International Journal of Mathematical Archive-6(4), 2015, 92-104 MA Available online through www.ijma.info ISSN 2229 - 5046 (i, j) - (g * p) ** -CLOSED SETS IN BITOPOLOGICAL SPACE #### **RAVIK** Associate Professor, Sacred Heart College, Tirupattur, Vellore, India. ### PAULINE MARY HELEN M Associate Professor, Nirmala College for Women, Coimbatore, India. ### **ANITHA*** M. Phil Scholar, Sacred Heart College, Tirupattur, Vellore, India. (Received On: 12-03-15; Revised & Accepted On: 16-04-15) #### **ABSTRACT** In this paper, we introduce a new class of sets called (i,j)- $(g^*p)^{**}$ -closed sets which is properly placed in between the class of τ_j -closed sets and the class of (i,j)- $(g^*p)^*$ -closed sets. As an application, we introduce four new spaces namely, (i,j)- $_gT^{**}_p$, (i,j)- $_{\alpha g}T^{**}_p$ and (i,j)- $_{gs}T^{**}_p$ spaces, and their properties are investigated. **Keywords:** (i,j)-(g*p)**-closed sets, (i,j)- $_gT^{**}_{p}$, (i,j)- $_{\alpha g}T^{**}_{p}$ and (i,j)- $_{gs}T^{**}_{p}$ spaces. #### 1. INTRODUCTION A triple (X, τ_i, τ_j) where X is a non-empty set and τ_i and τ_j are topologies in X is called a bitopological space. Kelly [6] initiated the study of such spaces in 1985 and Fukutake [5] introduced the concepts of g-closed sets in bitopological spaces. Vadivel and Swaminathan [17] introduced and studied the concepts of g*p-closed sets in bitopological space in 2011. Pauline Mary Helen and Anitha [12] introduced (i, j) - (g * p) *-closed sets in 2014. The purpose of the paper is to introduce the concept of $(g^*p)^{**}$ -closed sets, $(i,j)_{g}T^{**}_{p}$, $(i,j)_{\alpha g}T^{**}_{p}$ and $(i,j)_{gs}T^{**}_{p}$ spaces. ### 2. PRELIMINARIES Throughout this paper (X, τ_i, τ_j) represents non-empty bitopological space on which separation axioms are not assumed unless otherwise mentioned. For a subset A of a (X, τ_i, τ_j) space, cl(A) and int(A) denote the closure and the interior of A respectively. The class of all closed subsets of a space of a space (X, τ_i, τ_j) is denoted by $C(X, \tau_i, \tau_j)$. **Definition 2.1:** A subset A of a topological space (X, τ) is called - (1) a pre-open set [10] if $A \subseteq \operatorname{int}(cl(A))$ and a pre-closed set if $cl(\operatorname{int}(A)) \subseteq A$. - (2) a semi-open set [8] if $A \subseteq cl(int(A))$ and a semi-closed set if $int(cl(A)) \subseteq A$. - (3) a $semi-pre\ open$ set [2] (β -open [1]) if $A \subseteq cl(\operatorname{int}(cl(A)))$ and a $semi-pre\ closed$ set [2] (β -closed [1]) if $\operatorname{int}(cl(\operatorname{int}(A))) \subseteq A$. - (4) a α open set [11] if $A \subset \operatorname{int}(cl(\operatorname{int}(A)))$ and a α closed set [9] if $cl(\operatorname{int}(cl(A))) \subset A$. # Ravi K, Pauline Mary Helen M and Anitha / (i,j)-(g*p)** -Closed Sets in Bitopological Space / IJMA- 6(4), April-2015. # **Definition 2.2:** A subset of a bitopology (X, τ_i, τ_j) is called - 1. (i, j)-g-closed [5] if $\tau_i cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in τ_i . - 2. (i, j)-sg-closed [3] if $\tau_i scl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi open in τ_i . - 3. (i, j)-wg-closed [6] if $\tau_i cl(\tau_i \text{int}(A)) \subseteq U$ whenever $A \subseteq U$ and U is open in τ_i . - 4. (i, j)- α **-closed [18] if $\tau_i cl(A) \subseteq U$ whenever $A \subseteq U$ and U is α *-open in τ_i . - 5. (i, j)-gs-closed[16] if $\tau_i scl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in τ_i . - 6. (i, j)-gsp-closed[4] if $\tau_j spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in τ_i . - 7. (i, j)- αg -closed [16] if $\tau_i \alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in τ_i . - 8. (i, j)-(g*p)*-closed [12] if $\tau_i cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g*p-open in τ_i . - 9. (i, j)-g*p-closed [17] if $\tau_i pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is τ_i -g open. - 10. (i, j)-gp-closed [116] if $\tau_i pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in τ_i . - 11. (i, j)- $g\alpha g$ -closed [13] if $\tau_i cl(A) \subseteq U$ whenever $A \subseteq U$ and U is αg open in τ_i . - 12. (i, j)- $\alpha * g$ -closed [14] if $\tau_i cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in τ_i . - 13. (i, j)- g *-closed [15] if $\tau_i cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g open in τ_i . # **Definition 2.3:** A bitopological space (X, τ_i, τ_j) is called - 1. an (i,j)- T_{α} **-space [18]if every (i,j)- α **-closed set is τ_{i} -closed. - 2. an (i,j)- T_b space [16]if every (i,j)-gs-closed set is τ_i -closed. - 3. an (i,j)- $_{\alpha}T_{b}$ space [16]if every (i,j)- αg -closed set is τ_{i} –closed. # 3. BASIC PROPERTIES OF (i, j) - (g * p) * - CLOSED SETS In this chapter we introduce the concept of (i, j)-(g*p)**-closed sets in bitopological spaces. **Definition 3.1:** A subset of a bitopological space (X, τ_i, τ_j) is said to be an (i,j)-(g*p)**-closed set if $\tau_j - cl(A) \subseteq U$ whenever $A \subseteq U$ and U is τ_i -(g*p)*-open. **Remark 3.2:** By setting $\tau_i = \tau_j$ in definition (3.1), a (i,j)-(g*p)**-closed set is a (g*p)**-closed. **Proposition 3.3:** Every τ_i -closed subset of (X, τ_i, τ_j) is (i,j)-(g*p)**-closed. The converse of the above proposition is not true as seen in the following example. **Example 3.4:** Let $X=\{a,b,c\}$, $\tau_i=\{\phi,\{a\},X\}$ and $\tau_j=\{\phi,\{c\},X\}$. Then the set $A=\{a,c\}$ is (i,j)-(g*p)*-closed but not τ_j -closed in (X,τ_i,τ_j) . **Proposition 3.5:** In bitopological space (X, τ_i, τ_j) every (i,j)-(g*p)**-closed set is (1) (i,j)- αg -closed (2) (i,j)-gs-closed (3) (i,j)-gp-closed (4) (i,j)-wg-closed (5) (i,j)-gsp-closed (6) (i,j)- $\alpha * g$ -closed The following examples show that the converses of the above results are not true. **Example 3.6:** Let $X = \{a,b,c\}, \tau_i = \{\phi,\{c\},\{a,c\},X\}$ and $\tau_j = \{\phi,\{b\},X\}$. Then the set $A = \{c\}$ is (i,j)- αg -closed but not (i,j)-(g*p)**-closed. #### Ravi K, Pauline Mary Helen M and Anitha / (i,j) – (g*p)** -Closed Sets in Bitopological Space / IJMA- 6(4), April-2015. **Example 3.7:** Let $X = \{a,b,c\}$, $\tau_i = \{\phi,\{a\},X\}$ and $\tau_j = \{\phi,\{c\},X\}$. Then the set $A = \{a\}$ is (i,j)-gs-closed but not (i,j)-(g*p)**-closed. **Example 3.8:** Let $X = \{a,b,c\}, \tau_i = \{\phi,\{c\},\{a,c\},X\}$ and $\tau_j = \{\phi,\{a\},X\}$. Then the set $A = \{c\}$ is (i,j)-gp-closed but not (i,j)-(g*p)**-closed. **Example 3.9:** Let $X=\{a,b,c\}, \ \tau_i=\{\phi,\{c\},\{a,b\},X\} \ \text{and} \ \tau_j=\{\phi,\{a\},X\} \ \text{.Then the set} \ A=\{b\} \ \text{is (i,j)-wg-closed but not (i,j)-(g*p)**-closed.}$ **Example 3.10:** Let $X = \{a,b,c\}, \tau_i = \{\phi,\{a\},X\} \text{ and } \tau_j = \{\phi,\{c\},X\}.$ Then the set $A = \{a\}$ is (i,j)-gsp-closed but not (i,j)-(g*p)**-closed. **Proposition 3.11:** Every (i,j)- α^{**} - closed set is (i,j)- $(g^*p)^{**}$ -closed set but not conversely. **Proof:** Let A be a (i,j)- α^{**} -closed set. Let $A \subseteq U$ and U be $\tau_i - (g * p)^*$ - open. Then U is $\tau_i - \alpha^*$ -open. Since A is (i,j)- α^{**} -closed, $cl(A) \subseteq U$ therefore A is (i,j)- $(g * p)^{**}$ -closed. **Example 3.12:** Let $X = \{a, b, c\}$ and $\tau_i = \{\varphi, X, \{a\}\}$ and $\tau_j = \{\varphi, X, \{c\}\}$ and let $A = \{a, c\}$. Then A is (i,j)-(g * p) **-closed but it is not (i, j)- $\alpha **$ -closed. **Proposition 3.13:** Every (i,j)- $g\alpha g$ - closed set is (i,j)- (g*p)**-closed set but not conversely. **Proof:** Let A be a (i, j)- $g\alpha g$ -closed set. Let $A \subseteq U$ and U be $\tau_i - (g * p) *$ - open. Then U is $\tau_i - \alpha g$ - open. Since A is (i, j)- $g\alpha g$ -closed, $cl(A) \subseteq U$ therefore A is (i, j)- (g * p) *-closed. **Example 3.14:** Let $X = \{a, b, c\}$ and $\tau_i = \{\varphi, X, \{a\}\}$ and $\tau_j = \{\varphi, X, \{c\}\}$ and let $A = \{a, c\}$. Then A is (i,j)-(g * p) **-closed but it is not (i,j)- $g \alpha g$ - closed. **Proposition 3.15:** Every (i,j)- g^* - closed set is (i,j)- $(g^*p)^{**}$ -closed set but not conversely. **Proof:** Let A be a (i,j)- g *-closed set. Let $A \subseteq U$ and U be $\tau_i - (g * p)$ *- open .Then U is $\tau_i - g$ -open. Since A is (i,j)- g *-closed, $cl(A) \subseteq U$ therefore A is (i,j)- (g * p) **-closed. **Example 3.16:** Let $X = \{a, b, c\}$ and $\tau_i = \{\varphi, X, \{a\}\}$ and $\tau_j = \{\varphi, X, \{c\}\}$ and let $A = \{b\}$. Then A is (i,j)-(g * p) **-closed but it is not (i,j)-g *-closed. **Remark 3.17:** (i, j) - g * p -closedness is independent of (i, j) - (g * p) ** -closedness. **Example 3.18:** Let $X = \{a, b, c\}$ and $\tau_i = \{\varphi, X, \{a\}\}$ and $\tau_j = \{\varphi, X, \{c\}\}$ and let $A = \{a\}$. Then A is (i, j) - g * p - closed but it is not (i, j) - (g * p) * * - closed. **Example 3.19:** Let $X = \{a, b, c\}$ and $\tau_i = \{\phi, X, \{c\}, \{a, b\}\}\}$ and $\tau_j = \{\phi, X, \{a\}\}$ and let $A = \{a, c\}$. Then A is (i, j) - (g * p) ** - closed but it is not (i, j) - g * p - closed. **Remark 3.20:** (i,j) - Sg -closedness is independent of (i,j) - (g * p)**-closedness. # Ravi K, Pauline Mary Helen M and Anitha / (i,j)-(g*p)** -Closed Sets in Bitopological Space / IJMA- 6(4), April-2015. **Example 3.21:** Let $X = \{a, b, c\}$ and $\tau_i = \{\varphi, X, \{c\}, \{a, c\}\}$ and $\tau_j = \{\varphi, X, \{a\}\}$ and let $A = \{c\}$. Then A is (i, j) - sg - closed but it is not (i, j) - (g * p) ** - closed. **Example 3.22:** Let $X = \{a, b, c\}$ and $\tau_i = \{\varphi, X, \{a\}\}$ and $\tau_j = \{\varphi, X, \{c\}\}$ and let $A = \{c\}$. Then A is (i, j) - (g * p) * * - closed but it is not (i, j) - sg - closed. **Proposition 3.23:** If A and B are (i,j)-(g*p)**-closed. Then $A \cup B$ is also (i,j)-(g*p)**-closed. **Remark 3.24:** The intersection of two (i,j)-(g*p)**-closed set need not be (i,j)-(g*p)**-closed as seen from the following example. **Example 3.25:** Let $X = \{a,b,c\}$, $\tau_i = \{\varphi, X, \{a\}\}$ and $\tau_j = \{\varphi, X, \{c\}\}$. Let $A = \{a,b\}$ and $B = \{a,c\}$. Then A and B are $(i,j) - (g^*p)^{**}$ -closed sets but $A \cap B = \{a\}$ is not $(i,j) - (g^*p)^{**}$ -closed. **Remark 3.26:** (i,j)-(g*p)**-closed set need not be (j,i)-(g*p)**-closed. **Example 3.27:** Let $X = \{a, b, c\}, \tau_i = \{\phi, X, \{a\}\}$ and $\tau_j = \{\phi, X, \{c\}\}$. Then the set $A = \{c\}$ is (i,j)-(g*p)**-closed but not (j,i)-(g*p)**-closed. **Proposition 3.28:** If A is (i, j)-(g*p)**-closed ,then $\tau_j - cl(A) - A$ contains no non-empty τ_i -(g*p)*-closed set. **Proof:** Let A be (i,j)-(g*p)**-closed and let F be a τ_i -(g*p)*-closed set such that $F \subseteq \tau_j - cl(A) - A$ Since A is (i, j)-(g*p)**-closed, we have $\tau_i - cl(A) \subseteq F^c$. Therefore $\mathbf{F} \subseteq (\tau_i - cl(A)) \cap (\tau_i - cl(A))^c = \phi$. Therefore $F = \phi$. The above results can be represented in the following figure. Where A → B (resp A → B) represents A implies B and B need not imply A (resp. A and B independent) # 4. APPLICATIONS OF (i, j) - (g * p) ** - CLOSED SETS We introduce the following definitions. **Definition 4.1:** A bitopological space (X, τ_i, τ_j) is said to be an $(i, j) - {}_{g}T **_{p}$ - space if every (i, j) - (g * p) ** - closed set is τ_j - closed. **Definition 4.2:** A bitopological space (X, τ_i, τ_j) is said to be an $(i, j) - \alpha g T^*_p$ - space if every $(i, j) - \alpha g - closed$ set is (i, j) - (g * p) **-closed. **Definition 4.3:** A bitopological space (X, τ_i, τ_j) is said to be an $(i, j) - g_s T^{**}_p$ - space if every $(i, j) - g_s - closed$ set is (i, j) - (g * p) **-closed. **Theorem 4.4:** Every $(i, j) - {}_{\alpha}T_{b}$ – space is $(i, j) - {}_{g}T * *_{p}$ -space but not conversely. **Proof:** Let (X, τ_i, τ_j) be a $(i, j) - {}_{\alpha}T_b$ – space. Let A be (i, j) - (g * p) **-closed. Every (i, j) - (g * p) **-closed set is $(i, j) - \alpha g$ – closed. Therefore A is $(i, j) - \alpha g$ – closed. Since (X, τ_i, τ_j) is a $(i, j) - {}_{\alpha}T_b$ – space, A is τ_j – closed. Therefore (X, τ_i, τ_j) is $(i, j) - {}_{g}T **_{p}$ -space. **Example 4.5:** Let $X = \{a,b,c\}$ $\tau_i = \{\varphi \ , \ X,\{a\},\{c\},\{a,c\}\}\}$. $\tau_j = \{\varphi \ , \ X,\{a\},\{b\},\{a,b\}\}\}$. Then space (X,τ_i,τ_j) is $(i,j)_{-g}T^{**}_p$ -space. $A = \{a,b\}$ is $(i,j)_{-\alpha}q$ -closed but not τ_j - closed. Therefore the space (X,τ_i,τ_j) is not a $(i,j)_{-\alpha}T_b$ -space. **Theorem 4.6:** Every $(i, j) - T_b$ – space is a $(i, j) - {}_g T * *_p$ -space but not conversely. **Proof:** Let (X, τ_i, τ_j) be a $(i, j) - T_b$ — space. Let A be (i, j) - (g * p) ** -closed. Every (i, j) - (g * p) ** -closed set is (i, j) - gs — closed. Therefore A is (i, j) - gs — closed. Since (X, τ_i, τ_j) is a $(i, j) - T_b$ — space, A is τ_j — closed. Therefore (X, τ_i, τ_j) is $(i, j) - gT **_p$ -space. **Example 4.7:** Let $X = \{a,b,c\}$ $\tau_i = \{X, \phi, \{a\}, \{c\}, \{a,c\}\}$ and $\tau_j = \{X, \phi, \{a\}, \{b\}, \{a,b\}\}$. Then space (X, τ_i, τ_j) is $(i,j)_g T **_p$ -space. $A = \{a\}$ is $(i,j)_g T **_p$ -closed. Therefore the (X, τ_i, τ_j) space is not $(i,j)_g T **_p$ -space. **Theorem 4.8:** Every $(i, j) - {}_{g}T * {}^{*}{}_{p}$ space is a $(i, j) - T_{\alpha} * {}^{*}$ -space but not conversely. **Proof:** Let (X, τ_i, τ_j) be a $(i, j) - T_b$ — space. Let A be (i, j) - (g * p) ** -closed. Every (i, j) - (g * p) ** -closed set is (i, j) - gs — closed. Therefore A is (i, j) - gs — closed. Since (X, τ_i, τ_j) is a $(i, j) - T_b$ — space, A is τ_j — closed. Therefore (X, τ_i, τ_j) is $(i, j) - gT **_p$ -space. **Example 4.9:** Let $X = \{a,b,c\}$ $\tau_i = \{X,\phi,\{c\},\{a,b\}\}$ and $\tau_j = \{X,\phi,\{a\}\}$. Then space (X,τ_i,τ_j) is $(i,j) - T_\alpha$ **-space. $A = \{a,c\}$ is (i,j) - (g * p)**-closed but not τ_j - closed. Therefore the (X,τ_i,τ_j) space is not $(i,j) - {}_g T$ ***_p-space. # Ravi K, Pauline Mary Helen M and Anitha / (i,j)-(g*p)** -Closed Sets in Bitopological Space / IJMA- 6(4), April-2015. **Theorem 4.10:** Every $(i, j) - {}_{\alpha}T_{b}$ – space is a $(i, j) - {}_{\alpha p}T * {}^{*}{}_{p}$ -space but not conversely. **Proof:** Let (X, τ_i, τ_j) be a $(i, j) -_{\alpha} T_b$ - space. Let A be a $(i, j) - \alpha g$ - closed. Then A is τ_j - closed, and hence A is (i, j) - (g * p) **-closed. Therefore (X, τ_i, τ_j) is $(i, j) -_{\alpha g} T **_p$ -space. **Example 4.11:** Let $X = \{a,b,c\}$ $\tau_i = \{X,\varphi,\{b\}\}$ and $\tau_j = \{X,\varphi,\{c\},\{a,c\}\}$. Then space is a $(i,j) - \alpha g$ space. $A = \{a\}$ is $(i,j) - \alpha g$ -closed but not τ_j - closed. Therefore the space is not a $(i,j) - \alpha f$ - space. **Theorem 4.12:** Every $(i, j) - T_b$ – space is a $(i, j) - {}_{gs}T * *_{p}$ -space but not conversely. **Proof:** Let (X, τ_i, τ_j) be a $(i, j) - T_b$ — space. Let A be a (i, j) - gs — closed. Then the A is τ_j — closed, and hence A is (i, j) - (g * p) ** -closed. Therefore (X, τ_i, τ_j) is a $(i, j) - {}_{gs}T **_p$ -space. **Example 4.13:** Let $X = \{a,b,c\}$ $\tau_i = \{\varphi \ , \ X,\{b\}\}$ and $\tau_j = \{X,\varphi,\{c\},\{a,c\}\}$. Then the space is a $(i,j) - {}_{gs}T * *_{p} *$ **Proposition 4.14:** A space which is both $(i, j) - {}_{\alpha g}T * *_{p} - \text{space}$ and $(i, j) - {}_{g}T * *_{p} - \text{space}$ is a $(i, j) - {}_{\alpha}T_{p}$ -space. **Proof:** Let A be (i,j)- αg -closed. Then A is (i,j)- $(g^*p)^{**-}$ closed. Since the space (X, τ_i, τ_j) is $(i,j)_{-\alpha g} T^{**}_p$ -space. The space (X, τ_i, τ_j) is $(i,j)_{-g} T^{**}_p$ -space, and hence A is τ_j -closed. Therefore the space is (i,j)- $_{\alpha} T_b$ -space. **Proposition 4.15:** A space which is both $(i, j) - {}_{gs}T * *_{p} -$ space and $(i, j) - {}_{g}T * *_{p} -$ space is a $(i, j) - T_{b} -$ space. **Proof:** Let A be (i,j)- gs-closed. Then A is (i,j)- $(g^*p)^{**-}$ closed. Since (X, τ_i, τ_j) space is $(i,j)-\frac{1}{gs}T^{**-}$ space. The space (X, τ_i, τ_j) is $(i, j) - {}_g T **_p$ -space, and hence A is τ_j - closed. Therefore the space is a (i, j)- T_b - space. The above results can be represented in the following figure. where A — B represents A implies B and B does not imply A. # Ravi K, Pauline Mary Helen M and Anitha f(i, j) - (g * p) ** - Closed Sets in Bitopological Space / IJMA- 6(4), April-2015. #### REFERENCES - 1. Abd EI-Monsef, S.N.EI-Deeb and R.A.Mahmoud, β -open sets and β -continuous mappings, Bull. Fac. Sci. Assiut Univ.. 12 (1983), 77-90. - 2. Andrijevic.D, Semi-preopen sets, Mat. Vesnik, 38 (1) (1986), 24-32. - 3. Devi.R. Balachandran.K and Maki.H, Semi generalized homeomorphisms and generalized semi-homeomorphisms, Indian, J.pure. appl (Math), 26 (1995), 271-284. - 4. Dontchev.J. On generalizing Semi-pre open sets, Mem. Fac. Sic .Kochi. Univ. Ser .A. Math, 16 (1995), 35-48. - 5. Fukutake.T, On generalized closed sets in bitopological spaces, Bull.Fukuoka.Univ.Ed.Part III, 35,(1986), 19-28. - 6. Fukutake.T, Sundaram.P and Nagaveni.N, Bull.Fukuoka Univ.Ed part –III, 48 (1999), 33-40. - 7. Kelly.J.C.Proc,London.Math,Sic, 13 (1963), 71-89. - 8. Levine.N, Semi-open sets and semi-continuity in topological space, Amer. Math>Monthly, 70 (1963), 36-41. - 9. Mashhour .A.S,I.A.Hasanein and S.N.EI-Deeb, α -continuous and α -open mappings., Acta Math. Hung., 41 (3-4) (1983), 213-218. - 10. Mashhour. A.S, M.E.Abd EI-Monsef and S.N.EI.Deeb,On Pre-Continuous and weak pre-Continuous mappings, Pre-Continuous Mappings, Proc. Math. And Phys. Soc. Egypt, 53 (1982), 47-53. - 11. Njastad. O, On Some Clases of neraly open sets, pacific J. Math., 15 (1965), 961-970. - 12. Pauline Mary Helen.M, Anitha.P, (g*p)*-Closed Sets in Bitopological Space, International Journal of Mathematical Archive, 5 (8), 2014, 1-7. - 13. Qays Hatem Imran, $g\alpha g$ -Closed Sets in Bitopological Space, International Research Journal of Pure Algebra, 4 (3), 2014, 419-425. - 14. Qays Hatem Imran, $\alpha * g$ -Closed Sets in Bitopological Space, Journal of Kufa for Mathematics and Computer, Vol.2, no.1, May, 2014,PP. 95-102. - 15. Sheik John.M and Sundaram.P, g *- Closed Sets in Bitopological Space, Indian J.Pure appl.Math., 35 (1), January 2004, 71-80. - 16. Tantawy.O.A.EI and Abu-Donia.H.M, Generalized Separation Axioms in Bitopological Space, The Arabian JI for Science and Engg, Vol 30, No 1A, 2005, 117-129. - 17. Vadivel .A and Swaminathan.A, g*p-closed sets in bitopology, Journal of Advanced Studies in Topology, Vol. 3, No. 1, 2012, 81-88. - 18. Veronica Vijayan, K.S.Sangeetha, α **-closed sets in topological spaces IJCA issue 3, volume 6,(November-December 2013)ISSN:2250-1797. ### Source of support: Nil, Conflict of interest: None Declared [Copy right © 2015. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]