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ABSTRACT 

Let N be a commutative near-field space with 1 and T(N) be the total quotient near-field space such that Nil(N) is a 
divided prime ideal of a near-field space N. Then N is called a φ-chained near-field space (φ-CNF) if for every              
x, y ∈ N \ Nil(N) either x | y or y | x. Also, N is called a φ-pseudo –valuation near-field space (φ-PVNF) if for every x, y 
∈ N \ Nil (N) either x | y or y | xm where for each non-unit element m ∈ N. We show that a near-field space N is a φ-
PVNF iff Nil (N) is a divided prime ideal and N/Nil(N) is a pseudo-valuation domain. Also, we show that every over 
near-field space of a Quasi-local near-field space N with maximal ideal M is a φ-PVNF iff N (v) for each v ∈ (M: M) \ 
N iff every over- near-field space of N is a quasi-local iff every φ-CNF between N and T(N) other than N and (M : M) is 
of the form Np for some non-maximal prime ideal P of N. Among other results, we show that if A is an over-near-field 
space of a φ-PVNF and J is a proper ideal of A, then there is a φ-CNFC between A and T(N) such that JC ≠ C. Also, we 
show that the integral closure Nc of a near-field space N in T(N) is the intersection of all the φ-CNFs between N and 
T(N). 
  
Subject Classification Code: MSC (2010):16D25, 54G05, 54C40. 
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SECTION 1: INTRODUCTION 
 
Throughout this paper, N denotes as Near-field space has zero symmetric near-ring with identity. We begin by recalling 
some background material. With reference to ([1], [4]) the author generalized the study of pseudo-valuation domains to 
the context of extending to arbitrary near-field spaces possibly with non-zero zero divisors. For a near-field space N 
with total quotient near-field space T(N) such that Nil(N) is divided prime ideal of N, we define a map                          
φ : T(N) → K := NNil(N) such that φ(a/b) = a/b ∀ a ∈ N and b ∈ n \ Z(N). Then φ is a near-field homomorphism from 
T(N) into K, and φ is restricted to near-field space N is also a near-field homomorphism from N into K given by       
φ(x) = x/1 ∀ x ∈ N. For an equivalence characterization of a φ-PVNFS, ∀ n ≥ 0 ∃ a φ-CNFS of krull dimension n that 
is not a PVNFS.   
 
In this paper, we show that a quasi-local near-field space N with maximal ideal M is a φ-PVNFS if and only if N(v) is a 
quasi-local near-field space for each v ∈ (M : M) \ N  if and only if every over-near-field space of N is quasi-local near-
field space if and only if every over-near-field space contained in (M : M) is quasi-local near-field space if and only if 
each φ-CNFS between N and T(N) other than (M : M) is of the form Nq for some non-maximal prime ideal P of N. 
 
Among the other results, we show that if A is an over-near-field space of a φ-PVNFS and J is a proper ideal of A, then 
there is a φ-CNFS C between A and T(N) such that JA ≠ A. Also show that the integral closure of near-field space N in 
T(N) is the intersection of all the φ-CNFS’s between N and T(N). 
 
The following notations will be used throughout. Let N be a near-field space. Then T(N) denote the total quotient near-
field space of a near-field space N. Nil (N) denotes the near-field spaces of all nilpotent elements of N, and Z(N) 
denotes the set of zero divisors of N. If J is an ideal of N, then Rad (J) denotes the radical ideal of J in N.  
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I summarize some basic properties of PVNFSs and φ-PVNFSs as below:  
 
Property 1.1: A PVNFS is a divided near-field space and hence is quasi-local near-field space. 
 
Property 1.2: A φ-PVNFS is a divided near-field space and hence is quasi-local near-field space. 
 
Property 1.3: A sub–near-field space is a PVNFS iff it is a φ-PVNFS iff it is a PVD. 
 
Property 1.4: A near-field space N is a PVNFS if and only if ∀ a, b ∈ N, either a/b ∈ N or b/a ∈  N for each non-unit  
c ∈ N. 
 
Property 1.5: A near-field space N is a φ-PVNFS if and only if Nil(N) is a divided prime ideal of N and ∀ a, b ∈ N \ 
Nil(N), either a/b ∈ N or b/a ∈ N ∀ non-unit c ∈ N. 
 
Property 1.6: If N is a PVNFS or a φ-PVNFS, then Nil(N) and Z(N) are divided prime ideals of  a near-field space N. 
 
SECTION 2: PRELIMINARY RESULTS AND EXAMPLES 
 
Definition 2.1: A near-field space N, with quotient near-field space K of N is called a pseudo-valuation domain [PVD] 
near-field space in case each prime ideal P of N is strongly prime in the sense that xy ∈ P ∀ x ∈ K, y ∈ K ⇒ either       
x ∈ P or y ∈ P. 
 
Definition 2.3: A prime ideal P of a near-field space N is said to be strongly prime in N if aP and bP are comparable 
under inclusion of near-field spaces ∀ a, b ∈ N. 
 
Definition 2.4: A near-field space N is called a pseudo-valuation near-field space (PVNFS) if each prime ideal of N is 
strongly prime. A PVNFS is necessarily quasi-local near-field space. 
 
Note 2.5: A near-field space is a pseudo-valuation near-field space (PVNFS) if and only if it is pseudo-valuation 
domain [PVD]. 
 
Definition 2.6: A prime ideal P of a near-field space N is called divided if it is comparable under inclusion to every 
ideal of near-field space N. 
 
Definition 2.7: A near-field space N is called a divided near-field space if every prime ideal of a near-field space N is 
divided.   
 
Definition 2.8: A prime ideal Q of φ(N) is called a K-strongly prime ideal if xy∈Q, ∀ x ∈ K, y  ∈ K ⇒ either z ∈ Q or 
y ∈ Q.  
 
Definition 2.9: If each prime ideal of φ(N) is K-strongly prime, then φ(N) is called a K-pseudo-valuation near-field 
space (K-PVNFS). 
 
Definition 2.10: A prime ideal P of near-field space N is called a φ-strongly prime ideal if φ(P) is a K-strongly prime 
ideal of φ(N). 
 
Definition 2.11: A prime ideal P of N is called a φ-strongly prime ideal if φ(P) is a K-strongly prime ideal of φ(N). If 
each prime ideal of near-filed space N is φ-strongly prime, then N is called a φ- pseudo-valuation near-field space       
(φ-PVNFS). 
 
Definition 2.12: a near-field space N is called a φ-chained near-field space (φ-CNFS) if Nil(N) is a divided prime ideal 
of N and  ∀ x ∈ NNil(N) \ φ(N) , we have x-1 ∈ φ(N). 
 
Note 2.13: A chained near-field space (φ-CNFS) is a division near-field space and hence is quasi-local near-field space. 
Hence, ∀ n ≥ 0 ∃ a φ-CNFS of krull dimension n that is not a chained near-field space. 
 
Definition 2.14: A proper ideal of a near-field space N is called a divided ideal if J is comparable under inclusion to 
every principal ideal of N; equivalently, if J is comparable to every ideal of N. If every prime ideal of N is divided, then 
N is called a divided near-field space. 
 
Definition 2.15: A prime ideal Q of a near-field space B is branched if Rad (J) = Q for some primary ideal J ≠ Q of B.  
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Note 2.16: A prime ideal Q of a near-field space domain D is branched iff Rad (J) = Q for some ideal J ≠ Q of D. In the 
following result I will show that this result is still valid for divided near-field spaces. 
 
Definition 2.17: An ideal of a near-field space N is called regular if it contains a non-zero divisor of N. If every regular 
ideal of N is generated by its set of   non-zero divisors, then N is called as Nagendram near-field space. 
 
Definition 2.18: A near-field space N has few zero-divisors if Z(N) is a finite union of prime ideals. 
 
SECTION 3: RESULTS ON DIVIDED NEAR-FIELD SPACES AND φ-PVNFS 
 
In view of the proof of [5, Proposition 2.1], we see that the result in [5, proposition 2.1] valid iff assume that the near-
field space N is a divided near-fields domain. Hence, I state the following result without proof.  
 
Proposition 3.1: [5, Proposition 2.1] Let D be division near-field space domain with maximal ideal K and krull 
dimension n, say K = Qn ⊃ Qn-1 ⊃ Qn-2 ⊃ ………⊃ Q1 ⊃ {0}, where the Qjs are the distinct prime ideals of division 
near-field space domain D. Let, j, m, d ≥ 1 such that 1 ≤ j ≤ m  ≤ n. Choose z ∈ D such that Rad ((y)) = Qj. Let P:= Qm 
and  I := yj+1DP. Then  

(i) I is an ideal of near-field space domain D and rad (I) = Qj . 
(ii) N:= D/I is a divided near-field space with maximal ideal K/I, Z(N) = Qm/I, and Nil (N) = Qj /I. Furthermore, 

v:= y + I ∈ Nil (N) and vd ≠ 0 in N. 
(iii) Dim (N) = n – j.  (iv) if j ≤ m  ≤ n, then Nil (N) is properly contained in  

Between Z(N) and M/I. 
 
Proposition 3.2: Let N be a divided near-field space and let Q be a prime ideal of N such that Q ≠ Nil (N). Then Q is 
branched if and only if Rad (J) = Q or some ideal J ≠ Q of near-field space N. 
 
Proof: Obvious. 
 
Corollary 3.3: Let N be a near-field space such that Nil (N) is a divided prime ideal near-field space of N, and let Q be  
a divided prime of ideal of N such that Q ≠ Nil (N). Then Q is branched if and only if Rad (J) Then Q is branched iff  
Rad (j) = Q for some ideal J ≠ Q of near-field space N.  
 
Proposition 3.4: Let N be a near-field space such that Nil (N) is a divided prime ideal of N. Suppose that J is a proper 
ideal of N such that J contains a non-nilpotent sub-near-field space of N and for some N ≥ 1, Jn is a divided ideal of 
near-field space N for each n ≥N. Then Q = 



1≥n

nJ  is a divided prime ideal of near-field space N. 

Proof: Obvious. 
 
In view of the above proposition, we have the following corollary. 
 
Corollary 3.5: Let N be a near-field space such that Nil (N) is a divided prime ideal of N, and let J be proper ideal of N 
such that J contains a non-nilpotent of N. Then the following statements are equivalent: 

(i) Jn = Jm for some positive integers n ≠ m and Jn is a divided ideal of N. 
(ii) J is a divided prime ideal of N and J = J2. 

 
Proof: Obvious 
 
The following result follows directly from the definition of strongly prime ideal and a quasi-local near-field space with 
maximal ideal M is a PVNFS if and only if M is strongly prime. 
 
Proposition 3.6: Let N be a near-field space such that Nil (N) is a divided prime ideal of N, and let J be a proper ideal 
of N such that J contains a non-nilpotent of N. Then the following statements are equivalent: 

(i) N is φ-PVNFS (ii) bM is a divided ideal of N for each b ∈ N \ Nil (N). 
 
Proof: Obvious 
 
An element d in a near-field space N is called a proper divisor of s ∈ N if s = dm for some non-unit m ∈ N. 
 
Proposition 3.7: For a quasi-local near-field space N with maximal ideal M, the following statements are equivalent: 

(i) N is a PVNFS; bM is a divided ideal for each b ∈ M. 
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Proof: Obvious 
 
In the following proposition we make connection between φ-PVNFS’s and PVNFS’s. 
 
Proposition 3.8: A near-field space N is a φ-PVNFS ⇔ Nil (N) is a divided prime ideal of N and ∀ a, b ∈ N \ Nil (N), 
either b |a ∈ N or d | b  ∈ N for each proper divisor d of a. 
 
Proof: Obvious 
 
Proposition 3.9: A near-field space N is a  φ-PVNFS ⇔ Nil (N) is divided prime ideal of N and N/Nil(N) is a PVNFS. 
 
Proof: Obvious. 
 
SECTION 4: MAIN RESULTS ON DIVIDED NEAR-FIELD SPACES, φ-PVNFS AND φ-CPVNFS 
 
In this section, let a valuation domain VD and VNFS valuation near-field space and chained near-field space CNFS. 
We then have the following implications, none of which are reversible. 
 
V D ⇒ PVD ⇒ VNFS ⇒ PVNFS ⇒ φ - PVNFS and VD ⇒ CNFS ⇒ φ - CNFS ⇒ φ - PVNFS. We start with the 
following lemma. 
 
Lemma 4.1: Let N be a φ - PVNFS, and let Q be a prime ideal of N. then x-1Q ⊂ Q for each x ∈ T(N) \ N. 
 
Proof: Obvious. 
 
Proposition 4.2: Let N be a φ - PVNFS and z∈T(N) \ N be integral over N. Then there is a minimal monic polynomial 
f(x) ∈ N[x] such that f(x) = 0 and all non-zero coefficients of f(x) are units in N. Furthermore, if g(x) is a minimal 
monic polynomial in N[x] such that g(x) =0, then g(0) is a unit in N. 
 
Proof: Obvious 
 
It is well-known ([15],[1],[4],[7]) that the integral closure of a PVNFS is a PVNFS. In view of the above result, one can 
give replica proof of this fact. For a near-field space N, let N′ denotes the integral closure near-field space of N inT (N). 
 
Proposition 4.3: Let N be a φ - PVNFS with maximal ideal M, and let A be a over near-field space of N such that       
A ⊂ N′. Then A is a φ - PVNFS with maximal ideal M. 
 
Proof: Obvious 
  
Proposition 4.4: Let N be a φ - PVNFS with maximal ideal M, and Let A be a over-near-field space of N. Then the 
following statements are equivalent: 

(i) A = AQ is a φ - CNFS for some non-maximal prime ideal Q of N 
(ii) IA = A for some proper ideal J of N 
(iii) 1/s ∈ A for some non-zero divisor s ∈ M. 

 
Proof: Obvious 
 
Corollary 4.5[6, theorem 3]: Let N be a φ - PVNFS with maximal ideal M, and let A be a over-near-field space of N 
such that A is a φ - CNFS with maximal ideal N. If Q = N ∩ K ≠ M, then A = NQ. 
 
Proof: is obvious. 
  
Proposition 4.6: Let N be a φ - PVNFS with maximal ideal M and u ∈ (M: M)\N. Then N (v) is a φ - PVNFS if and 
only if N (v) is quasi-local near-field space. Furthermore, if N (v) is quasi-local near-field space for some u∈(M: M)\N, 
then N (v) is a φ - PVNFS with maximal ideal M. 
 
Proof: is obvious. 
 
Corollary 4.7: Let N be a φ - PVNFS with maximal ideal M. If C is a over-near-field space of N such that C does not 
contain an element of the forth 1/s for some non-zero divisor s ∈ M, then C ⊂ (M: M). 
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Proof: is obvious. 
 
Corollary 4.8: Let N be a φ - PVNFS with maximal ideal M. Then every over-near-field space C of N is a φ - PVNFS 
iff N (v) is quasi-local near-field space for each u ∈ (M: M)\N. 
 
Proof: Obvious 
 
Note 4.9: A near-field space N is φ - CPVNFS if and only if Nil(N) is a divided prime ideal of N and ∀ a, b ∈ N\Nil(N), 
either a|b ∈ N or b|a ∈ N. 
 
We have the following result which is a generalization of [6, proposition 6]. 
 
Proposition 4.10: Let N be a φ - PVNFS. Then (i) N is a Nagendram near-field-space. (ii) If N ≠ T (N), then T(N) is     
φ - CPVNFS. 
 
Proof: To prove (i): Since Z(N) is a prime ideal of N by property 1.6, N has few zero divisors. Hence, N is a 
Nagendram near-field space by [16, theorem 7.2]. Proved (i). 
 
To prove (ii): Since Nil(N) is a divided prime ideal of N, Nil(T(N)) = Nil(N). Now let x, y ∈ T(N) \ Nil(N). Then          
x = a/s and y = b/s ∀ a, b ∈ N \ Nil(N) and s ∈ N \ Z(N). by note 4.9, we need to show that either x|y in T(N) or y|x in 
T(N). if a|b in N, then x|y in T(N). Hence assume that a|b in N. Since, N is a φ - PVNFS and N ≠ T(N), b|ad in N for 
some d ∈ M \ Z(N). Thus, ad = bc for some c ∈ N. Thus, a/s = (b/s)(c/d). Thus, y |x in T(N). Proved (ii). 
 
Therefore, this completes the proof of proposition. 
 
Remark 4.11: Let N be a φ - PVNFS with maximal ideal M such that M contains a non-zero divisor of N, and J be a 
proper ideal of N. Since U =(M : M) is a φ - CPVNFS with maximal ideal M of N, it is easy to see that there exists a    
φ - CPVNFS U between N and T(N) such that IU  ≠ U. 
 
Theorem 4.12: Let N be a φ - PVNFS with maximal ideal M such that M contains a non-zero divisor of N, let C be a 
over near-field space of N (N ⊂ C ⊂ T(N)), and let J be a proper ideal of C. Then there exists a φ - CPVNFS A such 
that C ⊂ A ⊂ T(N) and JA ≠ A. 
 
Proof: Obvious. 
 
Proposition 4.13: Let N be a φ - PVNFS and be a over near-field space of N such that A is a φ - CPVNFS. Then,        
N′ ⊂ A. 
 
Proof: we prove this in the way of Negative proof. Then there is an x ∈ N′\A. Hence, since N′ is a φ - PVNFS with 
maximal ideal M by proposition 4.3, x is a unit in N′. Since x ∉ A and A is a φ - CPVNFS, x-1 ∈ A. Since, x ∈ N′,         
x ∈ N[x-1] by [17, theorem 15]. Hence, x ∈ N[x-1] ⊂ A, which is a contradiction, thus N′ ⊂ A. This completes the proof 
of the proposition. 
 
Theorem 4.14: Let N be a φ - PVNFS with maximal ideal M such that M contains a non-zero divisor. Then N′ is the 
intersection of all the φ - CPVNFs between N and T(N). 
 
Proof: By proposition 4.13, N′ is contained in the intersection of all the φ - CPVNF between N and T(N). Let y ∈ the 
intersection of all the φ - CPVNFs between N and T(N). we must show that y ∈ N′. Suppose not. By [17, theorem 15], 
y ∉ C = N[y-1]. Let J = y-1C. Then J is a proper ideal of C. by theorem 4.12 there is a φ - CPVNF A between C and 
T(N) such that JA ≠ A. But by hypothesis y ∈ A, and we have our contradiction. This completes the proof of the 
theorem. 
 
Theorem 4.15[4, Th. 15(1)]: Let N be a φ - PVNFS with maximal ideal M. Then every over-near-field space of N is a 
φ - PVNFS ⇔  every φ - CNFS between N and T(N) other than (M:M) is of the form NQ  for some non-maximal prime 
ideal Q of N. 
 
Proof: ⇒(if) If T(N) = N, then there is nothing to prove. Hence, assume that M contains a non-zero divisor of N. 
Suppose that every over near-field space of N is a φ - PVNFS. Then N′ = (M: M). Let C be a over near-field space of N 
such that C ≠ (M : M) and C is φ - CNFS. Since every over near-field space of N not contained in N′ = (M: M) by 
proposition 4.7 and hence is a φ - PVNFS with maximal ideal M by proposition 4.3 and (M : M) is the only φ - CNFS   
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between N and T(N) that has maximal ideal M by [6, lemma 3.1(1)], C ⊄ N′ = (M: M). Then, C must contain an 
element of the form 1/s for some non-zero divisor s ∈ M. Hence, C = Nq for some non-maximal prime ideal Q of N by 
proposition 4.4. 
 
⇐( only if ) Suppose that ∀ φ - CNFS between N and T(N) other than (M : M) is of the form Nq for some non-maximal 
prime ideal  Q of N. Then (M: M) is contained in every φ - CNFS between N and T(N). Hence, (M : M) is the 
intersection of all the φ - CNFS between N and T(N). Thus, by Theorem 4.14,    N′ = (M: M). Hence, every over near-
field space of N is a φ - PVNFS. This completes the proof of the theorem. 
 
Corollary 4.16: Let N be a φ - PVNFS with maximal ideal M ∋ N′ ≠ (M: M). Then there is a φ - CPVNFS that is 
properly contained between N′ and (M:M).  
 
Remark 4.17: By making use all [4, prop. 15(1)], Prop. 4.3, 4.4, 4.8 and theorem 4.14, we arrive at the following result 
that is a generalization of main result on divided near-field spaces, φ-PVNFS and φ-CPVNFS. 
 
Corollary 4.17: Let N be a φ - PVNFS with maximal ideal M. Then the following statements are equivalent: 

(a) Every over-near-field-space of N is a φ - PVNFS. 
(b) N (v) is a φ - PVNFS ∀ u ∈ (M: M)\N. 
(c) N (v) is quasi-local near-field space ∀ u ∈ (M:M)\N. 
(d) If A is an over-near-field-space of N and A⊂ (M: M), then A is a φ - PVNFS with maximal ideal M. 
(e) If A is an over-near-field-space of N and A⊂ (M: M) then A is a quasi-local near-field space. 
(f) Every over-near-field space of N is quasi-local near-field space. 
(g) Every φ - CPVNFS between N and T(N) other than (M:M) is of the form NQ for some non-maximal prime 

ideal Q of N. 
(h) N′ = (M: M). 
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GLOSSARY 
 

1. N be the commutative near-field space 
2. T(N) be the total quotient near-field space 
3. Nil(N) be the prime ideal of a near-field space N 
4. N is φ-CNFS - φ- chained near-field space 
5. (φ-PVNFS) is - φ-pseudo –valuation near-field space  
6. N(v) - is a divided prime ideal 
7. M – maximal ideal of a near-field space N 
8. Nc – integral closure of a near-field space 
9. (M: M) is quasi-local near-field space. 
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