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ABSTRACT 
In this paper we introduce domination in soft graphs and some of their properties.  
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1. INTRODUCTION 
 
Soft set theory [1] was introduced by molodstov in 1999 as a general mathematical tool for dealing with uncertainties. 
The operation of soft sets are defined by maji et al. [2] rajesh k.thumbakara et al. have been introduced soft graph [4]   
& investigated some of their properties. 
 
2. PRELIMINARIES 
 
2.1 Soft sets: 
 
Definition 2.21: [2] let U be a non empty finite set of objects is called universe and let E be a nonempty set called 
parameters.  
 
An ordered pair (F,E) is said to be a soft set over U, Where F is a mapping from E into the set of all subsets of the set 
U. that is : ( ).F E P U→  The set of all soft sets over U is denoted by S(U). 
 
Definition 2.2.2: [4] Let (F, A) be a soft set over V. then (F, A) is said to be a soft graph of G if the sub graph induced 
by F(x) in G, F(x) is a connected sub graph of G for all Ax∈ . 
 
The set of all soft graph of G is denoted by SG(G). 
 
3. DOMINATION IN SOFT GRAPHS 
 
Definition 3.1: A set D is said to be a dominating set of a soft graph (F, A) if for every Ax∈ , every vertices of  

)(xf  in V-D is adjacent to at least one vertex in D 
 
Example 3.2: A graph G = (V, E) is 
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Let A = {v1, v4, v5}.define the set value function F by 
 
F(x) = {y/x is adjacent to y} 
 
F(v1) = {v2,v3},  F(v4) = {v2,v3,v5}, F(v5) = {v2,v3,v4} 
 
In this graph {v2, v3} is a dominating set. 
 
Definition 3.3: A dominate set D of a soft graph is a minimal dominating set 'D  if no proper subset DD ⊂' is a 
dominating set. The dominating number ),( AFγ  of a soft graph (F, A) is the minimum cardinality of  a dominating 
set of (F,A). 
 
In the example 3.2, {v3} is a minimal dominating set of that soft graph 
 
Proposition 3.4: Dominating set of a soft graph and dominating set of a graph (which gives that soft graph) are 
independent. 
 
Example 3.5: A graph G is 

 
Dominating set of G {v1, v3}. 
 
Let A = {v2,v5} 
 
Let /{)( yxF =  is adjacent to }y  
 
F(v2) = {v1,v3,v5} 
 
F(v5) = {v2,v3} 
 
{v3} is a dominating set of a soft graph (F, A). 
 
Theorem 3.6: A dominating set D of a soft graph is a minimal dominating set if for each Ad ∈ , one of the following 
holds. 

1. d is not adjacent to any vertex in D 
2. there is a vertex }{)(: dDcNDc =∩∋∈ , Where  }:{)( EVVvcN ∈∈= . 

 
Theorem 3.7: For every soft graph (F, A) if D is a minimal dominating set then for every Ax∈ DxF −)(,  is a null 
graph. 
 
Definition 3.8: An independent set of a soft graph (F, A) is a  subset S  of  :∋V  for every VAx ⊆∈ no two vertices 
of  F(x) are adjacent in (F,A). 
 
Example 3.9: A graph G = (V, E) is  
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Let A = {v1, v4} 
 
Let  }2),(/{)( ≤= yxdyxF  
{v2, v3, v5, v6} is the independent set of a soft graph (F, A). 
 
Definition 3.10:  For 2≥n  a soft graph (F,A)  is n-partite soft graph if A can be partitioned into n non-empty subsets 
v1,v2,…,vn :∋  for every Ax∈ , no edge of f(x) joins vertices in the same set. The sets v1, v2,…,vn are called partite sets 
of G. 
 
Theorem 3.11: Let (F, A) be a soft graph which is not complete and 4≥P . Then a set consisting of any two adjacent 
vertices of (F, A) forms a minimal dominating set of (F, A) iff (F, A) is soft isomorphic to the complete K-partite soft 
graph Kp1,p2,……..,pk  for some K and Pi 2≥  for each i 
 
Theorem 3.11: If D is an independent dominating set of a soft graph (F, A) then D is both a minimal dominating set of 
(F, A) and a maximal independent set of (F, A). conversely, if  D is a maximal independent set of (F, A) then D is an 
independent dominating set of (F,A) 
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