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ABSTRACT 
The class of linear functions of order statistics or L-estimates is considered. Under finite variances and other suitable 
restrictions, it is known that L-estimates converge in distribution to a normal distribution as the sample size increases 
to infinity. This result is applied to obtain approximate confidence intervals for the Lorenz transform and the 
conditional value-at-risk measure using L-estimates in case the data follows an approximate generalised Pareto 
distribution with finite variance. By infinite variance, the goodness-of-fit of the L-estimate compared to the true Lorenz 
transform is measured using the expected relative error of approximation. 
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1. INTRODUCTION 
 
An important class of statistics consists of the linear functions of order statistics, usually called L-estimates (e.g. 
Rychlik [17]). It appears to have been first extensively studied by Percy Daniell in 1920 (see Stigler [22]). Given the 

order statistics  X X n( ) ( )...1 ≤ ≤   of a random sample  ( )X X X n= 1 ,...,   of size n and a sequence of real numbers  

c cn1 ,..., , the  L-estimate is the statistics defined by S c Xn i i
i

n

=
=
∑ ( )

1
.Well-known examples include the sample mean 

S X n Xn i
i

n

= = ⋅−

=
∑1

1
( ) , the  α -trimmed mean [ ]

[ ]

[ ]

S n n Xn i
i n

n n

= − ⋅−

= +

−

∑( ) ( )2 1

1
α

α

α

, where [ ]x  denotes the greatest 

integer less than or equal to  x, and Gini’s mean difference  [ ] ( )g n n i n X i
i

n

= − ⋅ − −
−

=
∑2 1 2 11

1
( ) ( ) (Gini [6], David 

[4]). 
 
The present work emphasizes some essential statistical properties of the conditional value-at-risk or expected shortfall 
measure, which has been recognised as an important risk measure in modern risk management (an extensive recent 
review is Nadarajah et al. [15]). For a random variable X with distribution function F x x R( ), ∈ , and quantile 

function  { }Q u x F x u( ) inf ( )= ≥ , ( )u ∈ 0 1, , the conditional value-at-risk (CVaR) measure to the confidence 

level  ( )α ∈ 0 1,  is defined as follows (e.g. Hürlimann [9], Proposition 2.1): 

[ ] [ ] [ ]{ }CVaR X E X L Xα αα
=

−
−

1
1

,     (1.1) 

where [ ]L X Q u duα

α

= ∫ ( )
0

  denotes the Lorenz transform of X. The relationship (1.1) suggests two ways of statistical 

estimation. By known mean, one uses the obvious L-estimate of the Lorenz transform 

[ ]
[ ]

L X n Xn
i

i

n

α

α
( )

( )= ⋅−

=

+

∑1

1

1

,     (1.2) 
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to estimate CVaR by  ( ) [ ] [ ]{ }1 1− ⋅ −−α αE X L Xn( ) . Alternatively, from (1.2) one obtains through (1.1) 
immediately the following L-estimate: 

[ ] ( )[ ]
[ ]

CVaR X n Xn
i

i n

n

α
α

α( )
( )= − ⋅

−

=
∑1 1

.     (1.3) 

 
In the risk management context, where these L-estimates are calculated using market or simulated data, it is useful to 
know the asymptotic distribution of these quantities. Consider L-estimates of the form 

S n J
i

n
Xn i

i

n

= ⋅
+





 ⋅

−

=
∑1

1 1 ( ) ,     (1.4) 

where J u( ) , ( )u ∈ 0 1, , is an appropriate weight function. Formulas for the asymptotic mean and variance of such   
L-estimates have been found since Jung [10]. Under suitable restrictions, in particular finite variance of  
X i ni , ,...,= 1 , it has been known for a long time that L-estimates converge in distribution to a normal distribution 

as the sample size increases to infinity (e.g. Govindarajulu et al. [7], Chernoff et al. [3], Moore [14], Shorack [20] and 
Stigler [21], [3]). A more detailed account of the content follows. 
 
Section 2 summarises a main result of Stigler [23] and applies it to the L-estimates (1.2), (1.3). Its use is illustrated with 
the generalised Pareto distribution in Section 3. Since scaled excesses over high thresholds are in the limit generalised 
Pareto distributed by the theorem of Pickands [16], and Balkema and de Haan [2], a discussion of the distribution 
properties of these quantities should be based upon this choice (e.g. McNeil [12], Section 3). By finite variance, the     
L-estimates (1.2), (1.3) have an asymptotic normal distribution. This allows the construction of approximate confidence 
intervals for the Lorenz transform and the CVaR measure. To illustrate, we list in tabular form the critical sample size 
required to estimate these quantities with a fixed precision. In case the variance is infinite, the preceding results do not 
apply. To measure the goodness of approximation of the true Lorenz transform by the L-estimate (1.2) for the 
generalised Pareto with infinite variance, we calculate in Section 4 the expected relative error of approximation. To 
obtain given relative errors, an increasing sample size is required by increasing confidence level. 
 
2. ASYMPTOTIC DISTRIBUTION OF L-ESTIMATES BY FINITE VARIANCE 
 
The simplest main result about the asymptotic normality of L-estimates of the form (1.4) is due to Stigler [23], 
Theorem 2. The reader interested in more details and up-to-date mathematical treatment is refereed to Serfling [19], 
Sen [18], and Jureckovc and Sen [11]. 
 

Theorem 2.1:  Let  ( )X X X n= 1 ,...,   be a random sample of size n such that [ ]E X i
2 < ∞ , i n= 1,..., , and let  

S n J
i

n
Xn i

i

n

= ⋅
+





 ⋅

−

=
∑1

1 1 ( )   be a  L-estimate. If J u( ) , ( )u ∈ 0 1, , is bounded and continuous almost everywhere at  

u F x x R= ∈( ), , then one has 

[ ]
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,    (2.1) 

 
and the asymptotic mean and variance of the  L-estimate are given by 

( ) [ ]µ J F E S Q u J u du
n n, lim ( ) ( )= =
→∞ ∫

0

1

,     (2.2) 

( ) [ ] [ ] [ ][ ]σ σ2 2 2 1J F n S J F x F x J F y F y dy dx
n n

x y

, lim ( ) ( ) ( ) ( )= = ⋅ ⋅ −










→∞
<−∞

∞

∫∫ .  (2.3) 

 
Proof:  See Stigler [23].  ◊ 
 
Let us apply this important result to the L-estimates (1.2) and (1.3) of the Lorenz transform and the CVaR measure. 
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2.1. ASYMPTOTIC DISTRIBUTION OF THE SAMPLE CVaR 
 

Consider the L-estimate (1.4) with J u( ) = 0  if u ≤ α  and ( )J u( ) = − −1 1α  if u > α , which yields (1.3). From 
(2.2) one obtains for the asymptotic mean  

( ) [ ]µ
α α

αJ F Q u du CVaR X, ( )=
−

=∫
1

1

1

,    (2.4) 

where the last equality follows by Definition (1.1) and Proposition 2.1 in Hürlimann [9]. Therefore, the mean of the 
CVaR L-estimate is asymptotically unbiased. The asymptotic variance is determined by the variance of the stop-loss 
random variable  ( )X d− +   with value-at-risk ( )d Q= α , namely 

( ) ( )[ ] [ ] [ ]σ α π α π α2 2 1 2
J F Var X Q Q Q, ( ) ( ) ( )( ) ( )= − = −

+
,   (2.5) 

 
where ( )[ ]π ( ) ( ) , ,k kx E X x k= − =+ 1 2 , denote the stop-loss transforms of degree one and two, and the quantile 

( )Q α   identifies with the usual value-at-risk functional  [ ]VaR Xα . The formula (2.5) is derived as follows. Using (2.3)  
and the facts (e.g. Hürlimann [8], Theorem 2.1)   

π ( ) ( ) ( )1 x F y dy
x

=
∞

∫ ,  F y F y( ) ( )= −1 ,  π π( ) ( )( ) ( )2 12x y dy
x

= ⋅
∞
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2 2
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( )

( )
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( )

( ) ( )

= ⋅








 = ⋅

= ⋅ − ⋅ = −

∞∞ ∞

∞ ∞

∫∫ ∫

∫ ∫
                                          (2.6) 

where the value of the last integral follows from the relation (use partial integration) 

[ ] ∫−=∫
∞∞

)(

)1(2)1(

)(

)1( )()()()()(
αα
παππ

QQ
dxxFxQdxxFx .   (2.7) 

 
2.2. ASYMPTOTIC DISTRIBUTION OF THE SAMPLE LORENZ TRANSFORM 
 
The L-estimate (1.2) of the Lorenz transform can be written in the form (1.4) with  J u( ) = 1  if  u ≤ α   and  
J u( ) = 0   if  u > α . The asymptotic mean of this estimate equals 

( ) [ ]µ
α

αJ F Q u du L X, ( )= =∫
0

,     (2.8) 

 
which shows that the mean of the Lorenz transform L-estimate is asymptotically unbiased. To determine the asymptotic 
variance using (2.3), we assume that X ≥ µ , as will be the case in our application to the generalised Pareto 
distribution in Section 3. We show the formula 

( ) [ ] [ ]
[ ] [ ].)()()(2

)()()()(,
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Using (2.3) we have 
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The formula (2.9) follows by noting that 

[ ]{ }π π µ π α
µ

α
( )

( )
( ) ( )( ) ( ) ( )1 2 21

2
x dx Q

Q

∫ = − ,  [ ]{ }π π µ π α
µ

α
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( )
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2
x F x dx Q

Q

∫ = − , 

        [ ]F x dx Q
Q

( ) ( ) ( )
( )

( ) ( )

µ

α

π µ π α∫ = −1 1 . 

 
3. GENERALISED PARETO WITH FINITE VARIANCE 
 
As limiting distribution of scaled excesses over high thresholds, the generalised Pareto distribution (GPD) is an 
appropriate parametric distribution for use in financial risk management (e.g. Embrechts et al. [5], McNeil et al. [13]). 
Its survival function is described by 

F x
x

x( ) , , ,= +
−



 > ≥ > >
−

1 0 0 0

1

ξ
µ

σ
ξ µ σ

ξ
.   (3.1) 

 

The r-th moment exists only if  ξ < −r 1 . Under the assumptionξ <
1
2

one has 

[ ] [ ]
( ) ( )

E X Var X= +
−

< ∞ =
− −

< ∞µ
σ
ξ

σ

ξ ξ1 1 1 2

2

2, .    (3.2) 

 
Through calculation one gets the stop-loss transforms of degree one and two 

π
σ
ξ

ξ( ) ( ) ( ) ( )1 1

1
x F y dy F x

x

= =
−

∞
−∫ ,     (3.3) 
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1 22

2
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Inserted in (2.6) using that  [ ]F Q( )α α= −1   one obtains 

( ) ( )
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ξ
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2 1 2
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−

.   (3.5) 

 
Since the L-estimate (1.3) has an asymptotic normal distribution, an approximate ε -confidence interval for the 
conditional value-at-risk from a GPD with finite variance reads 

[ ] [ ]CVaR X
J F
n

Z CVaR X
J F
n

Zn n
α ε α ε

σ σ( ) ( )( , )
,

( , )
− +







,   (3.6) 

 
where  ( )2/11 εε −Φ= −Z   is the  ( )2/1 ε− -quantile of the standard normal distribution. This interval has the 
precision 

                                         ∆ = ⋅ ⋅2
σ

ε

( , )J F
n

Z .                                                                      (3.7) 

 

Table 3.1 lists the critical sample size  n
J F Z

=






4
2σ ε( , )

∆
  required to estimate  [ ]CVaR Xα   using (3.6) with 

fixed precision ∆ = = =5%, 5%, 1ε σ , but by varying  ξ <
1
2

  and  α . 
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Table-3.1:  Critical sample size by fixed precision for CVaR estimation 

α  
ξ  95% 99% 99.9% 

0.1 1’520 427 68 
0.2 4’165 1’610 406 
0.3 13’057 6’938 2’769 
0.4 55’799 40’714 25’727 

0.45 164’893 140’893 112’007 
0.47 322’052 293’071 255’384 
0.49 1'133’964 1'098’907 1'049’633 

 
The asymptotic variance of the L-estimate (1.2) is obtained from (2.9). We need the quantile function of the GPD, that 
is 

( )[ ] ( )Q u u u( ) , ,= + − − ∈−µ
σ
ξ

ξ1 1 0 1 ,   (3.8) 

which is obtained from (3.1). Inserting this and the stop-loss transform formulas (3.3) and (3.4) into (2.9) one obtains 
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
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. (3.9) 

 
Again, since the L-estimate (1.2) has an asymptotic normal distribution, an approximate ε -confidence interval for the 
Lorenz transform from a GPD with finite variance reads 

[ ] [ ]L X
J F
n

Z L X
J F
n

Zn n
α ε α ε

σ σ( ) ( )( , )
,

( , )
− +







.  (3.10) 

Table 3.2 lists the critical sample size required to estimate  [ ]L Xα   using (3.6) with fixed precision  

∆ = = =5%, 5%, 1ε σ , but by varying  ξ <
1
2

  and  α . 

 
Table 3.2:  Critical sample size by fixed precision for Lorenz transform estimation 

α  
ξ  95% 99% 99.9% 

0.1 5’702 8’029 9’176 
0.2 7’692 11’949 14’765 
0.3 10’534 18’433 25’559 
0.4 14’642 29’512 48’117 

0.45 17’359 37’871 68’287 
0.47 18’601 41’953 79’057 
0.49 19’944 46’544 91’862 

Some general comments concerning Tables 3.1 and 3.2 and their comparison are in order. As ξ <
1
2

comes closer to 

the value
1
2

, an increasing critical sample size is required. For smallξ <
1
4

, one should use the confidence interval 

(3.6) for conditional value-at-risk. By known mean andξ ≥
1
4

, it is preferable to use the confidence interval (3.10) and 

transform it using the formula (1.1). 
 
4. GENERALISED PARETO WITH INFINITE VARIANCE 
 
In case the variance is infinite, the results of Sections 2 and 3 do not apply. This occurs for the GPD with parameter 

[ )ξ ∈ 1
2 1, , for which the mean is however finite. A theoretical justification of this insurance risk model is found in 

Aebi et al. [1]. A straightforward calculation using (3.8) yields the Lorenz transform 

[ ] ( )
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To measure the goodness of approximation of the Lorenz transform by the L-estimate (1.2) for the GPD with infinite 
variance, let us calculate the expected relative error of approximation defined by 

[ ][ ] [ ]
[ ]E

E L X L X
L X

n
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α α

α

( )
( )

=
−

.     (4.2) 

 
Using the explicit formulas for the distribution functions of order statistics and making a transformation of variables 
one obtains that 
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   (4.3) 

Note that the Ni ’s  is the Bernstein basis of the polynomials of degree not exceeding  n −1. Since  n i− + − >1 0ξ    
by assumption, one obtains 
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  is a beta coefficient. Observe that 
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and, using the recurrence relation  ( )Γ Γx x x+ =1 ( ) , one gets 
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Inserting above, the mean of the L-estimate (1.2) equals 
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For the typical parameter values  ( ) ( )µ σ ξ, , , ,= 10 7 1
2  (e.g. McNeil [12], p. 129), the Table 4.1 displays the expected 

relative error of approximation by varying  α   and the sample size. 
 

Table-4.1:  Expected relative error of approximation for the sample Lorenz transform in % 
α  
n 95% 99% 99.9% 

50 5.262 12.994 3.813 
100 4.382 12.994 3.813 
200 2.116 4.822 3.813 
300 1.395 2.998 3.813 
400 1.040 2.180 3.813 
500 0.830 1.713 3.813 

1000 0.412 0.829 3.813 
2000 0.205 0.408 1.421 
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We note that the sample Lorenz transform overestimates in average the theoretical Lorenz transform. This means that 
the corresponding sample CVaR in the text after formula (1.2) underestimates in general the theoretical value. To 
obtain relative errors of an order less than a given percentage, an increasing sample size is required for increasing 
values of  α . 
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