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ABSTRACT  
Let G= (V, E) be a connected simple graph of order p and size q. If nGGG ,...,, 21  are edge disjoint subgraphs of  G  

such that )(...)()()( 21 nGEGEGEGE ∪∪∪=  ,then  ),...,,( 21 nGGG   is said to be a decomposition of G. If 

each HGi ≅ for some subgraph H of G, then ),...,,( 21 nGGG  is said to be an isomorphic decomposition of G. 
Otherwise it is called a non-isomorphic decomposition. In this paper, we introduce pairwise non-isomorphic 
decomposition of graphs as a decomposition where iG  is not isomorphic to jG  for all ji ≠  and investigate graphs 
which admit such decomposition.  
 
Keywords: Decomposition, Pairwise non-isomorphic decomposition.  
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1. INTRODUCTION  
 
By a graph, we mean a finite, undirected simple connected graph G without loops or multiple edges. The degree of any 
vertex u in G is the number of edges incident with u and is denoted by )(ud  and )(G∆ denotes the maximum degree 
of a graph. The distance between two vertices u and v of G is the length of the shortest u-v path in G and is denoted by 
d(u,v).  The maximum distance between two vertices in a graph G is called the diameter of G and is denoted by 
diam(G). A path of length n is denoted by .1+nP  A cycle of length n is denoted by .nC  A connected acyclic graph is 

called a tree. A complete graph on n vertices is denoted by .nK  1KCW nn +=  is called a wheel. nK ,1  denotes the star 

graph. +
nK denotes the graph obtained by identifying a pendent edge with every vertex of nK . Terms not defined 

here are used in the sense of [7].   
 
Let G = (V,E) be a connected simple graph of order p and  size q. If  nGGG ,...,, 21  are edge disjoint sub graphs of G 

such that )(...)()()( 21 nGEGEGEGE ∪∪∪=  then ),...,,( 21 nGGG is said to be a decomposition of G. If 

each HGi ≅  for some subgraph H of G, then ),...,,( 21 nGGG   is said to be an isomorphic decomposition of G. 
Otherwise it is called a non-isomorphic decomposition. Different types of decomposition of G have been studied in 
literature by imposing suitable conditions on the subgraphs iG . Isomorphic decompositions are found in [5], [6], [11] 
and [12] and non-isomorphic decompositions are dealt in [1], [2], [3], [4], [8], [9], [13] and [14].  
 
In this paper, we introduce the concept of pairwise non-isomorphic decomposition of graphs and investigate standard 
graphs which admit such decomposition. We also get bounds for diameter and maximum degree for certain graphs 
which admit such decompositions.  
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2. DEFINITIONS AND EXAMPLES  
 
Definition 2.1: A decomposition ),...,,( 21 nGGG  of G is said to be pairwise non-isomorphic decomposition (PND) if 

iG  is not isomorphic to jG  for all .ji ≠  
 
In non- isomorphic decomposition, two subgraphs may be isomorphic, but it is not allowed in PND. For the graph G 
given in figure 2.1, ),,,,( 54321 GGGGG  is a non-isomorphic decomposition and )',',',','( 54321 GGGGG  is a 
PND of G. 

 
 

(a) A connected graph G 
 

 
 

(b) A non-isomorphic decomposition of G. 
 

 
(c) A Pairwise non –isomorphic decomposition of G. 

 
Fig 2.1: G and its decompositions 

 
Since graphs of different sizes are obviously non-isomorphic, we concentrate on the decomposition of a connected 
graph into pairwise non-isomorphic connected subgraphs of a particular size. The non-isomorphic connected graphs of 
size 4 are given in Figure 2.3. 
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Figure 2.3: Non-isomorphic connected graphs of size 4 

 
Example 2.2: The connected graph G given in Figure 2.4 can be decomposed into pairwise non-isomorphic connected 
subgraphs of size 4 where  

177882211 ,,,: xxxxxxxxA ,   ,,,,: 433224412 xxxxxxxxA  ,,,,: 352515653 xxxxxxxxA   

,,,,: 1310939984 xxxxxxxxA  .,,,: 54410106675 xxxxxxxxA  
 

 
 
Definition 2.3: A PND is said to be full pairwise non-isomorphic decomposition (FPND) if the decomposition contains 
all possible subgraphs of particular size.  
 
Remark 2.4: If a graph G contains neither 3C  nor 4C , then G does not admit a FPND into subgraphs of size 4, but not 

conversely. That is, if G contains 3C and 4C , then G need not admit FPND.  
 
For example, the graph given in Figure 2.5 contains both 3C and 4C , but it does not admit FPND into subgraphs of   
size 4.  

 
 

Figure 2.5 
 
Since 43xxG −  contains no 4C , without loss of generality, let  .,,, 76431 xxxxA =  Since the graph G contains 

exactly one 3C , let .,,, 53212 xxxxA =  
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Now, )()( 21 AEAEG ∪−  has exactly one vertex 4x  of degree at least 4. Hence we let .,,,, 151311943 xxxxxA =   

Now  )()()( 321 AEAEAEG ∪∪−   has exactly one vertex 3x  of degree 3. Hence we let  

.,,,, 91412834 xxxxxA =  
 
Then )()()()( 4321 AEAEAEAEG ∪∪∪−  is a disconnected graph and it contains 2K  as a component. Hence 
G does not admit a FPND  into connected subgraphs of size 4. 
 
 
Notation 2.5: The pairwise non-isomorphic decomposition of G into l- subgraphs, each of size k is denoted by         
(k,l)-PND. Then it is necessary that .lkE =  
 
Example 2.6: For the graph G given in Figure 2.6, ),,( 321 GGG  is a (4, 3) - PND.  

 
Figure 2.6 

 
 
Definition 2.7: In [8], Gnanadhas and Paulraj Joseph introduced continuous monotonic decomposition of graphs and 
investigated various properties of the decomposition. A decomposition ),...,,( 21 nGGG of G is said to be a continuous 

monotonic decomposition (CMD) if each iG  is connected and iGE i =)( for each i=1, 2,….n. 
 
Definition 2.8: [8] A CMD in which each iG  is a star is said to be continuous monotonic star decomposition (CMSD).  
 
Example 2.9: For the graph G in Figure 2.7, ),,,( 4321 SSSS  is a CMSD of the graph G. We note that every CMSD is 
a PND but not conversely. 

 

 
A CMSD of G 

Figure 2.7 
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3. PND FOR STANDARD GRAPHS  
 
In this section, we investigate the pairwise non-isomorphic decomposition of some standard graphs.  
 
Since a subgraph of a star is also a star, a star of size n=lk cannot be decomposed into pairwise non-isomorphic substars 
of size k. Similarly any subgraph of a path or a cycle is a path and hence cycles and paths of size n=lk do not admit a 
PND of size k. Thus nn KP ,1,  and nC do not admit PND.  
 
Since )()()( ,1 nnn KECEWE ∪= , nW  is decomposed into nC  and nK ,1 and hence it admits  (n,2)- PND. 
 
Theorem 3.1: For nKn ,4≥  admits a pairwise non-isomorphic decomposition.  
 

Proof: Let },...,{)( 21 nn vvvKV = . Now 
2

)1()( −
=

nnKE n . 

 
Let 1,1 −= nn KG be a subgraph of G obtained by taking 1v as the center vertex of the star and }{' 1vGGn −= . 

Similarly let 2,11 −− = nn KG be a subgraph of 'nG  obtained by taking 2v  as the center vertex of the star and                   

}{'' 21 vGG nn −=− .Proceeding like this, finally we get nn vvKG ,11,12 −== , which is a subgraph of 

}{'' 243 −−= nvGG .Now nGGG ,...,, 32   form a CMSD of nK .  
 

If n is even, then take nGA =1   and .
2

,...,3,2,)()( 1
niGEGEA iini == −+  Then for each i, Ai is isomorphic to 

the subgraph of size n-1 given in Figure 3.1.  
  

 
The subgraph iA  

Figure 3.1  
 

Clearly ′
iA s form an (n-1, n/2)- PND. 

 

If n is odd, then take .
2

1,...,3,2,1,)()( 11
−

== +−+
niGEGEA iini   Then for each i, Ai is isomorphic to the 

subgraph of size n and these 
2

1−n
 connected pairwise non-isomorphic subgraphs of size n give PND of Kn.  

 

Theorem 3.2: For +≥ nKn ,3   admits a pairwise non-isomorphic decomposition.  
 
Proof: Let },...,,{},...,{)( 2121 nnn uuuvvvKV ∪=+ . 
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Without loss of generality, we may assume that },...,,{ 21 nuuu  is the set of all end vertices of +
nK  such that ui is 

adjacent to vi. Now 
2

)1()( +
=+ nnKE n .  

 
Let nn KG ,1=  be a subgraph of G obtained by taking v1 as the center of the star and }{' 1vGGn −= . Similarly, let 

1,11 −− = nn KG  be a subgraph of G obtained by taking v2 as the center of the star and }{'' 21 vGG nn −=− . Proceeding 

like this, finally we get nnuvKG == 1,11 , which is a subgraph of }{'' 132 −−= nvGG . Now nGGG ,...,, 21   form a 

CMSD of +
nK  . If n is even, then take .

2
,...,2,1,)()( 1

niGEGEA iini == −+   

 
For each i, Ai is isomorphic to the subgraph of size n+1, given in Figure 3.2. 
 

 
Figure 3.2: The subgraph iA  

Clearly the 'iA s are the 
2
n

 connected pairwise non-isomorphic subgraphs of size n+1. If n is odd, then take nGA =1   

and  .
2

1,...,3,2,)()( 11
+

== −+−
niGEGEA iini   

 

Then for each, i, Ai is isomorphic to the subgraph of size n and these 
2

1+n
 connected pairwise non-isomorphic 

subgraphs of size n give a PND of +
nK . 

 
4. BOUNDS FOR SOME GRAPH PARAMETERS  
 
In this section, we obtain bounds for the diameter and maximum degree of graphs which admit (k,l)-PND. We prove 
similar results for other parameters for some special graphs.  
 

Theorem.4.1: If a graph G admits (k,l)-PND , 4≥k and ,3
4

)4(




 −

+
≥

kkl  then 

.
4

76)3()(
2








 −+
+−≤

kkklGdiam  

 
Proof: Since we need the upper bound for diam(G), we start with paths of length k,k-1,…and so on. Pk+1 is the only 
graph with size k which contribute k edges to diam (G).  
 
If a subgraph contributes k-1 edges to diam(G), then the remaining one edge may be incident with any one of the 

internal vertices of  Pk. Thus there are exactly 



 −

2
1k

 non-isomorphic graphs of size k.  
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If a subgraph contributes k-2 edges of diam(G), then the remaining two edges of the graph are identified at any vertex 
of Pk-1 without affecting the diameter. If one end of P3 is identified at any one of the internal vertices of Pk-1, then there 

are exactly 



 −

− 1
2

2k
 non-isomorphic graphs of size k. If the two ends of P3 are identified at any two adjacent 

vertices of Pk-1, then there are exactly 



 −

2
2k

 non-isomorphic graphs of size k. If the two ends of P3 are identified at 

any two vertices of Pk-1, which are at a distance two in Pk-1, then there are 



 −

2
2k

 non-isomorphic graphs of size k. If 

the internal vertex of P3 is identified at any one of the internal vertices of Pk-1, then there are exactly 



 −

2
2k

non-

isomorphic graphs of size k. If two pendent edges are identified at two different internal vertices of Pk-1 then there are 
(k-4) + (k-6) + …+4+2 (if k is even) or (k-4) + (k-6) + …+ 3+ 1 (if k is odd) non-isomorphic graphs of size k.  
 
If k is even, then  

diam(G) 







+++−+−+






 −

+





 −

+





 −

+





 −

−+





 −

−+= 24...)6()4(
2

2
2

2
2

2
2

4)2(
2

2)1( kkkkkkkkkk  

                + (k-3) [number of graphs of size k which contribute k-3 edges to the diameter] + (k-4) [Number of   
                    graphs of size k which contribute k- 4 edges to the diameter ] + … 

    ( ) )3(
2

2
2

4
2

1042
2

2)1( −+













 −






 −

+





 −

−+





 −

−+≤ kkkkkkkk  

                   [Number of graphs of size k which contribute at most (k-3) edges to the diameter].  
 

Since 



 +++−+−+

−
+

−
+

−
+

−
+

−
+= 24...)6()4(

2
2

2
2

2
4

2
2

2
21 kkkkkkkl + [Number of graphs of 

size k which contribute (k-3) edges to the diameter]+[Number of graphs of size k which contribute (k-4) edges to the 
diameter]+ …, the number of graphs of size k which contribute at most (k-3) lengths to the diameter is  























 −

++++
−

+
−

+
−

+
−

+
−

+−
2

4...212
2

2
2

2
2

4
2

2
2

21 kkkkkkl  

= 





 −

+
− 3

4
)4(kkl  

 

By hypothesis ,3
4

)4(




 −

+
≥

kkl    

 

diam(G) ( ) )3(
2

2
2

4
2

1042
2

2)1( −+













 −






 −

+





 −

−+





 −

−+≤ kkkkkkkk 













 −

+
− 3

4
)4(kkl  

 = ,
4

86)3(
2 −+

+−
kkkl after simplification 

 = 






 −+
+−

4
76)3(

2 kkkl . 

 

Similarly, we can prove that if k is odd, .
4

76)3()(
2 −+

+−≤
kkklGdiam Thus  if ,3

4
)4(





 −

+
≥

kkl  then we 

have .
4

76)3()(
2








 −+
+−≤

kkklGdiam  Hence the result.  
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Theorem 4.2: If a graph G admits (k,l)-PND with 6≥k , then .15)3()( +−≤∆ klG  
 
Proof: Let ).()( Gvd ∆=  
 
Since we need the upper bound for )(G∆ , we start with stars of size k,k-1,… and so on. There is only one subgraph 
K1, k which contributes k edges to d(v). If a subgraph contributes k-1 edges to d(v), then the remaining one edge may be 
incident with any one of the end vertices of K1, k-1 (or) the ends of the edge  may be identified with any two ends of      
K1, k-1. In this case we get exactly two graphs of size k.  
 
If a subgraph contributes k-2 edges to d(v), then the remaining two edges may be incident with any end vertex of  K1,k-2 
in the following eight types: one end of  P3 is identified with any one end of  K1,k-2 (or) the internal vertex of P3 may be  
identified with any one end vertex of K1,k-2  (or) all the three vertices of  P3 are identified with any three end vertices of 
K1,k-2 (or) any two adjacent vertices of P3 are identified with any two  end vertices of K1,k-2 (or) the two ends of  P3 are 
identified with any two end vertices of K1,k-2 (or) two pendent edges are incident with two pendent vertices of K1,k-2 (or) 
one pendent edge is incident with any one pendent vertex of K1,k-2 and the two ends of another edge may be identified 
with two different end vertices of K1,k-2 (or) both ends of two edges are identified  with different end vertices of K1,k-2. 
Proceeding like this we get,  

)3()2(8)1(2)( −+−+−+=∆ kkkkG [Number of graphs of size k which contribute k-3 edges to d(v)]+(k-4) 
                [Number of graphs of size k which contributes k-4 edges to d(v)]+ …. 
           )3(1811 −+−≤ kk [Number of graphs of size k which contribute at most k-3 edges to d(v)]  
 
Since  l=1+2+8+[ Number of graphs of size k which contribute at most k-3 edges to d(v)], l-11  is the number of graphs 
of size k which contribute at most k-3 edges to d(v) .  
 
Thus 15)3()11)(3(1811)( +−=−−+−≤∆ kllkkG . 
 
Corollary 4.3: If a graph G admits (k,l)-PND of  trees ,with 6≥k , then .8)3()( +−≤∆ klG  

Corollary 4.4: Let G be any graph obtained by attaching n independent vertices to any vertex v of a connected graph 
H. If  G admits (k,l)- PND, then .9)4( +−≤ kln  

Theorem 4.5: If a graph with an induced subgraph Cn admits (k,l)- PND of trees and ,
4

)2)(2(




 +−

≥
kkl  then 

.
4

1)2()3( 



 ++

+−≤
kkkln  

 
Proof: Since we need the maximum value for n, we start with paths of length k, k-1,… and so on. Pk+1 is the only tree 
with size k which contribute k edges to n.  If a tree contributes k-1 edges to n, then the remaining one edge may be 

incident with any one of the internal vertices of Pk .Thus there are exactly 



 −

2
1k

 non-isomorphic tress of size k.  

 
If a tree contributes k-2 edges to n, then the remaining two edges of the tree are identified at any internal vertices of Pk-1 
without affecting the non-isomorphism of trees. If one end of P3 is identified at any one of the internal vertices of Pk-1, 

then there are exactly 



 −

− 1
2

2k
  non-isomorphic trees of size k. If the internal vertex of P3 is identified at any one 

of the internal vertices of Pk-1, then there are exactly 



 −

2
2k

non-isomorphic trees of size k. If two pendent edges are 

identified at two different internal vertices of Pk-1, then there are (k-4) + (k-6) +…+ 4 + 2 (if k is even) or (k-4) + (k-6) + 
…+ 3+1 (if k is odd) non-isomorphic trees of size k. 
 
If k is even, then  

     )3(24...)6()4(
2

2
2

4)2(
2

2)1( −+



 +++−+−+

−
+

−
−+






 −

−+= kkkkkkkkkn  [Number of trees     

of size k which contribute k-3 edges to n]+ (k-4) [Number of trees of size k which contribute k-4 edges to n] +… 
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         )3(
2

2
2

4
2

62)2(
2

2)1( −+













 −






 −

+
−

−+





 −

−+≤ kkkkkkkk [Number of trees of size k which  

              contribute at most k-3 edges to n].  
 

Since +



 +++−+−+

−
+

−
+





 −

+= 24...)6()4(
2

2
2

4
2

21 kkkkkl [Number of trees of size k which 

contribute k-3 edges to n] + [Number of trees of size k which contribute k-4 edges to n] +…., the number of trees of 
size k which contribute at most k-3 edges to n is  

 





 −+

−=





















 −

++++





 −

+





 −

+





 −

+−
4

)2)(2(
2

4...212
2

2
2

4
2

21 kklkkkkl  

 

By hypothesis 



 −+

≥
4

)2)(2( kkl  















 −+

−−+













 −






 −

+
−

−+





 −

−+≤
4

)2)(2()3(
2

2
2

4
2

62)2(
2

2)1( kklkkkkkkkkn  

,
4

)2()3( +
+−≤

kkkln  after simplification  

 

Similarly, we can prove that if k is odd, then
4

1)2()3( ++
+−≤

kkkln . Thus if  ,
4

)2)(2(




 +−

≥
kkl  then 

.
4

1)2()3( 



 ++

+−≤
kkkln  Hence the required result.  

 
Definition 4.6: A path in which each edge is a bridge is said to be a path of bridges. In addition if each internal vertex   
is of degree 2, then it is called a simple path of bridges.  
 
Example 4.7: For the graph G in Figure 4.1, 1110987654 ,,,,,,,: vvvvvvvvP  is a path of bridges. Since 4)( 8 =vd   

and 3)( 9 =vd , P is not a simple path of bridges. But 87654 ,,,,:' vvvvvP  is a simple path of bridges.  

 
Figure 4.1 

 
Theorem 4.8: If a graph G admits a PND of size k, then the maximum length of simple path of bridges is 3k-5.  
 
Proof: Let 1+nP  be any simple path of bridges of length n and },...,,{ 121 −nvvv  be the set of all internal vertices of 

1+nP   and .11,2)( −≤≤= nivd iG  Then .GG},...vv,{v  211-n21 ∪=−G  
 
Since G admits PND, 1G  and 2G  both can not be trivial. Clearly, 1)()( 1 =∩ +ni PVGV   and let  

2,1),()( 1 =∩= + iPVGVu nii . 
 
 
 



G. Sudhana* and J. Paulraj Joseph / Pairwise Non-Isomorphic Decomposition Of Graphs / IJMA- 6(3), March-2015. 

© 2015, IJMA. All Rights Reserved                                                                                                                                                     104   

 
Case-(i): Any one of 1G  and 2G  is trivial.  
 
Without loss of generality, we may assume that }{ 111 uKG =≅   and 2G  is non-trivial. Thus 3)( 2 ≥udG  and 

exactly one member of the decomposition may contain edges from both 2G  and 1+nP . Since we need the maximum 

value for n and a sub graph of a path is a path, we can choose a path 1+kP  as a member without taking any edge of .2G  

If a member contains k-1 edges in  1+nP  and one edge in 2G  , then the member must be 1+kP . But 1+kP  is already 
chosen.  
 
If a member contains k-2 edges in 1+nP  and two edges in 2G , then the required graph obtained by identifying the end 

vertices of two edges in 2G  with 2u . Thus there is exactly one member which contribute exactly  edges to 1+nP . 

Thus in this case, we have )1(22 −=−+≤ kkkn . 
 
Case-(ii): Both 1G  and 2G  are non-trivial. 
 
Then .2,1,3)( =≥ iud iG As discussed above, we can choose a path 1+kP  as a member without taking any edge of 

1G  and 2G . Thus there is no subgraph containing k-1 edges in 1+nP  and one edge in ,iG (i =1 or 2). Also we can 

choose a member which contribute k-2 edges to  1+nP  and two edges to ,iG (i = 1 or 2). 
 
Now we claim that at least one of 1G  and 2G  contains at least three edges. Suppose 2,1,2)( == iGE i   . Then there 
is exactly one member which contribute exactly k-2 edges to Pn+1, which is a contradiction.  Without loss of generality, 
we may assume that 3)( 1 ≥GE  and .2)( 2 ≥GE  If a member contains k-3 edges in Pn+1, then three copies of P2 are 
identified at the end vertex of Pk-2 (or) the ends of one copy of P3 and  P2 are identified at the end vertex of Pk-2(or) C3is 
identified at the end vertex of Pk-2. 
 
Thus 53)3()2( −=−+−+≤ kkkkn   
 
5. CONCLUSIONS  
 
In this paper, we have introduced the concept of pairwise non-isomorphic decomposition of graphs and investigated 
standard graphs which admit such decompositions. We also got bounds for diameter and maximum degree for certain 
graphs. A specialized study of this concept for trees will be reported shortly.  
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