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ABSTRACT 
In this paper, an SIRS model with emigration rate and simple mass action incidence is formulated and studied. 
Equilibrium and threshold are determined for the system of ordinary differential equations and discussed. For 
both, disease free and endemic equilibrium point, stability conditions are determined to see whether the disease 
dies out or approaches an endemic equilibrium state. An example is also furnished which demonstrates validity of 
main result. 
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1. INTRODUCTION 
 
Epidemic models described by ordinary differential equations have become important tools in analyzing the 
spread and control of infectious diseases. The first SIR epidemic model was proposed by Kermack and Mckendric 
[12] in the year 1927. In the previous year’s more and more SIRS models have been investigated during the study 
of epidemic models [1-6]. The SIRS epidemic model has been studied by many authors (see Hethcote [10, 11], 
Capasso and Serio [7], Mena-Lorca [13]). 
 
If (t)N is the total varying population size as a function of time t, b is the birth rate constant and d  is the death rate 
constant, then      

                       0( ) ,  (0) NdN b d N N
dt

= − =                                                                                                             (1.1)                                    

is the initial value problem. If r b d= −  then solution of  (1.1)  is 0(t) N rtN e= so 0(t) NN = if 0,r = (t)N  is 

grows exponentially if 0r > and (t)N  is decays exponentially if 0,r < where r b d= −  is called the net growth 
rate. This form of population dynamics is called exponential births and deaths. 
 
The number of individuals who are susceptible, infectious and recovered at time t, are denoted by (t), Y(t) and (t)X Z   
respectively and (t) Y(t) (t) (t).X Z N+ + =    
 
The rate at which susceptible becomes infectious is called the incidence in an epidemiological model. If the unit time is 
days, then the incidence is the number of new infection per day. The number of susceptible who are infected by an 
infected individual per unit of time, at time t,  is proportional to the number of susceptible with the proportional 
coefficient (transmission coefficient) ,β so that the total number of newly infective, at time t, is (t) Y(t).Xβ The 
number of recovered individuals from the infected compartment per unit time is (t)Yγ at time t, whereγ  is the 
recovery rate coefficient.  
The average number of secondary infections produced by one infected individuals during the mean course of infection 
(infectious period) in a completely susceptible population is called a basic reproductive number or simply the 
reproductive numberσ . If 1σ < , then on average, the number of new infection by one infected individual over the 
mean course of the disease (infectious period) is 1,< which implies that the disease dies out. If 1,σ > then the number 
of new infections produced by one infected individual is 1,> which implies that disease persist.    
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In this paper we consider an SIRS epidemic model with an emigration rate and simple mass action incidence In the 
next section, we present the model and derive the disease free equilibrium and the endemic equilibrium. In the third 
section, we prove some theorems for the global stability of the disease free and endemic equilibrium. The fourth section 
contains an example which demonstrates validity of main result. In the last section, we give conclusion. 
 
2. THE BASIC MATHEMATICAL MODEL 
 
The epidemiological model formulated here has population dynamics corresponding to difference between immigration 
and emigration with deaths. In the transfer diagram, 
 

          ( )

   
  

    
A XY Y Z

d Y dZ

B

dX

Y Z XX
β γ δ

α+

→ → → →
↑

↓ ↓↓
 

 
Where the number of susceptible, infective and recovered individuals as a function of time t are ( ), ( )X t Y t  

and Z(t), respectively and the total population size ( ).N t The parameters in the model are: 

A=  constant immigration rate 
B =  constant emigration rate 
d =  natural death rate constant 
β = transmission coefficient 
α =  disease-related death rate constant 
γ =  recovery rate constant 

δ =  loss of immunity rate constant. 
 
We assume that  and ,d α δ  are nonnegative and that , , ,A B β γ and dδ +  are positive. 
 
The autonomous differential equations corresponding to the transfer diagram are: 

( )

( )

dX A B XY dX Z
dt
dY XY d Y
dt
dZ Y d Z
dt
dN A B dN Y
dx

β δ

β γ α

γ δ

α

= − − − +

= − + +

= − +

= − − −

                                                                                                                             (2.1) 

                       
Where .N X Y Z= + + In the absence of disease i.e. 0α = the population size approaches the constant size 
( ) ,  if .A B d A B− > For simple mass action incidence the contact number i.e. basic reproductive number typically 

is the productive of ,β a population size and an average infectious period so that the contact number is  

( ).A B d
d

σ β γ α− = + + 
 

                                                                                                                                 (2.2) 

For the system (2.1) the first octant in XYZ space is positively invariant. Because  0 for ( ) ,dN N A B d
dt

< > −  all 

paths in the first octant approach, enter or stay inside the subset {( , , ) : ( ) }.T X Y Z X Y Z A B d= + + ≤ − The 
continuity of the right side of (2.1)and its derivatives implies that unique solutions exits on a maximal time interval. 
Since solutions approach, enter or stay in ,T they are eventually bounded and hence exist for all positive time [8]. We 
first consider the existence of equilibrium of system (2.1).   
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For any values of parameter, model (2.1) always has a disease-free equilibrium ( )( ) ,0,0 .oP A B d= − To find the 
positive equilibrium, set  

0
( ) 0

( ) 0
0

A B XY dX Z
XY d Y

Y d Z
A B dN Y

β δ
β γ α
γ δ

α

− − − + =
− + + =

− + =
− − − =

                                                                                                                                  (2.3) 

   
3. MAIN RESULTS 
 
Theorem 3.1: From the system (2.2) it follows that 

(i) if 1,σ ≤ then there is no positive equilibrium; 

(ii) if 1,σ > then there is a unique positive equilibrium ( ), ,e e e eP X Y Z= of the system (2.1), called the 
“endemic equilibrium”, given by  

( )

( )
( )

1

( ) 1
1

e

e
e

e
e

e
e

dX

A B dXY
d d

YZ
d

A B d X
N

d d

γ α
β

α γ δ

γ
δ

γ δ α
α γ δ

+ +
=

− −
=

+ + +

=
+
− + + +

=
+ + +

                                                                                                         (3.1) 

          
Theorem 3.2: The equilibrium ( )( ) ,0,0oP A B d= −  is locally asymptotically stable if 1σ ≤ and oP  is saddle 

point if 1.σ >  
 
Proof:  The Jacobian of system (2.1) at oP is 

             

( )

( )( ) 0 ( ) 0

0 ( )

o

A Bd
d

A BJ P d
d

d

β δ

β γ α

γ δ

− − − 
 

− = − + + 
 − +  
 

 

 
The characteristic equation is  

( )( )( ) ( ) 0A Bd t d t d t
d

βδ γ α− + + + − + + − =  
                                                                                           (3.2) 

 
The roots of (3.2) are  

( ), ( ) and ( )A Bd d d
d

βδ γ α−
− − + − + +  

 

The first two roots having  negative real parts and third root 
( ) ( )A B d

d
β γ α−

− + +  will have negative real part if 

1.σ ≤ Thus all roots of (3.2) have negative real parts so oP is locally asymptotically stable if 1σ ≤ and the root 

( ) ( )A B d
d

β γ α−
− + +  will have positive real part if 1σ > so oP is saddle point.  
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Theorem 3.3: The equilibrium ( )( ) ,0,0oP A B d= −  is globally asymptotically stable if 1.σ ≤  
 
Proof: Since the set {( , , ) : ( ) }T X Y Z X Y Z A B d= + + ≤ − is attractive and positive invariant. 
 
To prove that all paths in T approach ( )( ) ,0,0oP A B d= −  for 1,σ ≤ define the Liapunov function  in  with L Y T=     

[ ]( ) 0. dL dY X d Y
dt dt

β γ α= = − + + ≤                                                                                                                 (3.3)   

 
The Lasalle-Liapunov theory [9] implies that all paths in T approach the largest positively invariant subset of the set 

T where 0.dL
dt

=   

Here 0dL
dt

= only if 0 or ( , , ) .oY X Y Z P= =  The positively invariant subset of the plane 0Y = is the point 

oP so oP is globally asymptotically stable for 1.σ ≤        
 
Theorem 3.4: The equilibrium ( ), ,e e e eP X Y Z=  is locally asymptotically stable if 1.σ >  
 
Proof: The Jacobian of system (2.1) at eP is 

                ( ) ( ) 0
0 ( )

e e

e e e

d Y X
J P Y X d

d

β β δ
β β γ α

γ δ

− − − 
 = − + + 
 − + 

 

 
The cubic characteristic equation is  

3 2
1 2 3

1
2

2
2

3

0,
                2 0,

                ( )( ) 0,

                ( ) 0.

e

e e e

e e e

t a t a t a
a d Y

a d d Y X Y

a X Y d Y

δ β

δ β β

β δ δβγ

+ + + =
= + + >

= + + + >

= + − >

 

Thus all roots have negative real parts iff 1 2 3 0a a a− > by the Routh-Hurwiz criteria [14]. Thus 1 2 3a a a− is positive 

if 1σ >  equilibrium ( ), ,e e e eP X Y Z=  is locally asymptotically stable if 1.σ >  
 
4. EXAMPLE 
  
In this section, we give an example to demonstrate the results obtained in the previous sections.  
 
We take the parameters of the system as 2.33d = , 6.4,  2.9,A B= =  1, 0.28, 1.20,  0.49δ α β γ= = = =  

Then (1.5021,0,0)OP =  and 0.5814 1.σ = <  Therefore, by theorem 2.3, OP  is a global asymptotically stable in 
the first octant.  
 
Now we take the parameter of the system as 0.36d =  6.4,  2.9,A B= = 1, 2, 1.20,  0.18.δ α β γ= = = =  

Then (2.1166,1.1372,0.1505)eP =  and 4.5931 1.σ = > Therefore, by theorem 3.4 eP  is a locally asymptotically 
stable in the interior of the first octant. 
 
5. CONCLUSION 
 
In this paper, we have studied an SIRS model with emigration rate and simple mass action incidence. Our main 
results shows that when 1,σ ≤  the disease-free equilibrium OP  is globally asymptotically stable. When 1,σ >  the 

endemic equilibrium ( ), ,e e e eP S I R=  exists and is locally asymptotically stable.     
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