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ABSTRACT 
Graph coloring techniques are used to solve many practical problems involving networks. Coloring of fuzzy graphs 
also plays a significant role in solving many network problems. The concept of strong coloring of a fuzzy graph based 
on strength of arcs is defined in [5] and using the strong chromatic number of union, corona and different types of 
products of fuzzy graphs is obtained. The types of arcs in the resultant graphs are also studied. An application of strong 
chromatic number in solution of transportation problem is suggested. 
 
 
1. INTRODUCTION 
 
Fuzzy graphs, introduced by Rosenfield [11] is a widely explored area of recent research in applied mathematics. It 
finds applications in science and technology in many streams. Fuzzy models give more precision, flexibility and 
compatibility to the system when compared to the classic models. Many recent research papers are available in fuzzy 
graph theory. The basic concepts and applications of fuzzy graphs and recent developments are detailed in [14]. Works 
on bipolar fuzzy graphs, interval valued fuzzy graphs etc are a few among them [12], [1], [2], [10]. 
 
The concept of chromatic number of fuzzy graphs was introduced by Munoz et.al [9]. Later Eslahchi and Onagh [6] 
defined fuzzy coloring of fuzzy graphs and defined fuzzy chromatic number 𝜒𝜒𝑓𝑓(𝐺𝐺). Anjaly and Sunitha introduced 
chromatic number 𝜒𝜒(𝐺𝐺) of fuzzy graph G incorporating the features of definitions given in Munoz et al. and Eslahchi 
and Onagh and established that 𝜒𝜒(𝐺𝐺) = 𝜒𝜒𝑓𝑓(𝐺𝐺).. They also developed algorithms for the same [4]. 
 
The concept of strong coloring of a fuzzy graph based on strength of arcs is introduced in [5] and strong chromatic 
number 𝜒𝜒𝑠𝑠(𝐺𝐺) is defined. In this paper, the types of arcs such as 𝛼𝛼 − strong, 𝛽𝛽 − strong and 𝛿𝛿− arcs [13] in the union, 
corona and types of products of fuzzy graphs are studied. The concept of strong coloring is used in operations of fuzzy 
graphs and the relation between the strong chromatic number of the resultant graph and that of the individual graphs are 
obtained. 
 
2. PRELIMINARIES 
 
The following basic definitions are taken from [8]. A fuzzy graph is an ordered triple 𝐺𝐺 ∶  (𝑉𝑉,𝜎𝜎, µ) where 𝑉𝑉 is a set of 
vertices {𝑢𝑢1,𝑢𝑢2, . . . ,𝑢𝑢𝑛𝑛}, 𝜎𝜎 is a fuzzy subset of 𝑉𝑉 i.e, 𝜎𝜎 ∶  𝑉𝑉 →  [0, 1] and is denoted by 
𝜎𝜎 =  {(𝑢𝑢1,𝜎𝜎(𝑢𝑢1)), (𝑢𝑢2,𝜎𝜎(𝑢𝑢2)). . . (𝑢𝑢𝑛𝑛 ,𝜎𝜎(𝑢𝑢𝑛𝑛))} and µ is a fuzzy relation on 𝜎𝜎, i.e µ(𝑢𝑢, 𝑣𝑣)  ≤  𝜎𝜎(𝑢𝑢)  ∧  𝜎𝜎(𝑣𝑣)∀𝑢𝑢,𝑣𝑣 ∈  𝑉𝑉 . 
We consider fuzzy graph G with no loops and assume that 𝑉𝑉 is finite and nonempty, µ is reflexive (i.e.,µ(𝑢𝑢,𝑢𝑢)  =
 𝜎𝜎(𝑢𝑢),∀𝑢𝑢) and symmetric (i.e., µ(𝑢𝑢, 𝑣𝑣)  =  µ(𝑣𝑣,𝑢𝑢),∀(𝑢𝑢, 𝑣𝑣)). in all the examples 𝜎𝜎 is chosen suitably. Also, we denote 
the underlying crisp graph of 𝐺𝐺 by 𝐺𝐺∗: (𝜎𝜎∗, 𝜇𝜇∗) where  𝜎𝜎∗ = {𝑢𝑢 ∈  𝑉𝑉 ∶  𝜎𝜎(𝑢𝑢)  >  0} and  𝜇𝜇∗ =  {(𝑢𝑢, 𝑣𝑣)  ∈ 𝑉𝑉 ×  𝑉𝑉 ∶
 µ(𝑢𝑢, 𝑣𝑣)  >  0}. Through out we assume that 𝜎𝜎∗ =V. The level set of fuzzy set 𝜎𝜎 is defined as 𝜆𝜆 =  {𝛼𝛼/𝜎𝜎(𝑢𝑢)  =  𝛼𝛼 for 
some 𝑢𝑢 ∈  𝑉𝑉 }. For each 𝛼𝛼 ∈  𝜆𝜆, 𝐺𝐺𝛼𝛼denotes the crisp graph 𝐺𝐺𝛼𝛼  = (𝜎𝜎𝛼𝛼 , µ𝛼𝛼) where 𝜎𝜎𝛼𝛼  = {𝑢𝑢 ∈  𝑉𝑉/𝜎𝜎(𝑢𝑢)  ≥  𝛼𝛼}, µ𝛼𝛼  = 
{(𝑢𝑢, 𝑣𝑣)  ∈  𝑉𝑉 ×  𝑉𝑉/µ(𝑢𝑢, 𝑣𝑣)  ≥  𝛼𝛼}. The complement of a fuzzy graph[15] 𝐺𝐺 ∶  (𝑉𝑉,𝜎𝜎, µ) is the fuzzy graph �̅�𝐺 ∶  (𝑉𝑉,𝜎𝜎�, µ�) 
with 𝜎𝜎�(𝑢𝑢)  =  𝜎𝜎(𝑢𝑢) and µ�(𝑢𝑢, 𝑣𝑣)  =  𝜎𝜎(𝑢𝑢)  ∧  𝜎𝜎(𝑣𝑣)  −  µ(𝑢𝑢, 𝑣𝑣),∀𝑢𝑢, 𝑣𝑣 ∈  𝑉𝑉 . 
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A path 𝑃𝑃 of length 𝑛𝑛 is a sequence of distinct nodes 𝑢𝑢0,𝑢𝑢1, . . . ,𝑢𝑢𝑛𝑛  such that µ(𝑢𝑢𝑖𝑖−1,𝑢𝑢𝑖𝑖) > 0, 𝑖𝑖 =  1, 2, . . . . . . ,𝑛𝑛 and the 
degree of membership of a weakest arc in 𝑃𝑃 is defined as the strength of 𝑃𝑃. If 𝑢𝑢0  =  𝑢𝑢𝑛𝑛  and 𝑛𝑛 ≥  3 then 𝑃𝑃 is called a 
cycle and 𝑃𝑃 is called a fuzzy cycle, if it contains more than one weakest arc. The strength of a cycle is the strength of a 
weakest arc in it. A fuzzy cycle of length 𝑛𝑛 is denoted by 𝐶𝐶𝑛𝑛 . The maximum strength among all paths from 𝑢𝑢 to 𝑣𝑣 is 
denoted by 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐺𝐺(𝑢𝑢, 𝑣𝑣). A fuzzy graph 𝐺𝐺 ∶  (𝑉𝑉,𝜎𝜎, µ) is connected if for every 𝑢𝑢, 𝑣𝑣 in V, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐺𝐺(𝑢𝑢, 𝑣𝑣) > 0. A 
connected fuzzy graph 𝐺𝐺 ∶  (𝑉𝑉,𝜎𝜎, µ) is a fuzzy tree if it has a fuzzy spanning subgraph 𝐹𝐹 ∶  (𝑉𝑉,𝜎𝜎, 𝜈𝜈), which is a tree 
where for all arcs (𝑢𝑢, 𝑣𝑣) not in 𝐹𝐹 there exists a path from 𝑢𝑢 to 𝑣𝑣 in 𝐹𝐹 whose strength is more than µ(𝑢𝑢, 𝑣𝑣). A maximum 
spanning tree of a connected fuzzy graph 𝐺𝐺 ∶  (𝑉𝑉,𝜎𝜎, µ) is a fuzzy spanning subgraph 𝑇𝑇 ∶  (𝑉𝑉,𝜎𝜎, 𝜈𝜈), such that 𝑇𝑇∗ is a tree, 
and for which ∑ 𝜈𝜈(𝑢𝑢, 𝑣𝑣)𝑢𝑢≠𝑣𝑣   is maximum. Also fuzzy graph is a fuzzy tree if and only if it has a unique maximum 
spanning tree [15]. A fuzzy graph G is said to be complete if µ(𝑢𝑢, 𝑣𝑣)  =  𝜎𝜎(𝑢𝑢)  ∧  𝜎𝜎(𝑣𝑣), ∀𝑢𝑢, 𝑣𝑣 ∈  𝑉𝑉 . An arc (𝑢𝑢, 𝑣𝑣) is 
said to be strong if µ(𝑢𝑢, 𝑣𝑣)  ≥  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐺𝐺\(𝑢𝑢 ,𝑣𝑣)(𝑢𝑢, 𝑣𝑣)[7]. Strong arcs are again classified as 𝛼𝛼−strong and 𝛽𝛽−strong 
arcs[13]. An arc (𝑢𝑢, 𝑣𝑣) is said to be 𝛼𝛼−strong if 𝜇𝜇(𝑢𝑢, 𝑣𝑣)  >  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐺𝐺\(𝑢𝑢 ,𝑣𝑣)(𝑢𝑢, 𝑣𝑣) and if 𝜇𝜇(𝑢𝑢, 𝑣𝑣)  =  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐺𝐺\(𝑢𝑢 ,𝑣𝑣)(𝑢𝑢, 𝑣𝑣), it 
is said to be 𝛽𝛽 − strong . An arc (𝑢𝑢, 𝑣𝑣) is said to be 𝛿𝛿 − arc if µ(𝑢𝑢, 𝑣𝑣)  <  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐺𝐺\(𝑢𝑢 ,𝑣𝑣)(𝑢𝑢, 𝑣𝑣) .  
 
Definition 2.1: [8] If   𝐺𝐺1 = (𝑉𝑉1,𝜎𝜎1, µ1) and   𝐺𝐺2  =  (𝑉𝑉2,𝜎𝜎2, µ2) be two fuzzy graphs with 𝐺𝐺1

∗ = (𝑉𝑉1,𝐸𝐸1) and         
𝐺𝐺2

∗ =  (𝑉𝑉2,𝐸𝐸2), then 𝐺𝐺1  ∪ 𝐺𝐺2 is the fuzzy graph (𝑉𝑉1  ∪ 𝑉𝑉2,𝜎𝜎, µ)  
 
where 

       𝜎𝜎(𝑢𝑢) = �𝜎𝜎1(𝑢𝑢), 𝑢𝑢 ∈ 𝑉𝑉1 −  𝑉𝑉2
𝜎𝜎2(𝑢𝑢), 𝑢𝑢 ∈ 𝑉𝑉2 −  𝑉𝑉1

� and  

        𝜇𝜇(𝑢𝑢, 𝑣𝑣) = �𝜇𝜇1(𝑢𝑢, 𝑣𝑣), (𝑢𝑢,𝑣𝑣) ∈ 𝐸𝐸1 −  𝐸𝐸2
𝜇𝜇2(𝑢𝑢, 𝑣𝑣), (𝑢𝑢, 𝑣𝑣) ∈ 𝐸𝐸2 −  𝐸𝐸1

� 

 
Definition 2.2: [8] Let𝐺𝐺∗ = 𝐺𝐺1

∗  × 𝐺𝐺2
∗  = (𝑉𝑉,𝐸𝐸") be the cartesian product of two graphs where 𝑉𝑉 =  𝑉𝑉1 ×  𝑉𝑉2and          

𝐸𝐸" = {(𝑢𝑢𝑢𝑢2,𝑢𝑢𝑣𝑣2) ∶  𝑢𝑢 ∈  𝑉𝑉1, (𝑢𝑢2, 𝑣𝑣2)  ∈ 𝐸𝐸2} ∪ {(𝑢𝑢1𝑣𝑣, 𝑣𝑣1𝑣𝑣) ∶  𝑣𝑣 ∈  𝑉𝑉2, (𝑢𝑢1, 𝑣𝑣1)  ∈  𝐸𝐸1}, then 𝐺𝐺1 × 𝐺𝐺2 is the fuzzy graph 
(𝑉𝑉,𝜎𝜎, µ) where 
𝜎𝜎(𝑢𝑢1𝑢𝑢2)  =  𝜎𝜎1(𝑢𝑢1)  ∧  𝜎𝜎2(𝑢𝑢2)∀(𝑢𝑢1𝑢𝑢2)  ∈  𝑉𝑉 
µ(𝑢𝑢𝑢𝑢2,𝑢𝑢𝑣𝑣2)  =  𝜎𝜎1(𝑢𝑢)  ∧  µ2(𝑢𝑢2𝑣𝑣2)∀𝑢𝑢 ∈  𝑉𝑉1,∀(𝑢𝑢2, 𝑣𝑣2)  ∈  𝐸𝐸2 
µ(𝑢𝑢1𝑣𝑣, 𝑣𝑣1𝑣𝑣)  =  𝜎𝜎2(𝑣𝑣)  ∧  µ1(𝑢𝑢1𝑣𝑣1)∀𝑣𝑣 ∈  𝑉𝑉2,∀(𝑢𝑢1, 𝑣𝑣1)  ∈  𝐸𝐸1. 
 
3. STRONG CHROMATIC NUMBER 
 
Coloring of graphs play a vital role in network problems. In any network, modeled as a fuzzy graph, the role of arcs 
with different strengths is significant. Note that the role of a 𝛿𝛿− arc is negligible, as the flow is minimum along 𝛿𝛿 − arc 
and there is an alternate strong path (maximum flow) between the corresponding nodes. Hence strong arcs are more 
significant in networks. In [5], the concept of strong chromatic number of fuzzy graphs is introduced as follows. 
 
Definition 3.1: [5] Consider a fuzzy graph 𝐺𝐺 ∶  (𝑉𝑉,𝜎𝜎, µ). Any coloring 𝐶𝐶 ∶  𝑉𝑉 (𝐺𝐺)  →  ℕ (where ℕ is the set of all 
positive integers) such that 𝐶𝐶(𝑢𝑢)  ≠  𝐶𝐶(𝑣𝑣) if (𝑢𝑢, 𝑣𝑣) is a strong arc(𝛼𝛼 − strong and 𝛽𝛽 − strong) in 𝐺𝐺 is called strong 
coloring. 
 
A fuzzy graph G is 𝑘𝑘-strong colorable if there exists a strong coloring of 𝐺𝐺 from a set of 𝑘𝑘 colors. 
 
The minimum number 𝑘𝑘 for which 𝐺𝐺 is 𝑘𝑘-strong colorable is called strong chromatic number of 𝐺𝐺 denoted by 𝜒𝜒𝑠𝑠(𝐺𝐺). 
 
Note that the end nodes of a 𝛿𝛿 − arc can be assigned the same color in strong coloring. 
 
Illustration 1. Consider the following fuzzy graph in Fig. I. 
                  (1) 𝑢𝑢              0.2 𝑣𝑣(2) 
                        
                  0.2                   0.1                  0.5 
  
 
 
                  (2) 𝑥𝑥                   0.4     𝑦𝑦(1) 
                                     Fig. I 
The arcs (𝑢𝑢, 𝑣𝑣) and (𝑢𝑢, 𝑥𝑥) are 𝛽𝛽− strong arcs, since μ(𝑢𝑢, 𝑣𝑣)  =  0.2 =  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐺𝐺\(𝑢𝑢 ,𝑣𝑣)(𝑢𝑢, 𝑣𝑣)  =  0.2 and 𝜇𝜇(𝑢𝑢,𝑥𝑥) =  0.2 =
 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐺𝐺\(𝑢𝑢 ,𝑥𝑥)(𝑢𝑢, 𝑥𝑥) = 0.2. The arcs (𝑥𝑥,𝑦𝑦) and (𝑣𝑣,𝑦𝑦) are 𝛼𝛼− strong as 𝜇𝜇(𝑥𝑥,𝑦𝑦) =  0.4  > 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐺𝐺(𝑥𝑥 ,𝑦𝑦)(𝑥𝑥,𝑦𝑦) = 0.2   and 
 𝜇𝜇(𝑣𝑣,𝑦𝑦)  =  0.5 >  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐺𝐺\(𝑣𝑣,𝑦𝑦)(𝑣𝑣,𝑦𝑦)  =  0.2. But arc (𝑢𝑢,𝑦𝑦) is a 𝛿𝛿− arc, since 𝜇𝜇(𝑢𝑢,𝑦𝑦)  =  0.1 < 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐺𝐺\(𝑢𝑢 ,𝑦𝑦)(𝑢𝑢,𝑦𝑦)  =
 0.2. Hence the nodes 𝑢𝑢 and 𝑦𝑦 are assigned the same color (say) color 1. The nodes 𝑣𝑣 and 𝑥𝑥 are assigned color 2. Hence 
𝜒𝜒𝑠𝑠(𝐺𝐺) = 2. Note that the chromatic number 𝜒𝜒(𝐺𝐺)= 3 since 𝑢𝑢 and 𝑦𝑦 are adjacent and hence colored differently. 
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4. STRONG COLORING OF RESULTANT GRAPHS 
 
In this section, strong chromatic number of the resulting graphs obtained by different operations on fuzzy graphs are 
studied. First we discuss the types of arcs in operations of fuzzy graphs. 
 
Theorem 4.1:  The 𝛼𝛼− strong, 𝛽𝛽− strong and 𝛿𝛿− arcs are preserved in union of fuzzy graphs. 
 
Proof: The definition of union of fuzzy graphs indicates the connectivity and adjacencies of the nodes in fuzzy graphs 
are unaffected.  Hence the result. 
 
Theorem 4.2:  𝜒𝜒𝑠𝑠(𝐺𝐺1 ∪ 𝐺𝐺2) = max {𝜒𝜒𝑠𝑠(𝐺𝐺1),𝜒𝜒𝑠𝑠(𝐺𝐺2)} 
 
Proof: The arc strengths are preserved in union. Hence the result follows. 
 
Theorem 4.3: There are no 𝛿𝛿 − arcs in 𝐺𝐺1 × 𝐺𝐺2 if and only if both 𝐺𝐺1 and 𝐺𝐺2 are complete fuzzy graphs, fuzzy cycles 
or fuzzy trees. 
 
Proof: Since there are no 𝛿𝛿 − arcs in complete fuzzy graphs, fuzzy cycles and fuzzy trees [13], the proof follows from 
the definition of cartesian product of fuzzy graphs. 
For other operations, depending upon the arc strength and node strength, 𝛼𝛼− strong, 𝛽𝛽− strong and 𝛿𝛿− arcs may vary in 
their behaviour in the resultant graphs. 
 
We now have the results on strong coloring as follows. 
 
Theorem 4.4: 𝜒𝜒𝑠𝑠(𝐾𝐾𝑛𝑛 × 𝐾𝐾𝑚𝑚 ) = 𝑚𝑚𝑚𝑚𝑥𝑥 {𝑚𝑚,𝑛𝑛}. 
 
Proof: Without loss of generality, let us assume that 𝑛𝑛 >  𝑚𝑚. Let 𝑢𝑢1,𝑢𝑢2, . . . ,𝑢𝑢𝑛𝑛  be the nodes of 𝐾𝐾𝑛𝑛  and 𝑣𝑣1, 𝑣𝑣2, . . . , 𝑣𝑣𝑚𝑚  be 
the nodes of 𝐾𝐾𝑚𝑚 . Take a node say 𝑢𝑢1𝑣𝑣1 of 𝐾𝐾𝑛𝑛 × 𝐾𝐾𝑚𝑚 . The node 𝑢𝑢1𝑣𝑣1  is adjacent to all nodes 𝑢𝑢1𝑣𝑣𝑗𝑗 , 𝑗𝑗 =  1, 2, 3, . . . ,𝑚𝑚 and 
𝑢𝑢𝑖𝑖𝑣𝑣1 𝑖𝑖 =  2, 3, . . . ,𝑛𝑛, by the definition of cartesian product. Also by theorem 4.3, there are no 𝛿𝛿− arcs in 𝐾𝐾𝑛𝑛 × 𝐾𝐾𝑚𝑚  and 
all adjacencies are by strong arcs. Hence all nodes 𝑢𝑢1𝑣𝑣𝑗𝑗    must be colored differently. Hence 𝑚𝑚 colors are required. Also 
all nodes 𝑢𝑢𝑖𝑖𝑣𝑣1 are colored with 𝑛𝑛 colors. Since the nodes 𝑢𝑢𝑖𝑖𝑣𝑣𝑗𝑗  and 𝑢𝑢𝑟𝑟𝑣𝑣𝑠𝑠   are adjacent if and only if either 𝑖𝑖 =  𝑟𝑟 
or 𝑗𝑗 =  𝑠𝑠, all nodes 𝑢𝑢𝑖𝑖𝑣𝑣1    and 𝑢𝑢1𝑣𝑣𝑗𝑗     are not adjacent. Hence the colors of the nodes 𝑢𝑢𝑖𝑖𝑣𝑣1  can be used for coloring the 
nodes 𝑢𝑢1𝑣𝑣𝑗𝑗 . Hence for strong coloring of 𝐾𝐾𝑛𝑛 × 𝐾𝐾𝑚𝑚 , a minimum of 𝑛𝑛 colors are required. Hence the proof. 
 
Definition 4.5: The corona 𝐺𝐺1  ∘  𝐺𝐺2 is the fuzzy graph obtained by taking one copy of 𝐺𝐺1 having 𝑛𝑛1 nodes and  𝑛𝑛1 
copies of  𝐺𝐺2. Then join the node 𝑖𝑖 of 𝐺𝐺1 to every node in the 𝑖𝑖 th copy of  𝐺𝐺2. 
 
The fuzzy graph 𝐺𝐺 =  𝐺𝐺1  ∘  𝐺𝐺2  =  (𝑉𝑉,𝜎𝜎, 𝜇𝜇) where  𝜎𝜎(𝑢𝑢𝑖𝑖)  =  𝜎𝜎1(𝑢𝑢𝑖𝑖) ,  𝜎𝜎(𝑣𝑣𝑖𝑖)  =  𝜎𝜎2(𝑣𝑣𝑖𝑖) for all 𝑢𝑢𝑖𝑖 ∈  𝑉𝑉1, 𝑣𝑣𝑖𝑖 ∈  𝑉𝑉2and  
μ(𝑢𝑢𝑖𝑖 ,𝑢𝑢𝑗𝑗 )  =  𝜇𝜇1(𝑢𝑢𝑖𝑖 ,𝑢𝑢𝑗𝑗 ) ,    𝜇𝜇(𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗 )   = 𝜇𝜇2(𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗 ) and  𝜇𝜇(𝑢𝑢𝑖𝑖 , 𝑣𝑣𝑗𝑗 ) = 𝜎𝜎1(𝑢𝑢𝑖𝑖) ∧ 𝜎𝜎2(𝑣𝑣𝑗𝑗 )  for all 𝑢𝑢𝑖𝑖 ∈  𝑉𝑉1, 𝑣𝑣𝑗𝑗 ∈  𝑉𝑉2. 
 
Theorem 4.6: If 𝜎𝜎1(𝑢𝑢𝑖𝑖) > 𝜎𝜎2(𝑣𝑣𝑗𝑗 )  for all 𝑢𝑢𝑖𝑖 ∈  𝑉𝑉1 and 𝑣𝑣𝑗𝑗 ∈  𝑉𝑉2, then (𝑢𝑢, 𝑣𝑣) is a 𝛿𝛿− arc of 𝐺𝐺1  ∘  𝐺𝐺2 if and only if (𝑢𝑢, 𝑣𝑣)  
is either a 𝛿𝛿 − arc of 𝐺𝐺1 or 𝐺𝐺2. 
 
Proof: Let (𝑢𝑢, 𝑣𝑣) be a 𝛿𝛿 − arc of 𝐺𝐺1  ∘  𝐺𝐺2. If both 𝑢𝑢 and 𝑣𝑣 are nodes of 𝐺𝐺1 or 𝐺𝐺2, then by definition of corona, (𝑢𝑢, 𝑣𝑣) is 
a 𝛿𝛿 − arc of 𝐺𝐺1 or 𝐺𝐺2 respectively. Consider arc (𝑢𝑢,𝑣𝑣) is such that 𝑢𝑢 ∈  𝑉𝑉1 and  𝑣𝑣 ∈  𝑉𝑉2. Then by our assumption, 
𝜇𝜇(𝑢𝑢, 𝑣𝑣)  =  𝜎𝜎2(𝑣𝑣). Now there are two cases: 
 
Case-I: 𝜎𝜎2 (𝑣𝑣𝑗𝑗 )  ≥ 𝜎𝜎2(𝑣𝑣) ∀𝑣𝑣𝑗𝑗  ∈  𝑉𝑉2. By definition of corona, there is atleast one arc (𝑣𝑣, 𝑣𝑣𝑘𝑘) in 𝐺𝐺2 of strength equal to 
𝜎𝜎2(𝑣𝑣)  in the path joining 𝑢𝑢 and 𝑣𝑣 in 𝐺𝐺1  ∘  𝐺𝐺2. But this contradicts the assumption that (𝑢𝑢, 𝑣𝑣) is a 𝛿𝛿 − arc of 𝐺𝐺1  ∘
𝐺𝐺2.  Hence an arc (𝑢𝑢, 𝑣𝑣) such that 𝑢𝑢 ∈  𝑉𝑉1 and 𝑣𝑣 ∈  𝑉𝑉2 cannot be a 𝛿𝛿 − arc of 𝐺𝐺1  ∘ 𝐺𝐺2. 
 
Case-II: 𝜎𝜎2 (𝑣𝑣𝑗𝑗 )  ≤ 𝜎𝜎2(𝑣𝑣) ∀𝑣𝑣𝑗𝑗  ∈  𝑉𝑉2. By definition of corona, there is atleast one arc ((𝑣𝑣, 𝑣𝑣𝑘𝑘) in 𝐺𝐺2 of strength less than 
𝜎𝜎2(𝑣𝑣)  in the path joining 𝑢𝑢 and 𝑣𝑣 in 𝐺𝐺1  ∘  𝐺𝐺2. Again this contradicts the assumption that (𝑢𝑢, 𝑣𝑣) is a 𝛿𝛿 − arc of 𝐺𝐺1  ∘ 𝐺𝐺2. 
Hence an arc (𝑢𝑢, 𝑣𝑣) such that 𝑢𝑢 ∈  𝑉𝑉1 and  𝑣𝑣 ∈  𝑉𝑉2 cannot be a 𝛿𝛿 − arc of 𝐺𝐺1  ∘ 𝐺𝐺2. Similarly in any case we can prove 
that an arc (𝑢𝑢, 𝑣𝑣) such that 𝑢𝑢 ∈  𝑉𝑉1 and  𝑣𝑣 ∈  𝑉𝑉2 is not a 𝛿𝛿 − arc of 𝐺𝐺1  ∘ 𝐺𝐺2. 
  
Conversely, assume that (𝑢𝑢, 𝑣𝑣) is a 𝛿𝛿 − arc of 𝐺𝐺1 or 𝐺𝐺2. To prove that (𝑢𝑢, 𝑣𝑣) is  a 𝛿𝛿 − arc of 𝐺𝐺1  ∘  𝐺𝐺2. By definition of 
corona, the 𝛿𝛿 − arc in 𝐺𝐺1remains 𝛿𝛿 − arc in 𝐺𝐺1  ∘  𝐺𝐺2 since the path joining any two nodes of 𝐺𝐺1 is the same in 𝐺𝐺1  ∘  𝐺𝐺2. 
Now consider a 𝛿𝛿 − arc of 𝐺𝐺2 say (𝑣𝑣𝑘𝑘 , 𝑣𝑣𝑙𝑙). Even if there are arcs (𝑢𝑢𝑖𝑖 , 𝑣𝑣𝑗𝑗  ) in the path between 𝑣𝑣𝑘𝑘  and 𝑣𝑣𝑙𝑙  in 𝐺𝐺1  ∘  𝐺𝐺2, all 
arcs will have strength greater than 𝜇𝜇2(𝑣𝑣𝑘𝑘 , 𝑣𝑣𝑙𝑙) since 𝜇𝜇(𝑢𝑢𝑖𝑖 , 𝑣𝑣𝑗𝑗 ) = 𝜎𝜎1(𝑢𝑢𝑖𝑖) ∧ 𝜎𝜎2(𝑣𝑣𝑗𝑗 )   = 𝜎𝜎2(𝑣𝑣𝑗𝑗 )   and 𝜇𝜇2(𝑣𝑣𝑘𝑘 , 𝑣𝑣𝑙𝑙)  < 𝜎𝜎2(𝑣𝑣𝑘𝑘)    
∧ 𝜎𝜎2(𝑣𝑣𝑙𝑙).   Hence 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐺𝐺1 ∘ 𝐺𝐺2\(𝑣𝑣𝑘𝑘 ,𝑣𝑣𝑙𝑙)(𝑣𝑣𝑘𝑘 , 𝑣𝑣𝑙𝑙) ≥ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐺𝐺2\(𝑣𝑣𝑘𝑘 ,𝑣𝑣𝑙𝑙)(𝑣𝑣𝑘𝑘 , 𝑣𝑣𝑙𝑙)and (𝑣𝑣𝑘𝑘 , 𝑣𝑣𝑙𝑙) remain as a 𝛿𝛿 − arc in 𝐺𝐺1  ∘  𝐺𝐺2. 
Hence the proof. 
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Theorem 4.7: If𝜇𝜇1(𝑢𝑢𝑖𝑖 ,𝑢𝑢𝑗𝑗 ) ≥ 𝜇𝜇2(𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗 ) for all arcs (𝑢𝑢𝑖𝑖 ,𝑢𝑢𝑗𝑗 )  in 𝐺𝐺1  and (𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗 )  in 𝐺𝐺2, then 
 𝜒𝜒𝑠𝑠(𝐺𝐺1  ∘  𝐺𝐺2) ≤ {𝜒𝜒𝑠𝑠(𝐺𝐺1) + 𝜒𝜒𝑠𝑠(𝐺𝐺2)}. 
 
Proof: In 𝐺𝐺1  ∘  𝐺𝐺2, a node 𝑢𝑢𝑖𝑖 ∈  𝑉𝑉1 is adjacent to each node 𝑣𝑣𝑗𝑗 ∈  𝑉𝑉2. All adjacencies of 𝐺𝐺1 and 𝐺𝐺2 are also preserved 
with same arc strengths. For strong coloring of 𝐺𝐺1  ∘  𝐺𝐺2, the nodes of 𝐺𝐺1 are assigned the same colors and the colors 
can be repeated for coloring the nodes of 𝐺𝐺2 such that end nodes of strong arcs are colored differently. Hence the total 
number of colors required will be always less than or equal to the sum of strong chromatic numbers of 𝐺𝐺1 and 𝐺𝐺2. 
Hence the proof. 
 
Now we find strong chromatic number of the resultant graph of three types of products of fuzzy graphs introduced in 
[3]. 
 
Definition 4.8: Direct Product [3]: If   𝐺𝐺1 = (𝑉𝑉1,𝜎𝜎1, µ1) and  𝐺𝐺2 = (𝑉𝑉2,𝜎𝜎2, µ2), then the direct product 𝐺𝐺1 ⊓  𝐺𝐺2is the 
fuzzy graph 𝐺𝐺 =  (𝑉𝑉1 ×  𝑉𝑉2,𝜎𝜎, µ) where E = {(𝑢𝑢1𝑣𝑣1,𝑢𝑢2𝑣𝑣2): (𝑢𝑢1,𝑢𝑢2)  ∈  𝐸𝐸1, (𝑣𝑣1, 𝑣𝑣2)  ∈  𝐸𝐸2}, 
𝜎𝜎(𝑢𝑢𝑣𝑣)  =  𝑚𝑚𝑖𝑖𝑛𝑛 {𝜎𝜎1(𝑢𝑢),𝜎𝜎2(𝑣𝑣)} ∀𝑢𝑢𝑣𝑣 ∈  𝑉𝑉1 ×  𝑉𝑉2, 
µ(𝑢𝑢1𝑣𝑣1,𝑢𝑢2𝑣𝑣2)  =  µ1(𝑢𝑢1,𝑢𝑢2)   ∧  µ2(𝑣𝑣1, 𝑣𝑣2). 
 
Theorem 4.9:  If   𝐺𝐺1 = (𝑉𝑉1,𝜎𝜎1, µ1)  and   𝐺𝐺2 = (𝑉𝑉2,𝜎𝜎2, µ2)  are connected, then there are no δ− arcs in 𝐺𝐺1 ⊓  𝐺𝐺2. 
 
Proof: If there are no δ− arcs in  𝐺𝐺1 as well as in 𝐺𝐺2, the definition of direct product indicates that all nodes are 
connected with strong arcs.  By definition of direct product, any node (𝑢𝑢, 𝑣𝑣) has strength  𝑚𝑚𝑖𝑖𝑛𝑛 {𝜎𝜎1(𝑢𝑢),𝜎𝜎2(𝑣𝑣)}. 
 
Case-I: All nodes and all arcs of 𝐺𝐺1 have strength greater than  𝜎𝜎2(𝑣𝑣)∀  𝑣𝑣 ∈  𝑉𝑉2.  Then each node 𝑢𝑢𝑣𝑣 of  𝐺𝐺1 ⊓  𝐺𝐺2 has 
strength 𝜎𝜎2(𝑣𝑣) and each arc has strength µ(𝑢𝑢1𝑣𝑣1,𝑢𝑢2𝑣𝑣2)  =   µ2(𝑣𝑣1, 𝑣𝑣2). Let (𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗 )  be a δ− arc in 𝐺𝐺2,. Then by 
assumption, µ(𝑢𝑢𝑖𝑖𝑣𝑣𝑖𝑖 ,𝑢𝑢𝑗𝑗 𝑣𝑣𝑗𝑗 )  =   µ2(𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗 ). Since both  𝐺𝐺1 and   𝐺𝐺2 are connected, there exists a path joining the nodes 
𝑢𝑢𝑖𝑖𝑣𝑣𝑖𝑖  and 𝑢𝑢𝑗𝑗 𝑣𝑣𝑗𝑗  with arcs (𝑢𝑢𝑘𝑘𝑣𝑣𝑖𝑖 ,𝑢𝑢𝑚𝑚𝑣𝑣𝑗𝑗 ) having strength µ2(𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗 ). Hence there is at least one arc of the same minimum 
strength as that of �𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗 � in 𝐺𝐺1 ⊓  𝐺𝐺2. Hence any δ− arc in 𝐺𝐺2 is not a δ− arc in 𝐺𝐺1 ⊓  𝐺𝐺2. 
 
Case-II: The nodes and arcs of 𝐺𝐺1and 𝐺𝐺2are of arbitrary strength. Let (𝑢𝑢𝑟𝑟 ,𝑢𝑢𝑠𝑠)   be a δ− arc in 𝐺𝐺1. Then two cases arise. 
 
Subcase-I: µ1(𝑢𝑢𝑟𝑟 ,𝑢𝑢𝑠𝑠)   ≤ µ2�𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗 �∀ �𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗 � ∈  𝐸𝐸2.Then by definition of 𝐺𝐺1 ⊓  𝐺𝐺2, µ(𝑢𝑢𝑟𝑟𝑣𝑣𝑖𝑖 ,𝑢𝑢𝑠𝑠𝑣𝑣𝑗𝑗 ) = µ1(𝑢𝑢𝑟𝑟 ,𝑢𝑢𝑠𝑠) . Hence 
for any path joining the nodes 𝑢𝑢𝑟𝑟𝑣𝑣𝑖𝑖  and  𝑢𝑢𝑠𝑠𝑣𝑣𝑗𝑗 , there exist at least two intermediate nodes 𝑢𝑢𝑟𝑟𝑣𝑣𝑘𝑘  and  𝑢𝑢𝑠𝑠𝑣𝑣𝑙𝑙  with arc 
(𝑢𝑢𝑟𝑟𝑣𝑣𝑘𝑘 ,𝑢𝑢𝑠𝑠𝑣𝑣𝑙𝑙) of strength µ1(𝑢𝑢𝑟𝑟 ,𝑢𝑢𝑠𝑠)   . Thus for any path joining 𝑢𝑢𝑟𝑟𝑣𝑣𝑖𝑖  and  𝑢𝑢𝑠𝑠𝑣𝑣𝑗𝑗 , the strength will be same as 
µ1(𝑢𝑢𝑟𝑟 ,𝑢𝑢𝑠𝑠)  . Hence (𝑢𝑢𝑟𝑟𝑣𝑣𝑖𝑖 ,𝑢𝑢𝑠𝑠𝑣𝑣𝑗𝑗 )  is not a δ− arc. 
 
Subcase-II: There exists at least one arc �𝑣𝑣𝑝𝑝 , 𝑣𝑣𝑚𝑚� in 𝐺𝐺2 with strength µ2�𝑣𝑣𝑝𝑝 , 𝑣𝑣𝑚𝑚� ≤ µ1(𝑢𝑢𝑟𝑟 ,𝑢𝑢𝑠𝑠)  . Then since (𝑢𝑢𝑟𝑟 ,𝑢𝑢𝑠𝑠)   
being a δ− arc in 𝐺𝐺1., there are other arcs say (𝑢𝑢𝑘𝑘 ,𝑢𝑢𝑙𝑙)   in 𝐺𝐺1 of strength > µ1(𝑢𝑢𝑟𝑟 ,𝑢𝑢𝑠𝑠). Hence for any path joining the 
nodes 𝑢𝑢𝑟𝑟𝑣𝑣𝑝𝑝  and 𝑢𝑢𝑠𝑠𝑣𝑣𝑚𝑚 , there exists atleast two intermediate nodes 𝑢𝑢𝑘𝑘𝑣𝑣𝑝𝑝  and 𝑢𝑢𝑙𝑙𝑣𝑣𝑚𝑚  with arc (𝑢𝑢𝑘𝑘𝑣𝑣𝑝𝑝  , 𝑢𝑢𝑙𝑙𝑣𝑣𝑚𝑚 ) of strength 
µ2�𝑣𝑣𝑝𝑝 , 𝑣𝑣𝑚𝑚� Hence (𝑢𝑢𝑟𝑟𝑣𝑣𝑖𝑖 ,𝑢𝑢𝑠𝑠𝑣𝑣𝑗𝑗 )  is not a δ− arc . Hence there are no δ− arcs in direct product of two connected fuzzy 
graphs. Now interchanging the roles of 𝐺𝐺1and 𝐺𝐺2, a similar argument holds. 
 
Theorem 4.10: 𝜒𝜒𝑠𝑠(𝐺𝐺1  ⊓  𝐺𝐺2) = 𝑚𝑚1𝑚𝑚2 where 𝑚𝑚1 =| 𝐸𝐸1 | and 𝑚𝑚2 =| 𝐸𝐸2 |. 
 
Proof: By theorem 4.9, all arcs in 𝐺𝐺1  ⊓  𝐺𝐺2 are strong. Thus strong coloring gives different colors for each adjacent 
node. Hence the number of colors required is equal to the number of pairs of adjacent nodes or number of arcs. By 
definition, the number of arcs in 𝐺𝐺1  ⊓  𝐺𝐺2 is  𝑚𝑚1𝑚𝑚2 and the result follows. 
 
Definition 4.11: Semi product[3]:If If   𝐺𝐺1  =  (𝑉𝑉1,𝜎𝜎1, µ1) and   𝐺𝐺2  =  (𝑉𝑉2,𝜎𝜎2, µ2), then the semi product 𝐺𝐺1 ⋄  𝐺𝐺2is the 
fuzzy graph 𝐺𝐺 =  (𝑉𝑉1 ×  𝑉𝑉2,𝜎𝜎, µ) where E = {(𝑢𝑢𝑣𝑣1,𝑢𝑢𝑣𝑣2): 𝑢𝑢 ∈  𝑉𝑉1, (𝑣𝑣1, 𝑣𝑣2)  ∈  𝐸𝐸2}∪{(𝑢𝑢1𝑣𝑣1,𝑢𝑢2𝑣𝑣2): (𝑢𝑢1,𝑢𝑢2)  ∈  𝐸𝐸1, 
(𝑣𝑣1, 𝑣𝑣2)  ∈  𝐸𝐸2}, 
𝜎𝜎(𝑢𝑢𝑣𝑣)  =  𝑚𝑚𝑖𝑖𝑛𝑛 {𝜎𝜎1(𝑢𝑢),𝜎𝜎2(𝑣𝑣)} ∀𝑢𝑢𝑣𝑣 ∈  𝑉𝑉1 ×  𝑉𝑉2, 
µ(𝑢𝑢𝑣𝑣1,𝑢𝑢𝑣𝑣2)  =  𝜎𝜎1(𝑢𝑢)   ∧  µ2(𝑣𝑣1, 𝑣𝑣2). 
µ(𝑢𝑢1𝑣𝑣1,𝑢𝑢2𝑣𝑣2)  =  µ1(𝑢𝑢1,𝑢𝑢2)   ∧  µ2(𝑣𝑣1, 𝑣𝑣2). 
 
Similar to that of direct product we get the following results for semi product and strong product. 
 
Theorem 4.12: If   𝐺𝐺1  =  (𝑉𝑉1,𝜎𝜎1, µ1)  and   𝐺𝐺2  =  (𝑉𝑉2,𝜎𝜎2, µ2)  are connected, then there are no δ− arcs in 𝐺𝐺1 ⋄  𝐺𝐺2. All 
arcs in 𝐺𝐺1 ⋄  𝐺𝐺2 are 𝛽𝛽− strong. 
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Proof: By definition, the arc set of semi product is {(𝑢𝑢1𝑣𝑣1,𝑢𝑢2𝑣𝑣2): (𝑢𝑢1,𝑢𝑢2)  ∈  𝐸𝐸1, (𝑣𝑣1, 𝑣𝑣2) ∈  𝐸𝐸2 ∪ {(𝑢𝑢𝑣𝑣1,𝑢𝑢𝑣𝑣2): 𝑢𝑢 ∈
 𝑉𝑉1, (𝑣𝑣1, 𝑣𝑣2)  ∈  𝐸𝐸2} .i.e the arc set of semi product consists of arcs of direct product along with arcs of the form 
{(𝑢𝑢𝑣𝑣1,𝑢𝑢𝑣𝑣2)/ 𝑢𝑢 ∈  𝑉𝑉1, (𝑣𝑣1,𝑣𝑣2)  ∈  𝐸𝐸2}. Then from the proof of theorem 4.9. there exists a path between 𝑢𝑢𝑖𝑖𝑣𝑣𝑖𝑖  and 𝑢𝑢𝑗𝑗𝑣𝑣𝑗𝑗  . 
In 𝐺𝐺1 ⋄  𝐺𝐺2, the path becomes a cycle since there are arcs (𝑢𝑢𝑗𝑗𝑣𝑣𝑘𝑘 , 𝑢𝑢𝑖𝑖𝑣𝑣𝑚𝑚 ) such that the cycle joining 𝑢𝑢𝑖𝑖𝑣𝑣𝑖𝑖  and 𝑢𝑢𝑗𝑗𝑣𝑣𝑗𝑗  is 𝑢𝑢𝑖𝑖𝑣𝑣𝑖𝑖   
− 𝑢𝑢𝑖𝑖𝑣𝑣𝑚𝑚  − 𝑢𝑢𝑗𝑗𝑣𝑣𝑘𝑘  − 𝑢𝑢𝑗𝑗𝑣𝑣𝑗𝑗  together with the arc (𝑢𝑢𝑖𝑖𝑣𝑣𝑖𝑖  ,𝑢𝑢𝑗𝑗𝑣𝑣𝑗𝑗 ) . Argument similar to the direct product shows that all arcs 
(𝑢𝑢𝑖𝑖𝑣𝑣𝑖𝑖  ,𝑢𝑢𝑗𝑗 𝑣𝑣𝑗𝑗 )  in 𝐺𝐺1 ⋄  𝐺𝐺2 have their strength same as that of some intermediate arc in the cycle joining the end nodes 
𝑢𝑢𝑖𝑖𝑣𝑣𝑖𝑖  and 𝑢𝑢𝑗𝑗 𝑣𝑣𝑗𝑗  of the cycle ∀𝑖𝑖, 𝑗𝑗. Hence the proof. 
 
Theorem 4.13:  𝜒𝜒𝑠𝑠(𝐺𝐺1  ⋄  𝐺𝐺2) ≤ 𝑛𝑛1𝑚𝑚2 where 𝑛𝑛1 =| 𝑉𝑉1 | and 𝑚𝑚2 =| 𝐸𝐸2 |. 
 
Proof: By theorem 4.12, all arcs in 𝐺𝐺1  ⋄  𝐺𝐺2 are 𝛽𝛽− strong. Thus strong coloring gives different colors for each 
adjacent node. Hence the number of colors required is less than or equal to the degree of each vertex. By definition, the 
degree is less than 𝑛𝑛1𝑚𝑚2 and the result follows. 
 
Theorem 4.14: 𝜒𝜒𝑠𝑠(𝐺𝐺1  ⋄  𝐺𝐺2) ≤ {𝜒𝜒𝑠𝑠(𝐺𝐺1) + 𝜒𝜒𝑠𝑠(𝐺𝐺2)} 
 
Proof:  The same color can be used for nodes of the form 𝑢𝑢1𝑣𝑣 𝑚𝑚𝑛𝑛𝑎𝑎𝑢𝑢2𝑣𝑣, where 𝑢𝑢𝑖𝑖  ∈  𝑉𝑉1 and 𝑣𝑣𝑗𝑗  ∈  𝑉𝑉2. All other nodes 
of the form (𝑢𝑢𝑣𝑣1,𝑢𝑢𝑣𝑣2)/ 𝑢𝑢 ∈  𝑉𝑉1, (𝑣𝑣1, 𝑣𝑣2)  ∈  𝐸𝐸2are to be colored differently. For strong coloring of these nodes, |𝑉𝑉1| 
colors are required. These colors can be repeated to color nodes of the form 𝑢𝑢1𝑣𝑣1 and 𝑢𝑢2𝑣𝑣2, since the fuzzy graph 
𝐺𝐺1  ⋄  𝐺𝐺2 is not a complete fuzzy graph. Also sum of strong chromatic number of 𝐺𝐺1  and 𝐺𝐺2 is greater than the number 
of pairs of adjacent nodes in 𝐺𝐺1  ⋄  𝐺𝐺2. Hence the strong chromatic number of the semi product will always be less than 
or equal to the sum of strong chromatic numbers of 𝐺𝐺1  and 𝐺𝐺2. 
 
Definition 4.15: Strong Product [3]: If   𝐺𝐺1  =  (𝑉𝑉1,𝜎𝜎1, µ1) and   𝐺𝐺2  =  (𝑉𝑉2,𝜎𝜎2, µ2), then the strong product 𝐺𝐺1⨂ 𝐺𝐺2   is 
the fuzzy graph 𝐺𝐺 =  (𝑉𝑉1 ×  𝑉𝑉2,𝜎𝜎, µ)  
where E = {(𝑢𝑢𝑣𝑣1,𝑢𝑢𝑣𝑣2): 𝑢𝑢 ∈  𝑉𝑉1, 𝑣𝑣1, 𝑣𝑣2)  ∈  𝐸𝐸2}∪ {(𝑢𝑢1𝑤𝑤,𝑢𝑢2𝑤𝑤): (𝑢𝑢1,𝑢𝑢2)  ∈ 𝐸𝐸1 ,𝑤𝑤 ∈  𝑉𝑉2}∪ {(𝑢𝑢1𝑣𝑣1,𝑢𝑢2𝑣𝑣2): (𝑢𝑢1,𝑢𝑢2)  ∈
𝐸𝐸1, (𝑣𝑣1, 𝑣𝑣2)  ∈  𝐸𝐸2}, 
𝜎𝜎(𝑢𝑢𝑣𝑣)  =  𝑚𝑚𝑖𝑖𝑛𝑛 {𝜎𝜎1(𝑢𝑢),𝜎𝜎2(𝑣𝑣)} ∀𝑢𝑢𝑣𝑣 ∈  𝑉𝑉1 ×  𝑉𝑉2, 
µ(𝑢𝑢𝑣𝑣1,𝑢𝑢𝑣𝑣2)  =  𝜎𝜎1(𝑢𝑢)   ∧  µ2(𝑣𝑣1, 𝑣𝑣2). 
µ(𝑢𝑢1𝑤𝑤,𝑢𝑢2𝑤𝑤) =  µ1(𝑢𝑢1,𝑢𝑢2)  ∧  𝜎𝜎2(𝑤𝑤). 
µ(𝑢𝑢1𝑣𝑣1,𝑢𝑢2𝑣𝑣2) =  µ1(𝑢𝑢1,𝑢𝑢2)   ∧  µ2(𝑣𝑣1, 𝑣𝑣2). 
 
Remark 4.16:  If µ1(𝑢𝑢1,𝑢𝑢2)  > 0 and µ2(𝑣𝑣1, 𝑣𝑣2). > 0 ∀𝑢𝑢1,𝑢𝑢2 ∈  𝑉𝑉1 and 𝑣𝑣1, 𝑣𝑣2 ∈ 𝑉𝑉2, then the support of 𝐺𝐺1⨂ 𝐺𝐺2    is a 
complete graph and the number of nodes in G1 ⊗ G2 = | 𝑉𝑉1  | . | 𝑉𝑉2 | 
 
Theorem 4.17:  If   𝐺𝐺1  =  (𝑉𝑉1,𝜎𝜎1, µ1)  and   𝐺𝐺2  =  (𝑉𝑉2,𝜎𝜎2, µ2)  are connected, then there are no δ− arcs in 𝐺𝐺1⨂ 𝐺𝐺2   . 
All arcs in 𝐺𝐺1⨂ 𝐺𝐺2   are 𝛽𝛽− strong. 
 
Proof: By definition, arc set of strong product is {(𝑢𝑢𝑣𝑣1,𝑢𝑢𝑣𝑣2): 𝑢𝑢 ∈  𝑉𝑉1, 𝑣𝑣1, 𝑣𝑣2)  ∈  𝐸𝐸2}∪ {(𝑢𝑢1𝑤𝑤,𝑢𝑢2𝑤𝑤): (𝑢𝑢1,𝑢𝑢2)  ∈
 𝐸𝐸1 ,𝑤𝑤 ∈  𝑉𝑉2}∪ {(𝑢𝑢1𝑣𝑣1,𝑢𝑢2𝑣𝑣2): (𝑢𝑢1,𝑢𝑢2)  ∈  𝐸𝐸1, (𝑣𝑣1,𝑣𝑣2)  ∈  𝐸𝐸2}. Hence an argument similar to that in the proof of 
theorem 4.12 gives the proof. 
 
Theorem 4.18:  If µ1(𝑢𝑢1,𝑢𝑢2)  > 0 and µ2(𝑣𝑣1, 𝑣𝑣2). > 0 ∀𝑢𝑢1,𝑢𝑢2 ∈  𝑉𝑉1 and 𝑣𝑣1, 𝑣𝑣2 ∈ 𝑉𝑉2, then 𝜒𝜒𝑠𝑠(𝐺𝐺1 ⨂ 𝐺𝐺2) = | 𝑉𝑉1  | . | 𝑉𝑉2|. 
 
Proof: By remark 4.16, strong product gives a support which is a complete graph. All arcs in 𝐺𝐺1 ⨂ 𝐺𝐺2 are strong. 
Hence the proof. 
 
Remark 4.19:  If δ is the minimum degree and ∆ is the maximum degree of the  underlying crisp graph 𝐺𝐺∗,  then      δ ≤ 
𝜒𝜒𝑠𝑠(𝐺𝐺) ≤ 𝜒𝜒(𝐺𝐺) ≤ ∆ + 1. 
 
Theorem 4.20:  𝜒𝜒𝑠𝑠(𝐺𝐺1 ⨂ 𝐺𝐺2) ≥ 𝜒𝜒𝑠𝑠(𝐺𝐺1) + 𝜒𝜒𝑠𝑠(𝐺𝐺2). Equality holds if 𝜒𝜒𝑠𝑠(𝐺𝐺1) =  𝜒𝜒(𝐺𝐺1) and 𝜒𝜒𝑠𝑠(𝐺𝐺2) =  𝜒𝜒(𝐺𝐺2),  where 
there are no δ− arcs in 𝐺𝐺1 or   𝐺𝐺2. 
 
Proof: The arcs of strong product are all strong. All nodes that are adjacent are to be colored differently. The only non 
adjacent nodes are 𝑢𝑢𝑖𝑖𝑣𝑣𝑗𝑗  and 𝑢𝑢𝑘𝑘𝑣𝑣𝑙𝑙  where (𝑢𝑢𝑖𝑖 ,𝑢𝑢𝑘𝑘)  ∉  𝐸𝐸1, (𝑣𝑣𝑗𝑗 , 𝑣𝑣𝑙𝑙)  ∉  𝐸𝐸2. Since the nodes 𝑢𝑢𝑖𝑖 ,𝑢𝑢𝑘𝑘   and 𝑣𝑣𝑗𝑗  , 𝑣𝑣𝑙𝑙  are non 
adjacent in 𝐺𝐺1 and   𝐺𝐺2, they are assigned the same color in strong coloring of 𝐺𝐺1 and   𝐺𝐺2. Also deg(𝑢𝑢𝑖𝑖𝑣𝑣𝑗𝑗  ) =   |𝑉𝑉1  | + | 
𝑉𝑉2|+ 𝑚𝑚𝑖𝑖𝑛𝑛{𝑎𝑎𝑑𝑑𝑑𝑑(𝑢𝑢𝑖𝑖),𝑎𝑎𝑑𝑑𝑑𝑑(𝑣𝑣𝑗𝑗  )} − 1. Also 𝛿𝛿(𝐺𝐺1 ⊗𝐺𝐺2) = |𝑉𝑉1  | + | 𝑉𝑉2|+ 𝑚𝑚𝑖𝑖𝑛𝑛  { 𝛿𝛿(𝐺𝐺1), 𝛿𝛿(𝐺𝐺2)} – 1 ≥ ∆(𝐺𝐺1) + ∆(𝐺𝐺2) . Hence 
𝜒𝜒𝑠𝑠(𝐺𝐺1 ⨂ 𝐺𝐺2) ≥ ∆(G1) + ∆(G2) ≥ 𝜒𝜒𝑠𝑠(𝐺𝐺1) + 𝜒𝜒𝑠𝑠(𝐺𝐺2).  
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5. APPLICATION 
 
Consider a transportation channel covering n places. Let the fuzzy graph model is as follows. The nodes represents the 
places and arcs represent accessibility with varying strengths indicating the quality of transportation. The more number 
of strong arcs indicates that the channel is more efficient. i.e., more number of places are interconnected with good 
transportation or are easily accessible. Correspondingly the cost of transportation can be reduced. 
 
Illustration 2: Consider a transportation problem with four places denoted as 𝑢𝑢1,𝑢𝑢2,𝑢𝑢3,𝑢𝑢4. Consider the following 
fuzzy graphs 𝐺𝐺1  in Fig II and 𝐺𝐺2  in Fig.III.  
 
                  (1) 𝑢𝑢1                 0.5 𝑢𝑢4(2)                    
                        
                  
                  0.4                   0.05                 0.4 
 
  
                  
                   (2) 𝑢𝑢2               0.4 𝑢𝑢3(1) 
                                         
                                      Fig. II 
 
                   (1) 𝑢𝑢1             0.5 𝑢𝑢4(2)                 
                        
                  
                  0.4                   0.4                  0.4 
 
  
 
                   (2) 𝑢𝑢2             0.4 𝑢𝑢3(3) 
  
                                    Fig. III 
 
In Fig. II, (𝑢𝑢1, 𝑢𝑢3) is a δ − arc since μ(𝑢𝑢1,𝑢𝑢3) = 0.05 < 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐺𝐺\(𝑢𝑢1,𝑢𝑢3)(𝑢𝑢1,𝑢𝑢3)  = 0.4, where as all other arcs are strong. 
Here 𝜒𝜒𝑠𝑠(𝐺𝐺) = 2. If some goods are to be transported from 𝑢𝑢1 to 𝑢𝑢3 the path with maximum strength 𝑢𝑢1 −  𝑢𝑢2 −  𝑢𝑢3 is 
chosen. But in Fig. III, (𝑢𝑢1, 𝑢𝑢3) is a strong arc and hence 𝜒𝜒𝑠𝑠(𝐺𝐺)  = 3. and the goods are directly transported from  𝑢𝑢1 
to 𝑢𝑢3. Hence larger the strong chromatic number,lesser the transportation cost. 
 
6. CONCLUSION 
 
In this paper, we have studied the types of arcs in union, corona and products of fuzzy graphs and analyzed whether the 
presence of δ − arcs in 𝐺𝐺1 and   𝐺𝐺2. guarantee the presence of δ − arc in the resultant fuzzy graph. The strong 
chromaticity of resultant graphs of various operations are also obtained.  An application of strong chromatic number in 
solving transportation problem is suggested. 
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