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ABSTRACT 
A (V, E) graph G is reverse edge-magic if there exists a bijection  f:  V ∪ E →{1,2,3,........, v+ε} such that ∀ e= (u,v)∈ 
E , f(e) – { f(u) + f(v) } = constant  . A reverse edge- magic  graph is a reverse super edge- magic if f(V(G)) = {1,2,3, --
-  V} and f (E(G)) =  {V+1, V+2 , V+3, ………. V+ ε}  .  For n ≥ 2 , let a1, a2 , a3 , ………, an  be  a sequence of 
increasing  non-negative integers. A n- star   St(a1, a2 , a3 , ………, an ) is a disjoint union of n-stars St(a1) , St(a2 ) 
,……,St(an ) . In this paper , we investigate several classes of n-stars that are reverse super edge-magic. 
 
 
1. INTRODUCTION 
 
In this paper, we consider graphs with no loops or multiple edges. For undefined concepts we refer the reader to [1]. A 
(V,E) – graph G is with v vertices and ε edges is called reverse edge- magic if there is a bijection f : V ∪ E →{1,2,3,........, 
v+ε} such that f(e)- { f(u) + f(v)}= constant. A reverse edge- magic graph is a reverse super  edge- magic graph if 
f(V(G))= {1,2,3,….. v}and f(E(G))= {v+1,v+2,v+3……..v+𝜀𝜀}. This concept of reverse super edge-magic graphs was 
introduced by Venkata Ramana et al. in 2007 [4]. An example of unicyclic graph with 6 vertices and its reverse super 
edge-magic labeling is shown in Fig 1. 

 
 
The original concept of reverse super edge-magic graph is due to Venkata ramana et.al [4]. They called it reverse super 
edge-magic graph. They proved the following results: 
(1). If a non trivial graph G is reverse super edge-magic, then |E (G)| ≤ 2 |V (G) |-3 
(2). A cycle Cn is reverse super edge-magic if and only if n is odd. 
(3). A complete bipartite graph Km, n is reverse super edge-magic if and only if m=1 or n=1. 
(4). The fan  f n = Pn + K1  is reverse super edge-magic if and only if 1 ≤ n≤ 6 . 
(5). The ladder  Ln ≅ Pn × P2  is reverse super edge-magic where n is odd. 
(6). The generalized prism Cm × Pn   is reverse super edge-magic if m is odd and n ≥ 2  
(7). Let G = (n, 2)-kite. The graph G is reverse super edge-magic if and only if n is even. 
(8). Let G = K2U Cn. The graph G is reverse super edge-magic if n is even (n ≠ 10 ). 
 
For n ≥ 2, let a1, a2, a3, ………, an be a sequence of increasing non-negative integers. We will use St(a1, a2, a3, ………, 
an) to denote a n-Star, which is a disjoint union of n-stars K(1, a1), K(1, a2 ),……..,K(1,an ). The graph St(a1, a2, a3, 
………, an) is shown in Figure 2. 
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2. REVERSE SUPER EDGE-MAGIC 2-STARS 
 
By applying the result of  Venkata Ramana et al.  several classes of n-stars are shown to be reverse super edge-magic. 
 
Theorem 1: The 2-star St(n,n+1) is reverse super edge-magic for all n ≥ 1. 
 
Proof: We will give two different reverse super edge-magic labelings for St(n,n+1). 
 
Method 1:  We label the vertices by  
                    f(x1,j)  = 3 + 2j,     1≤ j ≤ n,                                    f (c1) = 1  
                    f(x2,j) = 2j,       1≤ j ≤ n +1,                                    f(c2) = 3. 
 
Then we see that the edges in K(1,n) has labels {2n+5,2n+7,….,4n+3} and the edges in K(1,n+1) has labels 
{2n+4,2n+6,…..,4n+4}.Thus St(n,n+1) is reverse super edge-magic with reverse edge-magic number 2n-1. 
 
Method-2:  We label the vertices  by  
                    g(x1,j)  =  2j-1,     1≤ j ≤ n,                                    g(c1) = 2n+3  
                    g(x2,j) = 2j,       1≤ j ≤ n +1,                                  g(c2) = 2n+1. 
 
Then we see that the edges in K(1,n) has labels {2n+5,2n+7,….,4n+3} and the edges in K(1,n+1) has labels 
{2n+4,2n+6,…..,4n+4}.Thus St(n,n+1) is reverse super edge-magic with reverse edge-magic number 1. 
 
Example 1: Reverse super edge – magic labelings for 2-stars St(1,2), St(2,3) and St(3,4) using the above two different 
methods. 

 
 
Theorem 2: The 2-star St(m,n) is reverse super edge-magic for all n ≡ 0(mod m +1) . 
 
Proof:  Assume  n = (m+1)k .  The 2- star  St(m,(m+1)k) has  (m+1)(k+1) +1 vertices. We define a labeling  
f : V(St(m.(m+1)k)) → {1, 2, 3, ….(m+1)(k+1)+1}  as follows. 
f(c1)= (m+1)(k+1)+1                               f(c2) = (m+1)(k+1) – k 
f(x1,j) = 1 +(j-1)(k+1),  1 ≤ j ≤ m.            f(x2,i) = 1+i,1 ≤ i≤ k; 
f(x2,i) = i +2, k + 1 ≤ i≤ 2k.  
 
Hence f+(E(St(1,2k ))= {k+5,k+6,k+7,……..,2k+6}. 
 
Corollary 1: The 2-Star St(1,n) is reverse super edge-magic if n is even.  
 
Example 2: A reverse super edge-magic labeling of the 2-star St(1,n) . 
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Corollary 2: The 2-Star St(2,n) is reverse super edge-magic if n is a multiple of 3. 
 
Example 3: Reverse super edge-magic labeling for 2-star St(2,n), where n=3,6. 

 
 
3. REVERSE SUPER EDGE-MAGIC 3-STARS 
 
Theorem 3: The 3-star St(1,1,n) is reverse super edge-magic for all n ≥ 1.  
 
Proof: A reverse super edge-magic labeling of St(1,1,n) is given as follows: Define f:V(St(1,1,n)) { 1,2,3,….,n+5} 
as follows: 
 
f(c1) = 1,  f(c2) =3; f(c3) = 2 
 
f(x1,1)= 5;  f(x2,1) =4; f(x3,i) = 5+i, 1 ≤ i≤ n. 
 
It can be easily verified that f induces a reverse super edge-magic labeling. 
 
Example 4: A reverse super edge-magic labeling for 3-star St(1,1,6) . 

 
 
Theorem 4: The 3-star St (1, 2, n) is reverse super edge-magic for all n ≥ 2. 
 
Proof: A reverse super edge-magic labeling of St(1,2,n) is given in figure 6. 

 
 
Theorem 5: The 3-star St(1,n,n) is reverse super edge-magic for all n ≥ 1. 
 
Proof:  A reverse super edge-magic labeling of St(1,2,n) is given in figure 7. 
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Theorem 6: The 3-star St(2,2,n) is reverse super edge-magic for all n ≥ 2. 
 
Proof: A reverse super edge-magic labeling of St(2,2,n) is given in figure 8. 

 
Theorem 7: The 3-star St(2,3,n) is reverse super edge-magic for all n ≥ 3. 
 
Proof:  A reverse super edge-magic labeling of St(2,3,n) is given in figure 9. 

 
 
4. REVERSE SUPER EDGE-MAGIC 4-STARS 
      
Theorem 8: The 4-star St(1,1,2,n) is reverse super edge-magic for all n ≥ 2.  
 
Proof: A reverse super edge-magic labeling for St(1,1,2,n) for n ≥ 2 is shown in figure 10. 

 
  
Theorem 9: The 4-star St(1,1,3,n) is reverse super edge-magic for all n ≥ 3. 
 
Proof: A reverse super edge-magic labeling for St(1,1,3,n) for n  3 is shown in figure11 .                                                       

 
Theorem 10: The 4-star St(1,2,2,n) is reverse super edge-magic for all n ≥2.  
 
Proof: A reverse super edge-magic labeling for St(1,2,2,n) for n ≥2 is shown in Figure12 
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Theorem 11: The 4-star St(2,2,2,n) is reverse super edge-magic for all n≥2 
 
Proof: A reverse super edge magic labeling for St(2,2,2,n) for n ≥ 2 is shown in  figure 13. 

 
 
We propose the following 
 
CONJECTURE 
 
Given any odd integer n ≥ 2. Let 1 2 3,, , ......., na a a a  be a sequence of increasing non-negative integers. The n-star 

St( 1 2 3,, , ......., na a a a ) is reverse super edge-magic. 
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