑧𝑧 = 𝑇𝑇𝑧𝑧. 
 
By   taking 𝑥𝑥 = 𝑥𝑥𝑖𝑖  𝑎𝑎𝑖𝑖𝑑𝑑 𝑦𝑦 = 𝑧𝑧 in (𝑖𝑖) and on letting  𝑖𝑖 → ∞, we get 𝑃𝑃𝑧𝑧 = 𝑧𝑧. Therefore  𝑧𝑧 is a fixed point of   𝑃𝑃. 
 
Hence  𝑧𝑧 is a common fixed point of   𝑃𝑃, 𝑆𝑆 𝑎𝑎𝑖𝑖𝑑𝑑 𝑇𝑇 . Suppose 𝑥𝑥 is a common fixed point of   𝑃𝑃, 𝑆𝑆 𝑎𝑎𝑖𝑖𝑑𝑑 𝑇𝑇 . Then it can be 
easily proved that 𝑥𝑥 = 𝑧𝑧. 
 
Hence 𝑧𝑧 is the unique common fixed point of  𝑃𝑃, 𝑆𝑆 𝑎𝑎𝑖𝑖𝑑𝑑 𝑇𝑇. 
 
2.3 Example: Let (𝑋𝑋,𝐹𝐹,∗) be a complete 2-Menger space as defined in example (1.14) and 𝜓𝜓 ∈ Ψ  be as defined in 
example (1.16). Let 𝑃𝑃, 𝑆𝑆 𝑎𝑎𝑖𝑖𝑑𝑑 𝑇𝑇 be self-maps on 𝑋𝑋 such that 𝑃𝑃(𝑥𝑥) = 𝑥𝑥0,𝑥𝑥0 ∈ 𝑋𝑋 and 𝑆𝑆 = 𝑇𝑇 = 𝐼𝐼. Then 𝑃𝑃, 𝑆𝑆 𝑎𝑎𝑖𝑖𝑑𝑑 𝑇𝑇  satisfy 
all the hypothesis of theorem 2.1 and Theorem 2.2 and 𝑥𝑥0  is the unique common fixed point of 𝑃𝑃, 𝑆𝑆 𝑎𝑎𝑖𝑖𝑑𝑑 𝑇𝑇 𝑖𝑖𝑖𝑖 𝑋𝑋. 
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