International Journal of Mathematical Archive-6(1), 2014, 20-24 MA Available online through www.ijma.info ISSN 2229-5046

ON REVERSE SUPER EDGE-MAGIC n-STARS

S. Sharief Basha* and E. Kartheek**
*Applied Algebra Division, School of Advanced Sciences, VIT University, Vellore 632 014, Tamilnadu, India.
**PhD Scholar, School of Advanced Sciences, VIT University, Vellore 632 014, Tamilnadu, India.

(Received On: 24-12-14; Revised \& Accepted On: 21-01-15)

Abstract

$\boldsymbol{A}_{(V, E)}$ graph G is reverse edge-magic if there exists a bijection $f: V \cup E \rightarrow\{1,2,3, \ldots \ldots \ldots, v+\varepsilon\}$ such that $\forall e=(u, v) \in$ $E, f(e)-\{f(u)+f(v)\}=$ constant. A reverse edge- magic graph is a reverse super edge- magic if $f(V(G))=\{1,2,3,--$ - $V\}$ and $f(E(G))=\{V+1, V+2, V+3, \ldots \ldots \ldots V+\varepsilon\}$. For $n \geq 2$, let $a_{1}, a_{2}, a_{3}, \ldots \ldots . ., a_{n}$ be a sequence of increasing non-negative integers. A n- star $\operatorname{St}\left(a_{1}, a_{2}, a_{3}, \ldots \ldots \ldots, a_{n}\right)$ is a disjoint union of n-stars $\operatorname{St}\left(a_{1}\right), \operatorname{St}\left(a_{2}\right)$ $\ldots \ldots ., S t\left(a_{n}\right)$. In this paper , we investigate several classes of n-stars that are reverse super edge-magic.

1. INTRODUCTION

In this paper, we consider graphs with no loops or multiple edges. For undefined concepts we refer the reader to [1]. A (V, E) - graph G is with v vertices and ε edges is called reverse edge- magic if there is a bijection $\mathrm{f}: V \cup E \rightarrow\{1,2,3$, $\mathrm{v}+\varepsilon\}$ such that $\mathrm{f}(\mathrm{e})-\{\mathrm{f}(\mathrm{u})+\mathrm{f}(\mathrm{v})\}=$ constant. A reverse edge- magic graph is a reverse super edge- magic graph if $f(V(G))=\{1,2,3, \ldots \ldots v\}$ and $f(E(G))=\{v+1, v+2, v+3 \ldots \ldots . . v+\varepsilon\}$. This concept of reverse super edge-magic graphs was introduced by Venkata Ramana et al. in 2007 [4]. An example of unicyclic graph with 6 vertices and its reverse super edge-magic labeling is shown in Fig 1.

FIG-1

The original concept of reverse super edge-magic graph is due to Venkata ramana et.al [4]. They called it reverse super edge-magic graph. They proved the following results:
(1). If a non trivial graph G is reverse super edge-magic, then $|E(G)| \leq 2|V(G)|-3$
(2). A cycle Cn is reverse super edge-magic if and only if n is odd.
(3). A complete bipartite graph $K m, n$ is reverse super edge-magic if and only if $m=1$ or $n=1$.
(4). The fan $f_{n}=P_{n}+K_{1}$ is reverse super edge-magic if and only if $1 \leq n \leq 6$.
(5). The ladder $L_{n} \cong P_{n} \times P_{2}$ is reverse super edge-magic where n is odd.
(6). The generalized prism $\mathrm{Cm} \times \mathrm{Pn}$ is reverse super edge-magic if m is odd and $n \geq 2$
(7). Let $G=(n, 2)$-kite. The graph G is reverse super edge-magic if and only if n is even.
(8). Let $\mathrm{G}=K_{2} \mathrm{U} C_{n}$. The graph G is reverse super edge-magic if n is even $(n \neq 10)$.

For $n \geq 2$, let $a_{1}, a_{2}, a_{3}, \ldots \ldots \ldots, a_{n}$ be a sequence of increasing non-negative integers. We will use $\operatorname{St}\left(a_{1}, a_{2}, a_{3}, \ldots \ldots \ldots\right.$, a_{n}) to denote a n-Star, which is a disjoint union of n-stars $K\left(1, a_{1}\right), K\left(1, a_{2}\right), \ldots \ldots \ldots, K\left(1, a_{n}\right)$. The $\operatorname{graph} \operatorname{St}\left(a_{1}, a_{2}, a_{3}\right.$, , a_{n}) is shown in Figure 2.

S. Sharief Basha* and E. Kartheek ${ }^{* *}$ / ON REVERSE SUPER EDGE-MAGIC n-STARS / IJMA- 6(1), Jan.-2015.

2. REVERSE SUPER EDGE-MAGIC 2-STARS

By applying the result of Venkata Ramana et al. several classes of n-stars are shown to be reverse super edge-magic.
Theorem 1: The 2-star $\operatorname{St}(\mathrm{n}, \mathrm{n}+1)$ is reverse super edge-magic for all $n \geq 1$.
Proof: We will give two different reverse super edge-magic labelings for $\operatorname{St}(\mathrm{n}, \mathrm{n}+1)$.
Method 1: We label the vertices by

$$
\begin{array}{ll}
\mathrm{f}\left(\mathrm{x}_{1, \mathrm{j}}\right)=3+2 \mathrm{j}, \quad 1 \leq \mathrm{j} \leq \mathrm{n}, & \mathrm{f}\left(\mathrm{c}_{1}\right)=1 \\
\mathrm{f}\left(\mathrm{x}_{2, \mathrm{j}}\right)=2 \mathrm{j}, & 1 \leq \mathrm{j} \leq \mathrm{n}+1,
\end{array} \mathrm{f}\left(\mathrm{c}_{2}\right)=3 .
$$

Then we see that the edges in $K(1, n)$ has labels $\{2 n+5,2 n+7, \ldots, 4 n+3\}$ and the edges in $K(1, n+1)$ has labels $\{2 n+4,2 n+6, \ldots \ldots, 4 n+4\}$.Thus $\operatorname{St}(n, n+1)$ is reverse super edge-magic with reverse edge-magic number $2 n-1$.

Method-2: We label the vertices by

$$
\begin{array}{ll}
g\left(x_{1, j}\right)=2 \mathrm{j}-1, \quad 1 \leq \mathrm{j} \leq \mathrm{n}, & g\left(\mathrm{c}_{1}\right)=2 \mathrm{n}+3 \\
\mathrm{~g}\left(\mathrm{x}_{2, \mathrm{j}}\right)=2 \mathrm{j}, & 1 \leq \mathrm{j} \leq \mathrm{n}+1,
\end{array}
$$

Then we see that the edges in $K(1, n)$ has labels $\{2 n+5,2 n+7, \ldots, 4 n+3\}$ and the edges in $K(1, n+1)$ has labels $\{2 n+4,2 n+6, \ldots \ldots, 4 n+4\}$.Thus $\operatorname{St}(\mathrm{n}, \mathrm{n}+1)$ is reverse super edge-magic with reverse edge-magic number 1 .

Example 1: Reverse super edge - magic labelings for 2 -stars $\operatorname{St}(1,2), \operatorname{St}(2,3)$ and $\operatorname{St}(3,4)$ using the above two different methods.

FIG-2
Theorem 2: The 2-star $\operatorname{St}(\mathrm{m}, \mathrm{n})$ is reverse super edge-magic for all $n \equiv 0(\bmod m+1)$.
Proof: Assume $n=(m+1) k$. The 2 - star $S t(m,(m+1) k)$ has $(m+1)(k+1)+1$ vertices. We define a labeling $\mathrm{f}: \mathrm{V}(\mathrm{St}(\mathrm{m} .(\mathrm{m}+1) \mathrm{k})) \rightarrow\{1,2,3, \ldots .(\mathrm{m}+1)(\mathrm{k}+1)+1\}$ as follows.
$f\left(c_{1}\right)=(m+1)(k+1)+1 \quad f\left(c_{2}\right)=(m+1)(k+1)-k$
$\mathrm{f}\left(\mathrm{x}_{1, \mathrm{j}}\right)=1+(\mathrm{j}-1)(\mathrm{k}+1), 1 \leq \mathrm{j} \leq \mathrm{m}$.
$\mathrm{f}(\mathrm{x} 2, \mathrm{i})=1+\mathrm{i}, 1 \leq i \leq k ;$
$\mathrm{f}(\mathrm{x} 2, \mathrm{i})=\mathrm{i}+2, k+1 \leq i \leq 2 k$.
Hence $f^{+}(E(S t(1,2 k))=\{k+5, k+6, k+7$, \qquad .,2k+6\}.

Corollary 1: The 2-Star $\operatorname{St}(1, \mathrm{n})$ is reverse super edge-magic if n is even.
Example 2: A reverse super edge-magic labeling of the 2-star $\operatorname{St}(1, \mathrm{n})$.

S. Sharief Basha* and E. Kartheek** ON REVERSE SUPER EDGE-MAGIC n-STARS / IJMA- 6(1), Jan.-2015.

Corollary 2: The 2-Star $\operatorname{St}(2, \mathrm{n})$ is reverse super edge-magic if n is a multiple of 3 .
Example 3: Reverse super edge-magic labeling for 2 -star $\mathrm{St}(2, \mathrm{n})$, where $\mathrm{n}=3,6$.

FIG-4

3. REVERSE SUPER EDGE-MAGIC 3-STARS

Theorem 3: The 3-star $\operatorname{St}(1,1, \mathrm{n})$ is reverse super edge-magic for all $\mathrm{n} \geq 1$.
Proof: A reverse super edge-magic labeling of $\operatorname{St}(1,1, \mathrm{n})$ is given as follows: Define $\mathrm{f}: \mathrm{V}(\mathrm{St}(1,1, \mathrm{n})) \rightarrow\{1,2,3, \ldots, \mathrm{n}+5\}$ as follows:
$f(c 1)=1, f(c 2)=3 ; f(c 3)=2$
$f(x 1,1)=5 ; f(x 2,1)=4 ; f(x 3, i)=5+i, 1 \leq i \leq n$.
It can be easily verified that f induces a reverse super edge-magic labeling.
Example 4: A reverse super edge-magic labeling for 3-star $\operatorname{St}(1,1,6)$.

Theorem 4: The 3-star St (1, 2, n) is reverse super edge-magic for all $n \geq 2$.
Proof: A reverse super edge-magic labeling of $\operatorname{St}(1,2, \mathrm{n})$ is given in figure 6.

Theorem 5: The 3-star $\operatorname{St}(1, n, n)$ is reverse super edge-magic for all $n \geq 1$.
Proof: A reverse super edge-magic labeling of $\operatorname{St}(1,2, \mathrm{n})$ is given in figure 7.

FIG-7

Theorem 6: The 3-star $\operatorname{St}(2,2, \mathrm{n})$ is reverse super edge-magic for all $\mathrm{n} \geq 2$.
Proof: A reverse super edge-magic labeling of $\operatorname{St}(2,2, \mathrm{n})$ is given in figure 8.
For $n=2$

FIG- 8
Theorem 7: The 3-star $\operatorname{St}(2,3, \mathrm{n})$ is reverse super edge-magic for all $\mathrm{n} \geq 3$.
Proof: A reverse super edge-magic labeling of $\operatorname{St}(2,3, \mathrm{n})$ is given in figure 9.

4. REVERSE SUPER EDGE-MAGIC 4-STARS

Theorem 8: The 4-star $\operatorname{St}(1,1,2, n)$ is reverse super edge-magic for all $n \geq 2$.
Proof: A reverse super edge-magic labeling for $\operatorname{St}(1,1,2, n)$ for $\mathrm{n} \geq 2$ is shown in figure 10 .

Theorem 9: The 4-star $\operatorname{St}(1,1,3, n)$ is reverse super edge-magic for all $n \geq 3$.
Proof: A reverse super edge-magic labeling for $\operatorname{St}(1,1,3, n)$ for $n \square 3$ is shown in figure 11 .

Theorem 10: The 4-star $\operatorname{St}(1,2,2, n)$ is reverse super edge-magic for all $n \geq 2$.
Proof: A reverse super edge-magic labeling for $\operatorname{St}(1,2,2, n)$ for $n \geq 2$ is shown in Figure12

Theorem 11: The 4-star $\operatorname{St}(2,2,2, n)$ is reverse super edge-magic for all $n \geq 2$
Proof: A reverse super edge magic labeling for $\operatorname{St}(2,2,2, n)$ for $n \geq 2$ is shown in figure 13 .

We propose the following

CONJECTURE

Given any odd integer $\mathrm{n} \geq 2$. Let $a_{1}, a_{2}, a_{3}, \ldots \ldots, a_{n}$ be a sequence of increasing non-negative integers. The n -star $\operatorname{St}\left(a_{1}, a_{2}, a_{3}, \cdots \ldots, a_{n}\right)$ is reverse super edge-magic.

REFERENCES

1. G.Chartrand and L.Lesniak, Graphs and digraphs, $2^{\text {nd }}$ edition, Wadsworth \& Brooks /Cole, Monterey 1986.
2. H.Enomonoto,A.S.Llado, T.Nagamigana, A.Ringel, Super edge-magic graphs, SUT J. Math. Vol 34, No-2 (1998), 105-109.
3. J.A.Gallian, A dynamic survey of graph labeling ,Electron .J. Combin., 5, 2001 ed, 95 pages.
4. S.Venkata Ramana ,S.Shareefh basha, Reverse super edge-magic labeling of a graph, Ph.D. Thesis.

Source of support: Nil, Conflict of interest: None Declared
[Copy right © 2014. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]

