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ABSTRACT 
In this paper, effects of radiation and heat source/sink on heat transfer in hydromagnetic boundary layer flow over a 
linearly shrinking permeable surface embedded with porous medium are studied analytically. The governing boundary 
layer equations for fluid flow and energy are reduced into ordinary differential equations by means of a similarity 
transformations. The solution of momentum equation is used in solving reduced energy equation exactly for power-law 
surface temperature boundary condition. The skin friction coefficient increases for increasing suction, magnetic field 
and porosity parameter. It is found that in heat sink case, dual temperature profiles exist corresponding to dual 
solutions of momentum equation. But, in heat source case dual temperature corresponding to dual solutions of flow 
field exist only if certain condition is satisfied. In heat sink case, dual solutions of boundary layer temperature shows 
different feature for magnetic field and porosity parameter. Thermal boundary layer decreases for increasing values of 
radiation parameter, Prandtl number and suction parameter in both heat source and heat sink cases. In heat case and 
for some positive power index in temperature boundary conditions, one of the dual solutions in temperature field 
becomes negative. 
 
Keywords: Permeable shrinking sheet, MHD, Porous medium, Boundary layer flow, Radiation, Heat Source/sink, 
Analytical solution. 
 
 
 
1. INTRODUCTION 

 
Energy saving is a hot topic in today’s world because of the fact that fuel is becoming more and more valuable day  by 
day. Boundary layer heat transfer in an incompressible viscous fluid flow over a shrinking sheet may show a path to 
way out from these crucial crisis. The fact behind this is that flow over a shrinking sheet is a new type of flow and 
thermal boundary layer thickness in this type of flow is very large compared to the same problem of flows over a 
stretching sheet. Because of the larger thickness in thermal boundary layer, heat can be maintained up to a very long 
range near the shrinking slot. This phenomenon can be useful in industry where liquid temperature is to maintain in a 
very long region near the wall. The pioneering work in the area of flow over a shrinking sheet was reported by Wang 
[1]. Later, Miklavcic and Wang [2] derived an analytical solution for steady viscous hydrodynamic flow over a 
permeable shrinking sheet. Muhaimin et al. [3] presented numerically the effects of heat and mass transfer on MHD 
boundary layer flow over a shrinking sheet in the presence of suction. Nadeem and Hussain [4] used homotopy analysis 
method to study the viscous flow on a nonlinear porous shrinking sheet. Fang and Zhang [5] solved the Full N-S 
equation analytically for two dimensional MHD viscous flow due to a shrinking sheet. Fang and Zhang [6] first studied 
the heat transfer characteristics of the flow over a shrinking sheet analytically. Later, Noor et al. [7] studied the MHD 
viscous flow due to shrinking sheet using Adomian decomposition Method (ADM) and they obtained a series solution. 
Ali et al. [8] studied magnetohydrodynamics viscous flow and heat transfer induced by a permeable shrinking sheet 
with prescribed surface heat flux. Effect of chemical reaction, heat and mass transfer on nonlinear boundary layer past a 
porous shrinking sheet in the presence of suction was studied numerically by Muhaimin et al. [9]. Midya [10] 
analytically studied the magnetohydrodynamic viscous flow and heat transfer over a linearly shrinking permeable sheet 
without heat source/sink. Most recently, Midya [11] obtained a closed form analytical solution for the distribution of 
heat in a boundary layer flow over a permeable shrinking sheet with heat source/sink. Bhattacharyya [12] studied 
numerically the effects of heat source/sink on unsteady MHD flow and heat transfer over a shrinking sheet with mass  
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suction and in the absence of porous medium and radiation. Bhattacharyya [13] also investigated effects of heat 
source/sink on unsteady MHD flow and heat transfer over a shrinking sheet with mass suction and in the absence of 
porous medium numerically. Their study did not find the dual temperature profile for heat sink and necessary condition 
required for having solutions of thermal boundary layer in heat source case. For small values of magnetic field or 
suction or higher values of injection which generate larger thickness in thermal boundary layer in comparison to large 
magnetic field or suction or small values of injection on flows over a shrinking sheet, solving these problems through 
numerical is either erroneous or sometimes become difficult to capture full physics of the problem. For is reason, most 
of the authors use higher suction values or higher magnetic field in order to reduce the thickness of thermal boundary 
layer which in turn help to compute the problem numerically. On the contrary use of analytical methods removes all the 
above mentioned hazards. In this paper we investigate analytically the effects of heat source / sink on heat transfer in an 
electrically conducting viscous incompressible fluid flow over a linearly shrinking permeable sheet embedded with 
porous medium and in the presence of magnetic field and heat radiation. We study temperature distributions for varying  
values of various controlling parameters along with dual temperatures in heat sink case. 
 
2. MATHEMATICAL FORMULATION 

 
Consider the flow of an electrically conducting incompressible fluid over a permeable flat sheet embedded with porous 
medium. Let x-axis and y-axis be taken respectively along and perpendicular to the sheet and the flow is confined to y 
> 0. Two equal and opposite forces are applied opposite to the x -axis so that the wall is shrinked keeping the origin 
fixed. A magnetic induction B0 is applied perpendicular to the shrinking surface. The shrinking sheet velocity is 
proportional to the distance i.e. uw = -ax, (a > 0). Neglecting induced magnetic field, the boundary layer equations for 
steady two-dimensional flow and energy can be written in usual notations as 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0,                                                                                                                                                                       (1) 
 
𝜕𝜕 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜈𝜈 𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2 −

𝜎𝜎B0
2

𝜌𝜌
𝜕𝜕 − 𝜈𝜈

𝑘𝑘𝑝𝑝
𝜕𝜕,                                                                                                                                  (2) 

 
𝜕𝜕 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜅𝜅
𝜌𝜌𝑐𝑐𝑝𝑝

𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2 −

1
𝜌𝜌𝑐𝑐𝑝𝑝

𝜕𝜕𝑞𝑞𝑟𝑟
𝜕𝜕𝜕𝜕

+ 𝑄𝑄
𝜌𝜌𝑐𝑐𝑝𝑝

(𝜕𝜕 − 𝜕𝜕∞),                                                                                                               (3) 

 
where u and v are the components of velocity respectively in the x and y directions, T is the temperature, T∞ is the 
temperature far from the sheet, 𝜌𝜌 is the fluid density (assumed constant), 𝜎𝜎 is the electrical conductivity of the fluid,     
𝜈𝜈 (= μ/𝜌𝜌) is the coefficient of fluid viscosity, κ is the thermal conductivity, qr is the radiative heat flux, Q is the 
volumetric rate of internal heat generation / absorption and 𝑘𝑘𝑝𝑝 is the parameter corresponding to porous medium. The 
negative values of Q corresponds to heat absorption and positive values of Q indicate heat generation. 
 
The boundary conditions for the velocity components and temperature are given by 
𝜕𝜕 = −𝑎𝑎𝜕𝜕,   𝜕𝜕 = 𝜕𝜕𝑤𝑤 ,   𝜕𝜕 = 𝜕𝜕𝑤𝑤 = 𝜕𝜕∞ + 𝐴𝐴𝜕𝜕𝑝𝑝      𝑎𝑎𝑎𝑎 𝜕𝜕 = 0                                                                                                     (4) 
and 
𝜕𝜕 ⟶ 0,   𝜕𝜕 ⟶ 0,   𝜕𝜕 ⟶ 𝜕𝜕∞      𝑎𝑎𝑎𝑎 𝜕𝜕 ⟶ ∞,                                                                                                                        (5) 
where Tw is the wall temperature. 
 
Now, using Rosseland's approximation for radiation, 𝑞𝑞𝑟𝑟  can be expressed as 𝑞𝑞𝑟𝑟 = −(4𝜎𝜎∗/3𝑘𝑘1) 𝜕𝜕𝜕𝜕4 𝜕𝜕𝜕𝜕⁄ , where 𝜎𝜎* is 
the Stefan-Boltzmann constant, k1 is the absorption coefficient (see Brewster [14]). It is assumed that the temperature 
variation within the flow is such that T4 may be expanded in a Taylor's series. Expanding T4  about T∞  and neglecting 
higher order terms, we have 𝜕𝜕4 = 4𝜕𝜕∞3𝜕𝜕 − 3𝜕𝜕∞4 . 
 
Therefore, Eq. (3) reduces to 
𝜕𝜕 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜅𝜅
𝜌𝜌𝑐𝑐𝑝𝑝

𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2 + 16𝜎𝜎∗

3𝑘𝑘1

𝜕𝜕∞3

𝜌𝜌𝑐𝑐𝑝𝑝

𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2 + 𝑄𝑄

𝜌𝜌𝑐𝑐𝑝𝑝
(𝜕𝜕 − 𝜕𝜕∞)                                                                                                         (6) 

 
3. SOLUTION OF THE PROBLEM 
 
Let us take 

𝜕𝜕 = 𝑎𝑎𝜕𝜕𝑓𝑓′(𝜂𝜂),   𝜕𝜕 = −√𝑎𝑎𝜈𝜈𝑓𝑓(𝜂𝜂),   𝜂𝜂 = 𝜕𝜕�𝑎𝑎
𝜈𝜈

                                                                                                                       (7) 

as the self-similar solutions of the equations (1), (2) and (6) along with the boundary conditions (4) and (5). Here 𝑓𝑓 is 
the dimensionless stream function and 𝜂𝜂 is the similarity variable.  
 
Substitution of these leads Eq. (2) into 
𝑑𝑑3𝑓𝑓
𝑑𝑑𝜂𝜂3 + 𝑓𝑓 𝑑𝑑2𝑓𝑓

𝑑𝑑𝜂𝜂2 − �𝑑𝑑𝑓𝑓
𝑑𝑑𝜂𝜂
�

2
− (𝑀𝑀2 + 𝜆𝜆) 𝑑𝑑𝑓𝑓

𝑑𝑑𝜂𝜂
= 0,                                                                                                                          (8) 
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where  𝑀𝑀 = �𝜎𝜎𝐵𝐵0

2/(𝑎𝑎𝜌𝜌) is the magnetic interaction parameter and  𝜆𝜆 = 𝜇𝜇
𝑎𝑎𝑘𝑘𝑝𝑝

  is the porosity parameter. 

 
Using Eqs. (7), the boundary conditions for flow reduce to 
𝑓𝑓′(0) = −1,   𝑓𝑓(0) = 𝑠𝑠,   𝑎𝑎𝑎𝑎𝑑𝑑  𝑓𝑓/(∞ ) = 0,                                                                                                                     (9) 
where 𝑠𝑠 = −𝜕𝜕𝑤𝑤 √𝑎𝑎𝜈𝜈⁄   is a non-dimensional constant with s > 0 for suction and s < 0 corresponds to injection. 
 
The energy equation (Eq. (6)) also reduces to 
𝑑𝑑2𝜃𝜃
𝑑𝑑𝜂𝜂2 + 𝐷𝐷𝐷𝐷𝑟𝑟𝑓𝑓 𝑑𝑑𝜃𝜃

𝑑𝑑𝜂𝜂
+ 𝐷𝐷𝐷𝐷𝑟𝑟 �𝛾𝛾 − 𝑝𝑝 𝑑𝑑𝑓𝑓

𝑑𝑑𝜂𝜂
� 𝜃𝜃 = 0,                                                                                                                        (10) 

 
where 𝜃𝜃(𝜂𝜂) = 𝜕𝜕−𝜕𝜕∞

𝜕𝜕𝑤𝑤−𝜕𝜕∞
,𝐷𝐷𝑟𝑟 = 𝜇𝜇𝑐𝑐𝑝𝑝

𝜅𝜅
𝑎𝑎𝑎𝑎𝑑𝑑 𝛾𝛾 = 𝑄𝑄

𝜌𝜌𝑐𝑐𝑝𝑝𝑎𝑎
  respectively denote non-dimensional temperature, Prandtl number and 

heat source / sink parameter. The negative values of 𝛾𝛾 corresponds to heat sink and positive values of 𝛾𝛾 indicate heat 
source. D = 3R/(3R+4), where R is the thermal radiation parameter given by R = κk1/4𝜎𝜎*T∞

3.  
 
The boundary conditions for temperature then become 
𝜃𝜃(0) = 1,   𝑎𝑎𝑎𝑎𝑑𝑑   𝜃𝜃(∞) = 0.                                                                                                                                           (11) 
 
Now, Equation (8) along with the boundary conditions admits an analytical solution (see Fang and Zhang [5]) given by 
𝑓𝑓(𝜂𝜂) = 𝑠𝑠 − 1

𝛼𝛼
(1 − 𝑒𝑒−𝛼𝛼𝜂𝜂 ),                                                                                                                                               (12) 

where α is the positive real root of the equation 
 𝑎𝑎2 − 𝑠𝑠𝑎𝑎 + 1 − (𝑀𝑀2 + 𝜆𝜆) = 0.                                                                                                                                        (13) 
 
It is, therefore, seen that there are two exponential solutions for this equation for any s > 0, 0 < 𝑀𝑀2 + 𝜆𝜆 <1 with            
s2 > 4[1-(𝑀𝑀2 + 𝜆𝜆)] and there is one solution for the cases (i) s > 0 , 0 < 𝑀𝑀2 + 𝜆𝜆 < 1with s2 = 4[1-(𝑀𝑀2 + 𝜆𝜆)], (ii) s > 0, 
𝑀𝑀2 + 𝜆𝜆 = 1 and (iii) -∞ < s <+∞, (𝑀𝑀2 + 𝜆𝜆) >1. For all other cases, the roots of the equation (8) become either zero or 
negative and hence no exponential solution exist. 
 
The non-dimensional horizontal velocity component is given by 
𝑓𝑓/ (𝜂𝜂) = −𝑒𝑒−𝛼𝛼𝜂𝜂                                                                                                                                                               (14) 
 
The shear stress at the wall is denoted by τw and is defined as 

𝜏𝜏𝑤𝑤 = 𝜇𝜇(𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕⁄ )𝜕𝜕=0 = 𝜇𝜇𝑎𝑎𝜕𝜕�𝑎𝑎
𝜈𝜈
𝑓𝑓⁄⁄ (0) =  𝜇𝜇𝑎𝑎𝜕𝜕�𝑎𝑎

𝜈𝜈
 𝛼𝛼                                                                                                      (15) 

 
The skin friction coefficient Cf at the wall is obtained as 
𝐶𝐶𝑓𝑓 = 𝜏𝜏𝑤𝑤

�𝜇𝜇𝑎𝑎𝜕𝜕 �𝑎𝑎𝜈𝜈�
= 𝑓𝑓⁄⁄ (0) = 𝛼𝛼                                                                                                                                           (16) 

 
Now, substituting the solution for the momentum transport, the above temperature Eq. (10) reduces to 
𝑑𝑑2𝜃𝜃
𝑑𝑑𝜂𝜂2 + 𝐷𝐷𝐷𝐷𝑟𝑟{𝑠𝑠 − 1

𝛼𝛼
(1 − 𝑒𝑒−𝛼𝛼𝜂𝜂 )} 𝑑𝑑𝜃𝜃

𝑑𝑑𝜂𝜂
+ 𝐷𝐷𝐷𝐷𝑟𝑟(𝛾𝛾 + 𝑝𝑝𝑒𝑒−𝛼𝛼𝜂𝜂 )𝜃𝜃 = 0                                                                                          (17) 

 
Now, substituting 𝐷𝐷𝐷𝐷𝑟𝑟

𝛼𝛼2 𝑒𝑒−𝛼𝛼𝜂𝜂 = 𝜉𝜉, the above equation transforms into 

𝜉𝜉 𝑑𝑑
2𝜃𝜃

𝑑𝑑𝜉𝜉2 + (1 − 𝐷𝐷𝐷𝐷𝑟𝑟𝐷𝐷 − 𝜉𝜉) 𝑑𝑑𝜃𝜃
𝑑𝑑𝜉𝜉

+ �𝑝𝑝 + 𝐷𝐷𝐷𝐷𝑟𝑟𝛾𝛾
𝛼𝛼2𝜉𝜉

� 𝜃𝜃 = 0,                                                                                                           (18) 

where 𝐷𝐷 = 1
𝛼𝛼
�𝑠𝑠 − 1

𝛼𝛼
�. 

 
The boundary conditions (11) then become 
𝜃𝜃 �𝐷𝐷𝐷𝐷𝑟𝑟

𝛼𝛼2 � = 1,   𝑎𝑎𝑎𝑎𝑑𝑑   𝜃𝜃(0) = 0                                                                                                                                         (19) 
 
Now, we transform the above equation (18) into confluent hypergeometric equation and obtain the solution (see 
Abramowitz and Stegun [15]) given by 
𝜃𝜃(𝜉𝜉) = (𝛼𝛼2𝜉𝜉 𝐷𝐷𝐷𝐷𝑟𝑟⁄ )δ 𝛷𝛷(δ − 𝑝𝑝, 1 + 𝑏𝑏0, 𝜉𝜉) 𝛷𝛷(δ − 𝑝𝑝, 1 + 𝑏𝑏0,𝐷𝐷𝐷𝐷𝑟𝑟 𝛼𝛼2⁄ ),⁄                                                                          (20) 

where δ= (𝑏𝑏0 + 𝑎𝑎0) 2⁄ , 𝑎𝑎0 = 𝐷𝐷𝐷𝐷𝑟𝑟𝐷𝐷, 𝑏𝑏0 = �𝑎𝑎0
2 − 4𝑎𝑎0𝛾𝛾

𝛼𝛼2𝐷𝐷
   and 𝜱𝜱(a/,b/,x) is the confluent hypergeometric function of the 

first kind or Kummer function. 
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Now, when 𝛾𝛾 < 0 i.e. for hear sink case, we always have real b0 and hence dual temperature profile exist for dual 
positive solutions for α and single temperature exists for single positive value of α. But when 𝛾𝛾 > 0 i.e. for heat source 
case, we will get real non-zero b0 only when  𝑎𝑎0

2 − 4𝑎𝑎0𝛾𝛾
𝛼𝛼2𝐷𝐷

  > 0 i.e. 𝐷𝐷𝐷𝐷𝑟𝑟𝛼𝛼2𝐷𝐷2 > 4𝛾𝛾. Therefore, in this case temperature 
profile can be obtained if the above condition is satisfied along with positive solutions of momentum equation. 
 
In terms of η, 
 𝜃𝜃(𝜂𝜂) = 𝑒𝑒−𝛼𝛼δ𝜂𝜂 𝛷𝛷(δ − 𝑝𝑝, 1 + 𝑏𝑏0,𝐷𝐷𝐷𝐷𝑟𝑟𝑒𝑒−𝛼𝛼𝜂𝜂 𝛼𝛼2⁄ ) 𝛷𝛷(δ − 𝑝𝑝, 1 + 𝑏𝑏0,𝐷𝐷𝐷𝐷𝑟𝑟 𝛼𝛼2⁄ ).⁄                                                                (23) 
 
The dimensionless wall temperature gradient θ/(0) is obtained as 
𝜃𝜃/ (0) = −𝛼𝛼δ − 𝐷𝐷𝐷𝐷𝑟𝑟

𝛼𝛼
� δ−𝑝𝑝

1+𝑏𝑏0
� 𝛷𝛷�1+δ−𝑝𝑝 ,2+𝑏𝑏0,𝐷𝐷𝐷𝐷𝑟𝑟 𝛼𝛼2⁄ �

𝛷𝛷(δ−𝑝𝑝 ,1+𝑏𝑏0,𝐷𝐷𝐷𝐷𝑟𝑟 𝛼𝛼2⁄ )
.                                                                                                          (24) 

 
4. RESULTS AND DISCUSSION 
 
We compute the skin friction coefficient 𝑓𝑓′′ (0) for several values of suction , magnetic field and porosity parameters 
and the results are displayed in Table 1. It is seen that skin friction increases for increasing values of s, M and  
𝜆𝜆. It should be noted that only one solution exists for the values of the flow parameters used here.  

  
Table 1. Skin friction coefficient 𝑓𝑓′′ (0) for several values of s, M and λ  
s M 𝜆𝜆 𝑓𝑓′′ (0) s M 𝜆𝜆 𝑓𝑓′′ (0) s M 𝜆𝜆 𝑓𝑓′′ (0) 
1 √2 0 1.61803 2 1 0 2 2 1 0 2 
2 √2 0 2.41421 2 √2 0 2.41421 2 1 0.2 2.09545 
3 √2 0 3.30278 2 2 0 3 2 1 0.5 2.22474 

 
Next, variations of −𝜃𝜃/ (0) are shown in Table 2 for various values of suction parameter s, radiation parameter R and 
heat source/sink parameter 𝛾𝛾 when M = 1, λ = 0.2, p = 0, Pr = 1. It follows from the table that −𝜃𝜃/ (0) increases for 
increasing suction and radiation parameter whereas it decreases for increasing 𝛾𝛾 from negative values to positive value. 
It should be noted that only one solution exists for the values of the parameters used in Table 2. 
 

Table 2. Variations of −𝜃𝜃/ (0) when M = 1, λ = 0.2, p = 0, Pr = 1 
s R 𝛾𝛾 −𝜃𝜃/ (0) s R 𝛾𝛾 −𝜃𝜃/ (0) s R 𝛾𝛾 −𝜃𝜃/ (0) 
1 1 -0.5 0.58803 2 1 -0.5 0.950468 2 0.5 -0.5 0.662781 
2 1 -0.5 0.950468 2 1 0 0.689069 2 1 -0.5 0.950468 
3 1 -0.5 1.35028 2 1 0.2 0.492335 2 1.5 -0.5 1.1338 

 
It is already seen that two exponential solutions for the momentum equation exist corresponding to two  positive root of 
the Equation (13) when s > 0, 0 < 𝑀𝑀2 + 𝜆𝜆 <1 and s2 > 4[1-(𝑀𝑀2 + 𝜆𝜆). Let us recognize the positive root                      
𝑎𝑎 = (𝑠𝑠 + �𝑠𝑠2 − 4{1 − (𝑀𝑀2 + 𝜆𝜆)})/2 as first solution and the positive root 𝑎𝑎 = (𝑠𝑠 − �𝑠𝑠2 − 4{1 − (𝑀𝑀2 + 𝜆𝜆)})/2 as 
second solution. We now discuss heat sink and heat source cases separately. 
 
CASE-I: TEMPERATURE DISTRIBUTIONS IN HEAT SINK 
 
We have noticed that, in heat sink case dual temperature profiles exist corresponding to dual solutions of momentum 
equation. The temperature profiles corresponding to first solution and second solution for different values of the 
radiation parameter R (R = 0.5, 1.0, 1.5) are depicted in Figure 1(a) and Figure 1(b) respectively when s = 2, M = 0.6, 
Pr = 1, 𝛾𝛾 = - 1, 𝜆𝜆 = 0.1 and p = 1. The temperature within the fluid corresponding to both solutions are seen to be 
reduced throughout the boundary layer for increasing values of radiation parameter R. It is also observed that the 
boundary layer thickness for second solution is much higher than that of the first solution for fixed values of η near the 
shrinking sheet. At a large distance from the sheet the temperature takes its limiting value T∞. 
 
The temperature profiles corresponding to first solutions and second solutions for different values of the Prandtl 
number Pr (Pr = 0.5, 1.0, 1.5) are displayed in Figure 2(a) and Figure 2(b) respectively for s = 2, M = 0.9, R = 0.7,        
𝛾𝛾 = - 1.5, 𝜆𝜆 = 0.1 and p = 1. The temperature within the fluid corresponding to both the solutions reduce throughout the 
boundary layer for increasing values of Prandtl number Pr. The increase of Prandtl number means slow rate of thermal 
diffusion. Because of reduced thermal conductivity, there would be a thinning of the thermal boundary layer and this 
leads to the decrease in the temperature. 
 
Figure 3(a) and Figure 3(b) respectively present temperature distributions corresponding to first solutions and second 
solutions for different values of the suction parameter s (s = 0.5, 1.0, 1.5) when R = 0.7, M = 0.9, Pr = 1, 𝛾𝛾 = - 1, 
𝜆𝜆 = 0.1 and p = 1. We notice that the effect of suction parameter s is to decrease the temperature in the boundary layer  
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for both the solutions. Due to suction at the sheet hot fluid particles are sucked from the flow field and hence 
temperature within the boundary layer decrease. 
 
We shall now concentrate on the temperature distributions corresponding to first and second solutions for varying 
values of magnetic parameter M when other parameters are s = 2, R = 0.7, Pr = 1, 𝛾𝛾 = - 1, 𝜆𝜆 = 0.1 and p = 1 and these 
are shown in Figure 4(a) and Figure 4(b) respectively. It is interesting to note that temperature within the boundary 
layer decreases for the increase in magnetic field for the first solution whereas different picture is seen for second 
solution. In second solution temperature increases for increasing M. 
 
The temperature profiles for different values of heat sink parameter 𝛾𝛾 are depicted in Figure 5(a) and Figure 5(b) 
respectively corresponding to first solution and second solution when s = 2, M = 0.9, Pr = 1, R = 0.7, 𝜆𝜆 = 0.1 and         
p = 1. The figure reveals that the temperature within the fluid decreases for the increasing values of heat sink 
parameter. This fact is usual because the heat energy is absorbed in this case. Also, it is noteworthy that the boundary 
layer thickness for second solution is much higher than that of the first solution. 
 
Figure 6(a) and Figure 6(b) represents respectively the temperature distributions corresponding to first solution and 
second solution for various values of power index p (p = 0, 1, 2) with s = 2, M = 0.9, Pr = 1, 𝛾𝛾 = - 1, 𝜆𝜆 = 0.1 and          
R = 0.7. It is noticed from the figure  that the temperature within the fluid for first solutions increase for the increasing 
values of power index p from 0 to 2. But, for second solution, the increase in temperature is rapid compared to the first 
solution for increasing p and for p = 2 temperature profile becomes negative. 
 
The variations of temperature within the boundary layer are shown in Figure 7(a) and 7(b) for first and second solution 
respectively when values of the other parameters are M = 0.6, s = 2, R = 0.7, Pr = 1, 𝛾𝛾 = - 1, and p = 1. It is reflected 
from the figure 7(a) that temperature is seen to be decrease for increasing porosity parameter 𝜆𝜆. But for second solution, 
the fact is different. Temperature increases here for increasing  𝜆𝜆 as is observed in figure 7(b). 
 
CASE-II: TEMPERATURE DISTRIBUTIONS IN HEAT SOURCE 
 
Let us now concentrate on the heat source case. It is already seen that in heat source case, dual temperature distribution 
corresponding to two exponential solutions in the flow field, exist if  𝐷𝐷𝐷𝐷𝑟𝑟𝛼𝛼2𝐷𝐷2 > 4𝛾𝛾 is satisfied. From the equation 
𝑎𝑎2 − 𝑠𝑠𝑎𝑎 + 1 − (𝑀𝑀2 + 𝜆𝜆) = 0, it is seen that sum of the roots is s. Therefore, for dual positive solutions of the 
momentum field, if one root is large, the other root α becomes small. As a result, for small values (second solution) of α 
and physically valid values of other parameters, the above condition 𝐷𝐷𝐷𝐷𝑟𝑟𝛼𝛼2𝐷𝐷2 > 4𝛾𝛾 is rarely satisfied. Thus, we study 
temperature distributions for first solution only in heat source case.  
 
First of all, we discuss the effects of radiation parameter R on the temperature profiles for first solution (see Figure 8) 
for s = 3, M = 0.5, Pr = 1, 𝛾𝛾 = 0.1, 𝜆𝜆 = 0.1 and p = 1. It is seen that increase in radiation parameter R results decrease in 
temperature within the boundary layer. This can be explained by the fact that the increase of radiation parameter R 
implies the release of heat energy from the flow region by means of radiation and thereby temperature is decreased 
within the boundary layer. 
 
The influence of Prandtl number Pr on the temperature profiles for first solution is presented in Figure 9 for s = 3,        
M = 0.5, R = 0.7, 𝛾𝛾 = 0.1, 𝜆𝜆 = 0.1 and p = 1. It is observed that increase in Prandtl number is to decrease in 
temperature throughout the boundary layer. Actually, the increase of Prandtl number means slow rate of thermal 
diffusion. Because of reduced thermal conductivity, there would be a thinning of the thermal boundary layer and this 
leads to decrease temperature in the flow field. 
 
The temperature profiles for various values of suction parameter s are drawn in Figure 10 for fixed R = 0.7, M = 0.9,   
Pr = 1, 𝛾𝛾 = 0.1, 𝜆𝜆 = 0.1 and p = 1 (in case of first solution). It is noticed from the figure that the value of temperature at 
a particular η reduces with increasing values of suction parameter s. Due to increase in the suction parameter s, the 
velocity boundary layer thickness becomes thinner and thinner and consequently decrease temperature within the fluid. 
 
We shall now concentrate on the temperature distribution for different values of magnetic field M corresponding to first 
solution when s = 2, R = 0.7, Pr = 1, 𝛾𝛾 = 0.1, 𝜆𝜆 = 0.1 and p = 1 and this is depicted in Figure 11. It is seen that the 
increase in magnetic field results decrease in temperature throughout the boundary layer. 
 
The temperature field for different values of heat source parameters 𝛾𝛾 is depicted in Figure 12 for s = 3, R = 0.7, Pr = 1, 
M = 0.5, 𝜆𝜆 = 0.1 and p = 1. It can be inferred from the figure that the dimensionless temperature increases for 
increasing values of heat source parameters. This is obvious, because internal heat energy emission results increase in 
heat transfer close to the shrinking sheet. 
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Now, we shall draw our attention to the effects of temperature distribution when the initial temperature is varied over 
the sheet. The temperature profiles for different values of power-law index p are plotted in Figure 13 for s = 3, M = 0.5, 
Pr = 1, 𝛾𝛾 = 0.1, 𝜆𝜆 = 0.1 and R = 0.7. It is observed from the figure that the temperature increases very slowly with the 
increase of power-law index p. 
 
Finally, Figure 14 presents the effects of porosity parameter 𝜆𝜆 on thermal boundary layer for first solution when          
M = 0.6, s = 2, R = 0.7, Pr = 1, 𝛾𝛾 = 0.1, and p = 1. The figure displays the decrease in thermal boundary layer for the 
increase in porosity parameter. 
 
5. CONCLUSIONS 
 
Heat transfer in MHD viscous fluid flow over a linearly shrinking permeable surface embedded with porous medium is 
investigated analytically taking into account heat radiation and heat sink / source. The exact analytical solution of the 
boundary layer equation for fluid flow leads to analytical solution of boundary layer  energy equation subject to power-
law surface temperature boundary conditions. Dual temperature profiles for heat sink are obtained for any s > 0 and      
0 < 𝑀𝑀2 + 𝜆𝜆 <1 with 𝑠𝑠2 > 4[1 − (𝑀𝑀2 + 𝜆𝜆)]. In heat source case, dual temperature can only be found for 𝐷𝐷𝐷𝐷𝑟𝑟𝛼𝛼2𝐷𝐷2 >
4𝛾𝛾 along with above conditions for heat sink case. Thermal boundary layer decreases for increasing values of radiation 
parameter, Prandtl number and suction parameter in both heat source and heat sink cases. For some positive power 
index, negative non-dimensional temperature values are sometimes found to exist corresponding to second solutions in 
heat sink case. 
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Figure 1(a): Variation of temperature corresponding 
to first solution for several values of R when s = 2, M 
= 0.6, Pr = 1, 𝛾𝛾 = - 1, 𝜆𝜆 = 0.1 and p = 1. 

 
Figure 1(b): Temperature profiles corresponding to 
second solution for several values of R when s = 2,        
M = 0.6, Pr = 1, 𝛾𝛾 = - 1, 𝜆𝜆 = 0.1 and p = 1. 

 
Figure 2(a): Variation of temperature corresponding 
to first solution for several values of Pr with s = 2,     
M = 0.9, R = 0.7, 𝛾𝛾 = - 1.5, 𝜆𝜆 = 0.1 and p = 1. 

 
Figure 2(b): Temperature profiles corresponding to 
second solution for several values of Pr with s = 2,     
M = 0.9, R = 0.7, 𝛾𝛾 = - 1.5, 𝜆𝜆 = 0.1 and p = 1. 

 
Figure 3(a): Variation of temperature corresponding 
to first solution for several values of s with R = 0.7,    
M = 0.9, Pr = 1, 𝛾𝛾 = - 1, 𝜆𝜆 = 0.1 and p = 1. 

 
Figure 3(b): Temperature profiles corresponding to 
second solution for several values of s when R = 0.7, 
M = 0.9, Pr = 1, 𝛾𝛾 = - 1, 𝜆𝜆 = 0.1 and p = 1. 
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Figure 4(a): Variation of temperature corresponding 
to first solution for several values of M with s = 2,      
R = 0.7, Pr = 1, 𝛾𝛾 = - 1, 𝜆𝜆 = 0.1 and p = 1. 

 
Figure 4(b): Temperature profiles corresponding to 
second solution for several values of M when s = 2,    
R = 0.7, Pr = 1, 𝛾𝛾 = - 1, 𝜆𝜆 = 0.1 and p = 1. 

 
Figure 5(a): Variation of temperature corresponding 
to first solution for several values of 𝛾𝛾 with s = 2,        
M = 0.9, Pr = 1, R = 0.7, 𝜆𝜆 = 0.1 and p = 1. 

 
Figure 5(b): Temperature profiles corresponding to 
second solution for several values of 𝛾𝛾 when s = 2,     
M = 0.9, Pr = 1, R = 0.7, 𝜆𝜆 = 0.1 and p = 1. 

 
Figure 6(a): Temperature profiles corresponding to 
first solution for several values of p when s = 2,          
M = 0.9, Pr = 1, 𝛾𝛾 = - 1, 𝜆𝜆 = 0.1 and R = 0.7. 

 
Figure 6(b): Variation of temperature corresponding 
to second solution for several values of p with s = 2,  
M = 0.9, Pr = 1, 𝛾𝛾 = - 1, 𝜆𝜆 = 0.1 and R = 0.7. 
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Figure 7(a): Variation of temperature corresponding 
to first solution for several values of 𝜆𝜆 with M = 0.6,    
s = 2, R = 0.7, Pr = 1, 𝛾𝛾 = - 1, and p = 1. 

 
Figure 7(b): Temperature profiles corresponding to 
second solution for several values of 𝜆𝜆 when M = 0.6,  
s = 2, R = 0.7, Pr = 1, 𝛾𝛾 = - 1, and p = 1. 

 
Figure 8: Variation of temperature corresponding to first 
solution for several values of R with s = 3,          M = 
0.5, Pr = 1, 𝛾𝛾 = 0.1, 𝜆𝜆 = 0.1 and p = 1. 

 
Figure 9: Temperature profiles corresponding to first 
solution for several values of Pr with s = 3, M = 0.5,    R 
= 0.7, 𝛾𝛾 = 0.1, 𝜆𝜆 = 0.1 and p = 1. 

 
Figure 10: Variation of temperature corresponding to 
first solution for several values of s with M = 0.9,       Pr 
= 1, R = 0.7, 𝛾𝛾 = 0.1, 𝜆𝜆 = 0.1 and p = 1. 

 
 Figure 11: Temperature profiles corresponding to first 
solution for several values of M when s = 2, p = 1,      Pr 
= 1, 𝛾𝛾 = 0.1, 𝜆𝜆 = 0.1 and R = 0.7. 
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Figure 12: Temperature profiles corresponding to first 
solution for several values of 𝛾𝛾 with s = 3, R = 0.7,     Pr 
= 1, M = 0.5, 𝜆𝜆 = 0.1 and p = 1. 

 
Figure 13: Temperature profiles corresponding to first 
solution for several values of p with M = 0.5, s = 3,     R 
= 0.7, Pr = 1, 𝛾𝛾 = 0.1, 𝜆𝜆 = 0.1. 

 

 
Figure 14: Variation of temperature corresponding to first solution for several values of λ with R = 0.7,  

M = 0.6, s = 2, Pr = 1, 𝛾𝛾 = 0.1, 𝜆𝜆 = 0.1 and p = 1. 
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