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ABSTRACT 
In this paper we give you an idea about strong and ∆-convergence for CR-iterative process of nonexpansive mapping 
whose domain is a nonempty closed convex subset of a CAT(0) space.  
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1. INTRODUCTION  
 
In 2012, R. Chugh, V. Kumar and S. Kumar [3] establish an iterative process named as CR-iterative process. This 
iterative process is defined by a sequence {xn}: 
xn+1= αnTyn+ (1 −αn) yn  , 
yn  = βnTzn+ (1-βn)Txn , 
zn  = γnTxn+ (1-γn) xn , where {αn}, {βn}, {γn} are sequences of positive numbers in  [0, 1] with ∑ αn

∞
n=0 = ∞. 

 
Now we transform this notion of iteration in the CAT(0) space setting which is as follows: 
xn+1= αnTyn⊕ (1 −αn) yn  , 
yn  = βnTzn⊕ (1-βn)Txn ,                                                                                                                                                (RS) 
zn  = γnTxn⊕ (1-γn) xn , where {αn}, {βn}, {γn} are sequences of positive numbers in [0, 1]. 
 
Let us recall some basic concepts for CAT(0) spaces. Let (X, d) be a metric space. A geodesic path joining x ∈ X to      
y ∈ X (or, more briefly, a geodesic from x to y) is a map c from a closed interval [0, l] ⊂ R to X such that c(0) = x,        
c(l) = y and d(c(t),c(t')) = |t − t'| for all  t, t' ∈ [0, l]. In particular, c is an isometry and d(x, y) = l. The image α of c is 
called a geodesic (or metric) segment joining x and y. When it is unique this geodesic segment is denoted by [x, y]. The 
space (X, d) is said to be a geodesic space if every two points of X are joined by a geodesic and X is said to be uniquely 
geodesic if there is exactly one geodesic joining x and y for each x, y ∈ X. A subset Y ⊆ X is said to be convex if Y 
includes every geodesic segment joining any two of its points. A geodesic triangle ∆ (x1, x2, x3) in a geodesic metric 
space (X, d) consists of three points x1, x2 , x3 in X (the vertices of ∆ ) and a geodesic segment between each pair of 
vertices (the edges of ∆). A comparison triangle for the geodesic triangle ∆ (x1 , x2 , x3) in (X, d) is a triangle         
∆�  (x1 , x2 , x3) = ∆ (x1� , x2��� , x3 ����) in the Euclidean plane 𝔼𝔼2 such that                  
 
d𝔼𝔼2 ( xi ���,xj�  ) = d(xi , xj) for  i , j ∈ {1, 2, 3} . 
 
A geodesic space is said to be a CAT(0) space if all geodesic triangles satisfy the following comparison axiom: Let ∆ 
be a geodesic triangle in X and let ∆�  be a comparison triangle for ∆.  Then ∆  is said to satisfy the CAT(0) inequality if 
for all x, y ∈ ∆ and all comparison points x� , y� ∈ ∆�  ,  d(x, y) ≤ d𝔼𝔼2 (x� , y�). 
 
If x, y1, y2 are points in a CAT(0) space and if y0 is the midpoint of the segment [y1, y2], then the CAT(0) inequality 
implies  
d(x, y0)2 ≤  1

 2
 d(x, y1)2 +  1

 2
 d(x, y2)2 -  1

 4
 d(y1, y2)2                                                                            (CN) 

 
This is the (CN) inequality of Bruhat and Tits [2]. In fact, a geodesic space is a CAT(0) space if and only if it satisfy 
(CN) inequality.  
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Let X be a CAT(0) space and let C be a nonempty subset of X and T: C → X be a mapping. Denote F(T) by the set of 
fixed points of T, i.e., F(T) = {x ∈ C : Tx = x}. 
 
Definition 1.1: T is said to be nonexpansive if d(Tx, Ty) ≤ d(x, y) for all x, y ∈ C and that T is quasi-nonexpansive if 
F(T) ≠ ∅ and d(Tx, p) ≤ d(x, p) for all x ∈ C and p ∈ F(T).  
 
Definition 1.2 [6]: Let {xn} be a bounded sequence in a CAT(0) space X. For x ∈ X, we set  
r(x,{xn}) =lim

n→∞
 sup d(x, xn).  

 
The asymptotic radius r({xn}) of {xn} is given by r({xn}) = inf{ r(x, {xn}): x ∈ X} and the asymptotic center A({xn}) 
of {xn} is the set A({xn}) = {x ∈ X: r(x, {xn}) = r({xn}) }. 
 
Remark 1.3: A({xn}) consists of exactly one point in CAT(0) spaces (see, e.g., [5], Proposition 7). 
 
Definition 1.4 [6]: A sequence {xn} in a CAT(0) space X is said to ∆-converge to x ∈ X if x is the unique asymptotic 
center of {un} for every subsequence {un} of {xn}. In this case we write ∆-lim xn  = x and call x the ∆-limit of {xn}. 
 
Senter and Dotson [8] introduced the condition (A) which is as follows: 
 
Definition 1.5: A mapping T: C→ C is said to satisfy the condition (A) if there exists a non-decreasing function              
f : [0, ∞) → [0, ∞) with f(0) = 0, f(r) > 0 for all r ∈ (0, ∞) such that d(x, Tx) ≥ f( d(x, F(T)) ) for all x ∈ C.   
 
Lemma 1.6 [6]: Let X be a CAT(0) space. Then  
d( (1- t) x ⊕ t y, z) ≤ (1- t ) d(x, z) + t d(y, z) for all x, y, z ∈ X and t ∈ [0, 1].                             (1.1)    
 
Lemma 1.7 [6]: Let (X, d) be a CAT(0) space. Then 
d( (1 −  t) x ⊕  t y, z) 2  ≤ (1 − t) d(x, z)2 + t d(y, z)2 - t (1 − t) d(x, y)2                                               (1.2) 
for all t ∈ [0, 1] and x, y, z ∈ X. 
 
Lemma 1.8 [7]: Every bounded sequence in a complete CAT(0) space always has a ∆-convergent subsequence. 
 
Lemma 1.9 [4]: If C is a closed convex subset of a complete CAT(0) space and if {xn} is a bounded sequence in C 
then the asymptotic center of {xn} is in C. 
 
Lemma 1.10 [6]: If C is a closed convex subset of a complete CAT(0) space and if T: C→  X is a nonexpansive 
mapping then the conditions, {xn} ∆-converges to x and d(xn  , T (xn))  →  0, imply x ∈ C and T(x) = x.  
 
2. MAIN RESULTS 
 
Lemma 2.1: Let C be a nonempty closed convex subset of a CAT(0) space X. Let T be a nonexpansive mapping of C. 
Let {αn}, {βn}, {γn} be such that 0 < a ≤ αn , βn , γn  ≤ b < 1 for all n ∈ N and for some a, b. Let {xn} be defined by 
the iteration process (RS). Then  limn→∞d(xn , p) exists for all p ∈ F(T) and limn→∞d(xn , Txn) = 0. 
 
Proof: Let p ∈ F(T). Then  
 
d(xn+1, p) = d(αnTyn⊕ (1 −αn) yn , p) 
                ≤ αn  d(Tyn , p) + (1 −αn) d(yn , p) 
                ≤ αn  d(yn , p) + (1 −αn) d(yn , p) = d(yn , p) 
                = d(βnTzn⊕ (1-βn)Txn , p) 
                ≤ βn  d(Tzn , p) + (1-βn) d(Txn , p) 
                ≤ βn  d(zn , p) + (1-βn) d(xn , p) 
                = βn  d(γnTxn⊕ (1-γn) xn , p) + (1-βn) d(xn , p) 
                ≤ βn[γn  d(Txn , p) + (1-γn) d(xn , p)] + (1-βn) d(xn , p) 
                ≤ d(xn , p) 
 
This implies that {d(xn , p)} is decreasing and bounded. Thus limn→∞  d(xn , p) exists and let        
limn→∞d(xn , p) = c.                                                (2.1) 
 
Now we prove that limn→∞  d(yn, p) = c and limn→∞  d(zn , p) = c 
 
Since d(xn+1, p) ≤ d(yn , p). This implies lim

n→∞  
d(xn+1, p) ≤  limn→∞  d(yn, p)   

or c ≤  limn→∞  d(yn, p)                                                                                                                      (2.2) 
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But d(yn , p) ≤ d(xn , p). 
 
This implies limn→∞  sup d(yn , p) ≤c                                                                                                (2.3)                                                              
 
From (2.2) and (2.3), we get limn→∞  d(yn, p) = c.                                                                            (2.4) 
 
Similarly we can get limn→∞  d(zn , p) = c.                                                                                          (2.5)                                  
 
Now d(zn , p)2 = d(γnTxn⊕ (1 − γn) xn , p)2 
                       ≤ γn  d(Txn , p)2 + (1 − γn ) d(xn , p)2 - γn(1 − γn) d(Txn , xn)2 

                       ≤ d(xn , p)2 - γn(1 − γn ) d(Txn , xn)2 
 
Thus γn(1 − γn)d(Txn , xn)2 ≤ d(xn , p)2 - d(zn , p)2  so that 
  
or d(Txn , xn)2 ≤ 1

γn (1−γn )
 [d(xn , p)2 - d(zn , p)2 ] 

 
or d(Txn , xn)2 ≤ 1

a(1−b)
 [d(xn , p)2 - d(zn , p)2 ] 

 
By (2.1) and (2.5), lim

n→∞  
 sup d(Txn , xn) ≤ 0 and hence lim

n→∞  
d(Txn , xn) = 0. 

 
Theorem 2.2: Let X, C, T, {αn}, {βn}, {γn} and {xn} be as in Lemma 2.1, then {xn} ∆-converges to a fixed point of 
T. 
 
Proof: Lemma 2.1 guarantees that the sequence {xn} is bounded and lim

n→∞  
d(Txn , xn) = 0. 

 
We now let ωw (xn) = ∪ A({un}) where the union is taken over all subsequences {un} of {xn}.  
 
We claim that ωw (xn) ⊂ F(T).  
 
Let u ∈ ωw (xn), then there exists a subsequence {un} of {xn} such that A({un}) = {u}. By Lemmas 1.8, 1.9 there 
exists a subsequence {vn } of {un} such that ∆- limn  vn  = v ∈ C. 
 
Since limn  d(vn , T vn) = 0, then v ∈ F(T) by Lemma 1.10. We claim that u = v. Suppose not, by the uniqueness of 
asymptotic centers, 
limn  sup d(vn , v) < limn  sup d(vn , u)  
                            ≤ limn  sup d(un , u) 
                            < limn  sup d(un , v) 
                            = limn  sup d(xn , v) 
                            = limn  sup d(vn , v), 
 
which is a contradiction and hence  u = v ∈ F(T).  
 
To show that {xn} ∆-converges to a fixed point of T, it suffices to show that ωw (xn) consists of exactly one point. Let 
{un} be a subsequence of {xn}. By Lemmas 1.8, 1.9 there exists a subsequence {vn} of {un} such that                         
∆-limn  vn  = v ∈ C. Let A({un}) = {u} and A({xn}) = {x}. We have seen that u = v and v ∈ F (T). We can complete 
the proof by showing that x = v. If not, since {d (xn , v)} is convergent, then by the uniqueness of asymptotic centers,  
limn  sup d(vn,v) < limn  sup d(vn , x) 
                           ≤ limn  sup d(xn , x) 
                           < limn  sup d(xn , v) 
                           = limn  sup d(vn , v), 
 
which is a contradiction and hence the conclusion follows. 
 
Theorem 2.3: Let C be a nonempty closed convex subset of a complete CAT(0) space X and let T: C → C be a 
nonexpansive mapping with F(T) ≠ ∅. Let {αn}, {βn} and {γn} be sequences in [0, 1]. From arbitrary x1 ∈ C, define 
the sequence {xn} by the recursion (RS). Then {xn} converges strongly to a fixed point of T if and only if                  
lim infn→∞d(xn , F(T)) = 0, where d(x, F(T) ) = inf{d(x, p): p ∈ F(T)}. 
 
Proof: The Necessary condition is quite obvious. 
 
 



Ritika*1 and Savita Rathee2 / Convergence of an Iterative Process in CAT (0) Spaces / IJMA- 6(2), Feb.-2015. 

© 2015, IJMA. All Rights Reserved                                                                                                                                                                        34   

 
Conversely, suppose that lim infn→∞d(xn , F(T) ) = 0. As proved in Lemma 2.1, we have   
d(xn+1, p) ≤ d(xn , p) for all p ∈ F(T). 
 
This implies that d(xn+1, F(T)) ≤ d(xn , F(T)) so that lim

n→∞
d(xn , F(T)) exists. Thus by hypothesis lim

n→∞
 d(xn , F(T)) = 0. 

 
Now we show that {xn} is a Cauchy sequence in C. Let ε > 0 be arbitrarily chosen. Since lim

n→∞
 d(xn , F(T)) = 0, there 

exists a positive integer n0 such that d(xn , F(T)) <  ε 
4�  for all n ≥ n0. 

 
In particular, inf{ d(xn0 , p) : p ∈ F(T) }<  ε 

4� . Thus there must exist p∗ ∈ F(T) such that d(xn0 , p∗) <  ε 
2� .  

 
Now for all m, n ≥ n0, we have  
d(xn+m , xn) ≤ d(xn+m , p∗) + d(p∗, xn) 
       ≤ 2 d(xn0 , p∗) 
       < 2( ε 

2� ) = ε. 
 
Hence {xn} is a Cauchy sequence in a closed subset C of a complete CAT(0) space and so it must converge to a point   
q in C and lim

n→∞
d(xn , F(T)) = 0 gives that d(q, F(T)) = 0 and closedness of F(T) forces q to be in F(T). 

 
Now we give the strong convergence result of CR-iterative process for the mapping satisfying Condition (A).  
 
Theorem 2.4: Let C be a nonempty closed convex subset of a complete CAT(0) space X and let {αn}, {βn}, {γn} be 
sequences in [0, 1]. From arbitrary x1 ∈ C, define the sequence {xn} by the recursion (RS). Let T: C → C satisfy the 
condition (A). Then {xn} converges strongly to a fixed point of T. 
 
Proof: From Lemma 2.1, limn→∞  d(xn, p) exists for all p ∈ F(T). 
 
Let limn→∞  d(xn, p) = c where c ≥ 0. If c = 0 then there is nothing to prove. Suppose that c > 0.  
 
Now d(xn+1, p) ≤ d(xn , p) gives infp∈F(T) d(xn+1, p) ≤ infp∈F(T) d(xn , p), which implies that                              
d(xn+1, F(T)) ≤ d(xn , F(T))  
 
so that lim

n→∞
  d(xn , F(T)) exists. Using the condition (A),   

lim
n→∞  

f(d(xn , F(T))) ≤ lim
n→∞  

 d(Txn , xn) = 0. 
 
Thus we get lim

n→∞  
f(d(xn , F(T))) = 0. Since f is a non-decreasing function and f(0) = 0, it follows tha lim

n→∞  
d(xn , F(T)) = 0. 

The conclusion now follows from the above Theorem 2.3. 
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